pylot/pylot/core/pick/utils.py

499 lines
18 KiB
Python
Raw Normal View History

#!/usr/bin/env python
#
# -*- coding: utf-8 -*-
"""
Created Mar/Apr 2015
Collection of helpful functions for manual and automatic picking.
:author: Ludger Kueperkoch / MAGS2 EP3 working group
"""
import numpy as np
import matplotlib.pyplot as plt
from obspy.core import Stream, UTCDateTime
import warnings
def earllatepicker(X, nfac, TSNR, Pick1, iplot=None):
'''
Function to derive earliest and latest possible pick after Diehl & Kissling (2009)
as reasonable uncertainties. Latest possible pick is based on noise level,
earliest possible pick is half a signal wavelength in front of most likely
pick given by PragPicker or manually set by analyst. Most likely pick
(initial pick Pick1) must be given.
:param: X, time series (seismogram)
:type: `~obspy.core.stream.Stream`
:param: nfac (noise factor), nfac times noise level to calculate latest possible pick
:type: int
:param: TSNR, length of time windows around pick used to determine SNR [s]
:type: tuple (T_noise, T_gap, T_signal)
:param: Pick1, initial (most likely) onset time, starting point for earllatepicker
:type: float
:param: iplot, if given, results are plotted in figure(iplot)
:type: int
'''
assert isinstance(X, Stream), "%s is not a stream object" % str(X)
LPick = None
EPick = None
PickError = None
print 'earllatepicker: Get earliest and latest possible pick relative to most likely pick ...'
x = X[0].data
t = np.arange(0, X[0].stats.npts / X[0].stats.sampling_rate,
X[0].stats.delta)
# get latest possible pick
#get noise window
inoise = getnoisewin(t, Pick1, TSNR[0], TSNR[1])
#get signal window
isignal = getsignalwin(t, Pick1, TSNR[2])
#calculate noise level
nlevel = np.sqrt(np.mean(np.square(x[inoise]))) * nfac
#get time where signal exceeds nlevel
ilup, = np.where(x[isignal] > nlevel)
ildown, = np.where(x[isignal] < -nlevel)
if not ilup.size and not ildown.size:
raise ValueError('earllatepicker: Signal lower than noise level')
il = min(np.min(ilup) if ilup.size else float('inf'),
np.min(ildown) if ildown.size else float('inf'))
LPick = t[isignal][il]
#get earliest possible pick
#determine all zero crossings in signal window (demeaned)
zc = crossings_nonzero_all(x[isignal] - x[isignal].mean())
#calculate mean half period T0 of signal as the average of the
T0 = np.mean(np.diff(zc)) * X[0].stats.delta #this is half wave length!
#T0/4 is assumed as time difference between most likely and earliest possible pick!
EPick = Pick1 - T0 / 2
#get symmetric pick error as mean from earliest and latest possible pick
#by weighting latest possible pick two times earliest possible pick
diffti_tl = LPick - Pick1
diffti_te = Pick1 - EPick
PickError = (diffti_te + 2 * diffti_tl) / 3
2015-05-29 16:28:50 +02:00
if iplot > 1:
p = plt.figure(iplot)
p1, = plt.plot(t, x, 'k')
p2, = plt.plot(t[inoise], x[inoise])
p3, = plt.plot(t[isignal], x[isignal], 'r')
p4, = plt.plot([t[0], t[int(len(t)) - 1]], [nlevel, nlevel], '--k')
p5, = plt.plot(t[isignal[0][zc]], np.zeros(len(zc)), '*g', markersize=14)
plt.legend([p1, p2, p3, p4, p5],
['Data', 'Noise Window', 'Signal Window', 'Noise Level',
'Zero Crossings'], \
loc='best')
plt.plot([t[0], t[int(len(t)) - 1]], [-nlevel, -nlevel], '--k')
plt.plot([Pick1, Pick1], [max(x), -max(x)], 'b', linewidth=2)
plt.plot([LPick, LPick], [max(x) / 2, -max(x) / 2], '--k')
plt.plot([EPick, EPick], [max(x) / 2, -max(x) / 2], '--k')
plt.plot([Pick1 + PickError, Pick1 + PickError],
[max(x) / 2, -max(x) / 2], 'r--')
plt.plot([Pick1 - PickError, Pick1 - PickError],
[max(x) / 2, -max(x) / 2], 'r--')
plt.xlabel('Time [s] since %s' % X[0].stats.starttime)
plt.yticks([])
ax = plt.gca()
ax.set_xlim([t[inoise[0][0]] - 2, t[isignal[0][len(isignal) - 1]] + 3])
plt.title(
'Earliest-/Latest Possible/Most Likely Pick & Symmetric Pick Error, %s' %
X[0].stats.station)
plt.show()
raw_input()
2015-05-29 16:28:50 +02:00
plt.close(p)
return EPick, LPick, PickError
def fmpicker(Xraw, Xfilt, pickwin, Pick, iplot=None):
'''
Function to derive first motion (polarity) of given phase onset Pick.
Calculation is based on zero crossings determined within time window pickwin
after given onset time.
:param: Xraw, unfiltered time series (seismogram)
:type: `~obspy.core.stream.Stream`
:param: Xfilt, filtered time series (seismogram)
:type: `~obspy.core.stream.Stream`
:param: pickwin, time window after onset Pick within zero crossings are calculated
:type: float
:param: Pick, initial (most likely) onset time, starting point for fmpicker
:type: float
:param: iplot, if given, results are plotted in figure(iplot)
:type: int
'''
warnings.simplefilter('ignore', np.RankWarning)
assert isinstance(Xraw, Stream), "%s is not a stream object" % str(Xraw)
assert isinstance(Xfilt, Stream), "%s is not a stream object" % str(Xfilt)
FM = None
if Pick is not None:
print 'fmpicker: Get first motion (polarity) of onset using unfiltered seismogram...'
xraw = Xraw[0].data
xfilt = Xfilt[0].data
t = np.arange(0, Xraw[0].stats.npts / Xraw[0].stats.sampling_rate,
Xraw[0].stats.delta)
# get pick window
ipick = np.where(
(t <= min([Pick + pickwin, len(Xraw[0])])) & (t >= Pick))
#remove mean
xraw[ipick] = xraw[ipick] - np.mean(xraw[ipick])
xfilt[ipick] = xfilt[ipick] - np.mean(xfilt[ipick])
#get next zero crossing after most likely pick
#initial onset is assumed to be the first zero crossing
#first from unfiltered trace
zc1 = []
zc1.append(Pick)
index1 = []
i = 0
for j in range(ipick[0][1], ipick[0][len(t[ipick]) - 1]):
i = i + 1
if xraw[j - 1] <= 0 and xraw[j] >= 0:
zc1.append(t[ipick][i])
index1.append(i)
elif xraw[j - 1] > 0 and xraw[j] <= 0:
zc1.append(t[ipick][i])
index1.append(i)
if len(zc1) == 3:
break
#if time difference betweeen 1st and 2cnd zero crossing
#is too short, get time difference between 1st and 3rd
#to derive maximum
if zc1[1] - zc1[0] <= Xraw[0].stats.delta:
li1 = index1[1]
else:
li1 = index1[0]
if np.size(xraw[ipick[0][1]:ipick[0][li1]]) == 0:
print 'earllatepicker: Onset on unfiltered trace too emergent for first motion determination!'
P1 = None
else:
imax1 = np.argmax(abs(xraw[ipick[0][1]:ipick[0][li1]]))
islope1 = np.where((t >= Pick) & (t <= Pick + t[imax1]))
#calculate slope as polynomal fit of order 1
xslope1 = np.arange(0, len(xraw[islope1]), 1)
P1 = np.polyfit(xslope1, xraw[islope1], 1)
datafit1 = np.polyval(P1, xslope1)
#now using filterd trace
#next zero crossing after most likely pick
zc2 = []
zc2.append(Pick)
index2 = []
i = 0
for j in range(ipick[0][1], ipick[0][len(t[ipick]) - 1]):
i = i + 1
if xfilt[j - 1] <= 0 and xfilt[j] >= 0:
zc2.append(t[ipick][i])
index2.append(i)
elif xfilt[j - 1] > 0 and xfilt[j] <= 0:
zc2.append(t[ipick][i])
index2.append(i)
if len(zc2) == 3:
break
#if time difference betweeen 1st and 2cnd zero crossing
#is too short, get time difference between 1st and 3rd
#to derive maximum
if zc2[1] - zc2[0] <= Xfilt[0].stats.delta:
li2 = index2[1]
else:
li2 = index2[0]
if np.size(xfilt[ipick[0][1]:ipick[0][li2]]) == 0:
print 'earllatepicker: Onset on filtered trace too emergent for first motion determination!'
P2 = None
else:
imax2 = np.argmax(abs(xfilt[ipick[0][1]:ipick[0][li2]]))
islope2 = np.where((t >= Pick) & (t <= Pick + t[imax2]))
#calculate slope as polynomal fit of order 1
xslope2 = np.arange(0, len(xfilt[islope2]), 1)
P2 = np.polyfit(xslope2, xfilt[islope2], 1)
datafit2 = np.polyval(P2, xslope2)
#compare results
if P1 is not None and P2 is not None:
if P1[0] < 0 and P2[0] < 0:
FM = 'D'
elif P1[0] >= 0 and P2[0] < 0:
FM = '-'
elif P1[0] < 0 and P2[0] >= 0:
FM = '-'
elif P1[0] > 0 and P2[0] > 0:
FM = 'U'
elif P1[0] <= 0 and P2[0] > 0:
FM = '+'
elif P1[0] > 0 and P2[0] <= 0:
FM = '+'
2015-05-29 16:28:50 +02:00
if iplot > 1:
plt.figure(iplot)
plt.subplot(2, 1, 1)
plt.plot(t, xraw, 'k')
p1, = plt.plot([Pick, Pick], [max(xraw), -max(xraw)], 'b', linewidth=2)
if P1 is not None:
p2, = plt.plot(t[islope1], xraw[islope1])
p3, = plt.plot(zc1, np.zeros(len(zc1)), '*g', markersize=14)
p4, = plt.plot(t[islope1], datafit1, '--g', linewidth=2)
plt.legend([p1, p2, p3, p4],
['Pick', 'Slope Window', 'Zero Crossings', 'Slope'], \
loc='best')
plt.text(Pick + 0.02, max(xraw) / 2, '%s' % FM, fontsize=14)
ax = plt.gca()
ax.set_xlim(
[t[islope1[0][0]] - 0.1, t[islope1[0][len(islope1) - 1]] + 0.3])
plt.yticks([])
plt.title('First-Motion Determination, %s, Unfiltered Data' % Xraw[
0].stats.station)
plt.subplot(2, 1, 2)
plt.title('First-Motion Determination, Filtered Data')
plt.plot(t, xfilt, 'k')
p1, = plt.plot([Pick, Pick], [max(xfilt), -max(xfilt)], 'b',
linewidth=2)
if P2 is not None:
p2, = plt.plot(t[islope2], xfilt[islope2])
p3, = plt.plot(zc2, np.zeros(len(zc2)), '*g', markersize=14)
p4, = plt.plot(t[islope2], datafit2, '--g', linewidth=2)
plt.text(Pick + 0.02, max(xraw) / 2, '%s' % FM, fontsize=14)
ax = plt.gca()
ax.set_xlim(
[t[islope2[0][0]] - 0.1, t[islope2[0][len(islope2) - 1]] + 0.3])
plt.xlabel('Time [s] since %s' % Xraw[0].stats.starttime)
plt.yticks([])
plt.show()
raw_input()
plt.close(iplot)
return FM
def crossings_nonzero_all(data):
pos = data > 0
npos = ~pos
return ((pos[:-1] & npos[1:]) | (npos[:-1] & pos[1:])).nonzero()[0]
def getSNR(X, TSNR, t1):
'''
Function to calculate SNR of certain part of seismogram relative to
given time (onset) out of given noise and signal windows. A safety gap
between noise and signal part can be set. Returns SNR and SNR [dB] and
noiselevel.
:param: X, time series (seismogram)
:type: `~obspy.core.stream.Stream`
:param: TSNR, length of time windows [s] around t1 (onset) used to determine SNR
:type: tuple (T_noise, T_gap, T_signal)
:param: t1, initial time (onset) from which noise and signal windows are calculated
:type: float
'''
assert isinstance(X, Stream), "%s is not a stream object" % str(X)
x = X[0].data
t = np.arange(0, X[0].stats.npts / X[0].stats.sampling_rate,
X[0].stats.delta)
# get noise window
inoise = getnoisewin(t, t1, TSNR[0], TSNR[1])
#get signal window
isignal = getsignalwin(t, t1, TSNR[2])
if np.size(inoise) < 1:
print 'getSNR: Empty array inoise, check noise window!'
return
elif np.size(isignal) < 1:
print 'getSNR: Empty array isignal, check signal window!'
return
#calculate ratios
noiselevel = np.sqrt(np.mean(np.square(x[inoise])))
signallevel = np.sqrt(np.mean(np.square(x[isignal])))
SNR = signallevel / noiselevel
SNRdB = 10 * np.log10(SNR)
return SNR, SNRdB, noiselevel
def getnoisewin(t, t1, tnoise, tgap):
'''
Function to extract indeces of data out of time series for noise calculation.
Returns an array of indeces.
:param: t, array of time stamps
:type: numpy array
:param: t1, time from which relativ to it noise window is extracted
:type: float
:param: tnoise, length of time window [s] for noise part extraction
:type: float
:param: tgap, safety gap between t1 (onset) and noise window to
ensure, that noise window contains no signal
:type: float
'''
inoise = None
# get noise window
inoise = np.where((t <= max([t1 - tgap, 0])) \
& (t >= max([t1 - tnoise - tgap, 0])))
if np.size(inoise) < 1:
print 'getnoisewin: Empty array inoise, check noise window!'
return inoise
def getsignalwin(t, t1, tsignal):
'''
Function to extract data out of time series for signal level calculation.
Returns an array of indeces.
:param: t, array of time stamps
:type: numpy array
:param: t1, time from which relativ to it signal window is extracted
:type: float
:param: tsignal, length of time window [s] for signal level calculation
:type: float
'''
inoise = None
# get signal window
isignal = np.where((t <= min([t1 + tsignal, len(t)])) \
& (t >= t1))
if np.size(isignal) < 1:
print 'getsignalwin: Empty array isignal, check signal window!'
return isignal
def wadaticheck(pickdic, dttolerance, iplot):
'''
Function to calculate Wadati-diagram from given P and S onsets in order
to detect S pick outliers. If a certain S-P time deviates from regression
of S-P time the S pick is marked and down graded.
: param: pickdic, dictionary containing picks and quality parameters
: type: dictionary
: param: dttolerance, maximum adjusted deviation of S-P time from
S-P time regression
: type: float
: param: iplot, if iplot > 1, Wadati diagram is shown
: type: int
'''
checkedonsets = pickdic
# search for good quality picks and calculate S-P time
Ppicks = []
Spicks = []
SPtimes = []
vpvs = []
for key in pickdic:
if pickdic[key]['P']['weight'] < 4 and pickdic[key]['S']['weight'] < 4:
# calculate S-P time
spt = pickdic[key]['S']['mpp'] - pickdic[key]['P']['mpp']
# add S-P time to dictionary
pickdic[key]['SPt'] = spt
# add P onsets and corresponding S-P times to list
UTCPpick = UTCDateTime(pickdic[key]['P']['mpp']) - UTCDateTime(1970,1,1,0,0,0)
UTCSpick = UTCDateTime(pickdic[key]['S']['mpp']) - UTCDateTime(1970,1,1,0,0,0)
Ppicks.append(UTCPpick)
Spicks.append(UTCSpick)
SPtimes.append(spt)
vpvs.append(UTCPpick/UTCSpick)
if len(SPtimes) >= 3:
# calculate slope
p1 = np.polyfit(Ppicks, SPtimes, 1)
wdfit = np.polyval(p1, Ppicks)
wfitflag = 0
# calculate average vp/vs ratio before check
vpvsr = p1[0] + 1
print 'wadaticheck: Average Vp/Vs ratio before check:', vpvsr
checkedPpicks = []
checkedSpicks = []
checkedSPtimes = []
checkedvpvs = []
# calculate deviations from Wadati regression
for key in pickdic:
if pickdic[key].has_key('SPt'):
ii = 0
wddiff = abs(pickdic[key]['SPt'] - wdfit[ii])
ii += 1
# check, if deviation is larger than adjusted
if wddiff >= dttolerance:
# mark onset and downgrade S-weight to 9
# (not used anymore)
marker = 'badWadatiCheck'
pickdic[key]['S']['weight'] = 9
else:
marker = 'goodWadatiCheck'
checkedPpick = UTCDateTime(pickdic[key]['P']['mpp']) - \
UTCDateTime(1970,1,1,0,0,0)
checkedPpicks.append(checkedPpick)
checkedSpick = UTCDateTime(pickdic[key]['S']['mpp']) - \
UTCDateTime(1970,1,1,0,0,0)
checkedSpicks.append(checkedSpick)
checkedSPtime = pickdic[key]['S']['mpp'] - pickdic[key]['P']['mpp']
checkedSPtimes.append(checkedSPtime)
checkedvpvs.append(checkedPpick/checkedSpick)
pickdic[key]['S']['marked'] = marker
# calculate new slope
p2 = np.polyfit(checkedPpicks, checkedSPtimes, 1)
wdfit2 = np.polyval(p2, checkedPpicks)
# calculate average vp/vs ratio after check
cvpvsr = p2[0] + 1
print 'wadaticheck: Average Vp/Vs ratio after check:', cvpvsr
checkedonsets = pickdic
else:
print 'wadaticheck: Not enough S-P times available for reliable regression!'
print 'Skip wadati check!'
wfitflag = 1
# plot results
if iplot > 1:
plt.figure(iplot)
f1, = plt.plot(Ppicks, SPtimes, 'ro')
if wfitflag == 0:
f2, = plt.plot(Ppicks, wdfit, 'k')
f3, = plt.plot(checkedPpicks, checkedSPtimes, 'ko')
f4, = plt.plot(checkedPpicks, wdfit2, 'g')
plt.ylabel('S-P Times [s]')
plt.xlabel('P Times [s]')
plt.title('Wadati-Diagram, %d S-P Times, Vp/Vs(old)=%5.2f, Vp/Vs(checked)=%5.2f' \
% (len(SPtimes), vpvsr, cvpvsr))
plt.legend([f1, f2, f3, f4], ['Skipped S-Picks', 'Wadati 1', 'Reliable S-Picks', \
'Wadati 2'], loc='best')
plt.show()
raw_input()
plt.close(iplot)
return checkedonsets