resistivityVES/VES.ipynb

302 lines
7.2 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [],
"source": [
"# Checkout www.pygimli.org for more examples"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n",
"# VES inversion for a blocky model\n",
"\n",
"This tutorial shows how an built-in forward operator is used for inversion.\n",
"A DC 1D (VES) modelling is used to generate data, noisify and invert them.\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We import numpy, matplotlib and the 1D plotting function\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [],
"source": [
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import pygimli as pg\n",
"from pygimli.physics import VESManager"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"some definitions before (model, data and error)\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [],
"source": [
"#ab2 = np.logspace(-0.5, 2.5, 40) # AB/2 distance (current electrodes)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"define a synthetic model and do a forward simulatin including noise\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [],
"source": [
"#synres = [100., 500., 30.] # synthetic resistivity\n",
"#synthk = [0.5, 3.5] # synthetic thickness (nlay-th layer is infinite)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"the forward operator can be called by f.response(model) or simply f(model)\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [],
"source": [
"#synthModel = synthk + synres # concatenate thickness and resistivity\n",
"#ves = VESManager()\n",
"#rhoa, err = ves.simulate(synthModel, ab2=ab2, mn2=0.5,\n",
"# noiseLevel=0.03, seed=1337)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [],
"source": [
"# use data from Bausenberg\n",
"ab2 = [1.0, 1.25, 1.5, 2.0, 2.5, 3.0, 4.0, 5.0, 6.0, 7.5, 10.0, 12.5, 15.0, 20.0, 25.0, 30.0, 40.0, 50.0, 60.0, 75.0, 100.]\n",
"rhoa = [64.0, 70., 77., 89., 103., 115., 152., 179., 206., 244., 305., 360., 410., 489., 540., 588., 672., 605., 535., 433., 283.]\n",
"err = np.ones(len(rhoa))*0.02\n",
"err[-4:] = 0.05\n",
"mn2 = np.ones(len(rhoa))*0.5"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(ab2)\n",
"print(rhoa)\n",
"print(err)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [],
"source": [
"nlay = 3\n",
"ves = VESManager()\n",
"ves.invert(rhoa, err, ab2=ab2, mn2=mn2,\n",
" nLayers=nlay, lam=1000, lambdaFactor=0.8, cTpye=2, verbose=False)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"show estimated & synthetic models and data with model response in 2 subplots\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [],
"source": [
"fig, ax = plt.subplots(ncols=2, figsize=(8, 6)) # two-column figure\n",
"#ves.showModel(synthModel, ax=ax[0], label=\"synth\", plot=\"semilogy\", zmax=20)\n",
"ves.showModel(ves.model, ax=ax[0], label=\"model\", zmax=50, color=\"C1\")\n",
"ves.showData(rhoa, ax=ax[1], label=\"data\", color=\"C0\", marker=\"o\")\n",
"out = ves.showData(ves.inv.response, ax=ax[1], label=\"model\", color=\"C1\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We are interested in the model uncertaincies and through model covariance\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [],
"source": [
"from pygimli.frameworks.resolution import modelCovariance\n",
"var, MCM = modelCovariance(ves.inv)\n",
"pg.info(var)\n",
"fig, ax = plt.subplots()\n",
"im = ax.imshow(MCM, vmin=-1, vmax=1, cmap=\"bwr\")\n",
"plt.colorbar(im)\n",
"labels = [rf'$d_{i+1}$' for i in range(nlay-1)] + \\\n",
" [rf'$\\rho_{i+1}$' for i in range(nlay)]\n",
"plt.xticks(np.arange(nlay*2-1), labels)\n",
"_ = plt.yticks(np.arange(nlay*2-1), labels)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The model covariance matrix delivers variances and a scaled (dimensionless)\n",
"correlation matrix. The latter show the interdependency of the parameters\n",
"among each other. The first and last resistivity is best resolved, also the\n",
"first layer thickness. The remaining resistivities and thicknesses are highly\n",
"correlated. The variances can be used as error bars in the model plot.\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [],
"source": [
"thk = ves.model[:nlay-1]\n",
"res = ves.model[nlay-1:]\n",
"z = np.cumsum(thk)\n",
"mid = np.hstack([z - thk/2, z[-1]*1.1])\n",
"resmean = np.sqrt(res[:-1]*res[1:])\n",
"fig, ax = plt.subplots()\n",
"#ves.showModel(synthModel, ax=ax, label=\"synth\", plot=\"semilogy\", zmax=20)\n",
"ves.showModel(ves.model, ax=ax, label=\"model\", zmax=50)\n",
"ax.errorbar(res, mid, marker=\"*\", ls=\"None\", xerr=res*var[nlay-1:])\n",
"ax.errorbar(resmean, z, marker=\"*\", ls=\"None\", yerr=thk*var[:nlay-1])"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false,
"jupyter": {
"outputs_hidden": false
}
},
"outputs": [],
"source": [
"print(res)\n",
"print(res*var[nlay-1:])\n",
"print(thk)\n",
"print(thk*var[:nlay-1])"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "pyGIMLI",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
}
},
"nbformat": 4,
"nbformat_minor": 4
}