Included autoregressive prediction on horizontal components
This commit is contained in:
parent
fbce83293d
commit
03033f57a1
@ -17,6 +17,7 @@ autoregressive prediction: application ot local and regional distances, Geophys.
|
||||
"""
|
||||
import numpy as np
|
||||
from obspy.core import Stream
|
||||
import scipy
|
||||
|
||||
class CharacteristicFunction(object):
|
||||
'''
|
||||
@ -46,10 +47,10 @@ class CharacteristicFunction(object):
|
||||
:type: float (optional, only for AR)
|
||||
'''
|
||||
|
||||
assert isinstance(data, Stream), "%s is not a Stream object" % str(data)
|
||||
assert isinstance(data, Stream), "%s is not a stream object" % str(data)
|
||||
|
||||
self.orig_data = data[0]
|
||||
self.dt = self.orig_data.stats.delta
|
||||
self.orig_data = data
|
||||
self.dt = self.orig_data[0].stats.delta
|
||||
self.setCut(cut)
|
||||
self.setTime1(t1)
|
||||
self.setTime2(t2)
|
||||
@ -118,26 +119,33 @@ class CharacteristicFunction(object):
|
||||
cutting window
|
||||
'''
|
||||
if cut is not None:
|
||||
if self.cut[0] == 0:
|
||||
start = 0
|
||||
else:
|
||||
start = self.cut[0] / self.dt
|
||||
stop = self.cut[1] / self.dt
|
||||
data = self.orig_data.data[start:stop]
|
||||
return data
|
||||
|
||||
return self.orig_data.data
|
||||
|
||||
if self.cut[0] == 0:
|
||||
start = 0
|
||||
else:
|
||||
start = self.cut[0] / self.dt
|
||||
stop = self.cut[1] / self.dt
|
||||
if len(self.orig_data) == 1:
|
||||
data = self.orig_data[0].data[start:stop]
|
||||
return data
|
||||
elif len(self.orig_data) == 2:
|
||||
hh = self.orig_data.copy()
|
||||
h1 = hh[0].copy()
|
||||
h2 = hh[1].copy()
|
||||
hh[0].data = h1.data[start:stop]
|
||||
hh[1].data = h2.data[start:stop]
|
||||
data = hh
|
||||
return data
|
||||
else:
|
||||
if len(self.orig_data) == 1:
|
||||
data = self.orig_data[0]
|
||||
return data
|
||||
elif len(self.orig_data) == 2:
|
||||
data = self.orig_data
|
||||
return data
|
||||
|
||||
def calcCF(self, data=None):
|
||||
self.cf = data
|
||||
|
||||
def arDet(self, data, order, rind, ldet):
|
||||
pass
|
||||
|
||||
def arPred(self, data, arpara, rind, lpred):
|
||||
pass
|
||||
|
||||
|
||||
|
||||
class AICcf(CharacteristicFunction):
|
||||
'''
|
||||
@ -150,6 +158,7 @@ class AICcf(CharacteristicFunction):
|
||||
'''
|
||||
|
||||
def calcCF(self, data):
|
||||
|
||||
print 'Calculating AIC ...'
|
||||
xnp = self.getDataArray()
|
||||
datlen = len(xnp)
|
||||
@ -158,8 +167,8 @@ class AICcf(CharacteristicFunction):
|
||||
cumsumcf = np.cumsum(np.power(xnp, 2))
|
||||
i = np.where(cumsumcf == 0)
|
||||
cumsumcf[i] = np.finfo(np.float64).eps
|
||||
cf[k] = ((k - 1) * np.log(cumsumcf[k] / k) + (datlen - k + 1) *
|
||||
np.log((cumsumcf[datlen - 1] -
|
||||
cf[k] = ((k - 1) * np.log(cumsumcf[k] / k) + (datlen - k + 1) *
|
||||
np.log((cumsumcf[datlen - 1] -
|
||||
cumsumcf[k - 1]) / (datlen - k + 1)))
|
||||
cf[0] = cf[1]
|
||||
inf = np.isinf(cf)
|
||||
@ -180,7 +189,6 @@ class HOScf(CharacteristicFunction):
|
||||
def calcCF(self, data):
|
||||
|
||||
xnp = self.getDataArray(self.getCut())
|
||||
|
||||
if self.getOrder() == 3: # this is skewness
|
||||
print 'Calculating skewness ...'
|
||||
y = np.power(xnp, 3)
|
||||
@ -190,22 +198,22 @@ class HOScf(CharacteristicFunction):
|
||||
y = np.power(xnp, 4)
|
||||
y1 = np.power(xnp, 2)
|
||||
|
||||
# Initialisation
|
||||
# t2: long term moving window
|
||||
#Initialisation
|
||||
#t2: long term moving window
|
||||
ilta = round(self.getTime2() / self.getIncrement())
|
||||
lta = y[0]
|
||||
lta1 = y1[0]
|
||||
|
||||
# moving windows
|
||||
#moving windows
|
||||
LTA = np.zeros(len(xnp))
|
||||
for j in range(3, len(xnp)):
|
||||
if j <= ilta:
|
||||
lta = (y[j] + lta * (j - 1)) / j
|
||||
lta1 = (y1[j] + lta1 * (j - 1)) / j
|
||||
lta = (y[j] + lta * (j-1)) / j
|
||||
lta1 = (y1[j] + lta1 * (j-1)) / j
|
||||
else:
|
||||
lta = (y[j] - y[j - ilta]) / ilta + lta
|
||||
lta1 = (y1[j] - y1[j - ilta]) / ilta + lta1
|
||||
# define LTA
|
||||
#define LTA
|
||||
if self.getOrder() == 3:
|
||||
LTA[j] = lta / np.power(lta1, 1.5)
|
||||
elif self.getOrder() == 4:
|
||||
@ -222,39 +230,38 @@ class ARZcf(CharacteristicFunction):
|
||||
|
||||
print 'Calculating AR-prediction error from single trace ...'
|
||||
xnp = self.getDataArray(self.getCut())
|
||||
|
||||
# some parameters needed
|
||||
# add noise to time series
|
||||
#some parameters needed
|
||||
#add noise to time series
|
||||
xnoise = xnp + np.random.normal(0.0, 1.0, len(xnp)) * self.getFnoise() * max(abs(xnp))
|
||||
tend = len(xnp)
|
||||
# Time1: length of AR-determination window [sec]
|
||||
# Time2: length of AR-prediction window [sec]
|
||||
ldet = int(round(self.getTime1() / self.getIncrement())) # length of AR-determination window [samples]
|
||||
lpred = int(np.ceil(self.getTime2() / self.getIncrement())) # length of AR-prediction window [samples]
|
||||
#Time1: length of AR-determination window [sec]
|
||||
#Time2: length of AR-prediction window [sec]
|
||||
ldet = int(round(self.getTime1() / self.getIncrement())) #length of AR-determination window [samples]
|
||||
lpred = int(np.ceil(self.getTime2() / self.getIncrement())) #length of AR-prediction window [samples]
|
||||
|
||||
cf = []
|
||||
step = ldet + self.getOrder() - 1
|
||||
for i in range(ldet + self.getOrder() - 1, tend - lpred + 1):
|
||||
if i == step:
|
||||
'''
|
||||
In order to speed up the algorithm AR parameters are kept for time
|
||||
intervals of length lpred
|
||||
'''
|
||||
# determination of AR coefficients
|
||||
self.arDet(xnoise, self.getOrder(), i - ldet, i)
|
||||
step = step + lpred
|
||||
'''
|
||||
In order to speed up the algorithm AR parameters are kept for time
|
||||
intervals of length ldet
|
||||
'''
|
||||
#determination of AR coefficients
|
||||
self.arDetZ(xnoise, self.getOrder(), i-ldet, i)
|
||||
step = step + ldet
|
||||
|
||||
# AR prediction of waveform using calculated AR coefficients
|
||||
self.arPred(xnp, self.arpara, i + 1, lpred)
|
||||
# prediction error = CF
|
||||
#AR prediction of waveform using calculated AR coefficients
|
||||
self.arPredZ(xnp, self.arpara, i + 1, lpred)
|
||||
#prediction error = CF
|
||||
err = np.sqrt(np.sum(np.power(self.xpred[i:i + lpred] - xnp[i:i + lpred], 2)) / lpred)
|
||||
cf.append(err)
|
||||
|
||||
# convert list to numpy array
|
||||
#convert list to numpy array
|
||||
cf = np.asarray(cf)
|
||||
self.cf = cf
|
||||
|
||||
def arDet(self, data, order, rind, ldet):
|
||||
def arDetZ(self, data, order, rind, ldet):
|
||||
'''
|
||||
Function to calculate AR parameters arpara after Thomas Meier (CAU), published
|
||||
in Kueperkoch et al. (2012). This function solves SLE using the Moore-
|
||||
@ -274,27 +281,27 @@ class ARZcf(CharacteristicFunction):
|
||||
Output: AR parameters arpara
|
||||
'''
|
||||
|
||||
# recursive calculation of data vector (right part of eq. 6.5 in Kueperkoch et al. (2012)
|
||||
#recursive calculation of data vector (right part of eq. 6.5 in Kueperkoch et al. (2012)
|
||||
rhs = np.zeros(self.getOrder())
|
||||
for k in range(0, self.getOrder()):
|
||||
for i in range(rind, ldet):
|
||||
rhs[k] = rhs[k] + data[i] * data[i - k]
|
||||
|
||||
# recursive calculation of data array (second sum at left part of eq. 6.5 in Kueperkoch et al. 2012)
|
||||
A = np.array([[0, 0], [0, 0]])
|
||||
#recursive calculation of data array (second sum at left part of eq. 6.5 in Kueperkoch et al. 2012)
|
||||
A = np.zeros((2,2))
|
||||
for k in range(1, self.getOrder() + 1):
|
||||
for j in range(1, k + 1):
|
||||
for i in range(rind, ldet):
|
||||
ki = k - 1
|
||||
ji = j - 1
|
||||
A[ki, ji] = A[ki, ji] + data[i - ji] * data[i - ki]
|
||||
A[ki,ji] = A[ki,ji] + data[i - ji] * data[i - ki]
|
||||
|
||||
A[ji, ki] = A[ki, ji]
|
||||
A[ji,ki] = A[ki,ji]
|
||||
|
||||
# apply Moore-Penrose inverse for SVD yielding the AR-parameters
|
||||
#apply Moore-Penrose pseudo inverse for SVD yielding the AR-parameters
|
||||
self.arpara = np.dot(np.linalg.pinv(A), rhs)
|
||||
|
||||
def arPred(self, data, arpara, rind, lpred):
|
||||
def arPredZ(self, data, arpara, rind, lpred):
|
||||
'''
|
||||
Function to predict waveform, assuming an autoregressive process of order
|
||||
p (=size(arpara)), with AR parameters arpara calculated in arDet. After
|
||||
@ -313,7 +320,7 @@ class ARZcf(CharacteristicFunction):
|
||||
|
||||
Output: predicted waveform z
|
||||
'''
|
||||
# be sure of the summation indeces
|
||||
#be sure of the summation indeces
|
||||
if rind < len(arpara) + 1:
|
||||
rind = len(arpara) + 1
|
||||
if rind > len(data) - lpred + 1:
|
||||
@ -334,8 +341,134 @@ class ARZcf(CharacteristicFunction):
|
||||
|
||||
class ARHcf(CharacteristicFunction):
|
||||
|
||||
pass
|
||||
def calcCF(self, data):
|
||||
|
||||
print 'Calculating AR-prediction error from both horizontal traces ...'
|
||||
|
||||
xnp = self.getDataArray(self.getCut())
|
||||
|
||||
#some parameters needed
|
||||
#add noise to time series
|
||||
xenoise = xnp[0].data + np.random.normal(0.0, 1.0, len(xnp[0].data)) * self.getFnoise() * max(abs(xnp[0].data))
|
||||
xnnoise = xnp[1].data + np.random.normal(0.0, 1.0, len(xnp[1].data)) * self.getFnoise() * max(abs(xnp[1].data))
|
||||
Xnoise = np.array( [xenoise.tolist(), xnnoise.tolist()] )
|
||||
tend = len(xnp[0].data)
|
||||
#Time1: length of AR-determination window [sec]
|
||||
#Time2: length of AR-prediction window [sec]
|
||||
ldet = int(round(self.getTime1() / self.getIncrement())) #length of AR-determination window [samples]
|
||||
lpred = int(np.ceil(self.getTime2() / self.getIncrement())) #length of AR-prediction window [samples]
|
||||
|
||||
cf = []
|
||||
arstep = ldet + self.getOrder() - 3
|
||||
for i in range(ldet + self.getOrder() - 3, tend - lpred + 1):
|
||||
if i == arstep:
|
||||
'''
|
||||
In order to speed up the algorithm AR parameters are kept for time
|
||||
intervals of length ldet
|
||||
'''
|
||||
#determination of AR coefficients
|
||||
self.arDetH(Xnoise, self.getOrder(), i-ldet, i)
|
||||
arstep = arstep + ldet
|
||||
|
||||
#AR prediction of waveform using calculated AR coefficients
|
||||
self.arPredH(xnp, self.arpara, i + 1, lpred)
|
||||
#prediction error = CF
|
||||
err = np.sqrt(np.sum(np.power(self.xpred[0][i:i + lpred] - xnp[0][i:i + lpred], 2) \
|
||||
+ np.power(self.xpred[1][i:i + lpred] - xnp[1][i:i + lpred], 2)) / (2 * lpred))
|
||||
cf.append(err)
|
||||
|
||||
#convert list to numpy array
|
||||
cf = np.asarray(cf)
|
||||
self.cf = cf
|
||||
|
||||
def arDetH(self, data, order, rind, ldet):
|
||||
'''
|
||||
Function to calculate AR parameters arpara after Thomas Meier (CAU), published
|
||||
in Kueperkoch et al. (2012). This function solves SLE using the Moore-
|
||||
Penrose inverse, i.e. the least-squares approach. "data" is a structured array.
|
||||
AR parameters are calculated based on both horizontal components in order
|
||||
to account for polarization.
|
||||
:param: data, horizontal component seismograms to calculate AR parameters from
|
||||
:type: structured array
|
||||
|
||||
:param: order, order of AR process
|
||||
:type: int
|
||||
|
||||
:param: rind, first running summation index
|
||||
:type: int
|
||||
|
||||
:param: ldet, length of AR-determination window (=end of summation index)
|
||||
:type: int
|
||||
|
||||
Output: AR parameters arpara
|
||||
'''
|
||||
|
||||
#recursive calculation of data vector (right part of eq. 6.5 in Kueperkoch et al. (2012)
|
||||
rhs = np.zeros(self.getOrder())
|
||||
for k in range(0, self.getOrder()):
|
||||
for i in range(rind, ldet):
|
||||
rhs[k] = rhs[k] + data[0,i] * data[0,i - k] + data[1,i] * data[1,i - k]
|
||||
|
||||
#recursive calculation of data array (second sum at left part of eq. 6.5 in Kueperkoch et al. 2012)
|
||||
A = np.zeros((4,4))
|
||||
for k in range(1, self.getOrder() + 1):
|
||||
for j in range(1, k + 1):
|
||||
for i in range(rind, ldet):
|
||||
ki = k - 1
|
||||
ji = j - 1
|
||||
A[ki,ji] = A[ki,ji] + data[0,i - ji] * data[0,i - ki] + data[1,i - ji] *data[1,i - ki]
|
||||
|
||||
A[ji,ki] = A[ki,ji]
|
||||
|
||||
#apply Moore-Penrose pseudo inverse for SVD yielding the AR-parameters
|
||||
#self.arpara = np.dot(np.linalg.pinv(A), rhs)
|
||||
#self.arpara = np.linalg.solve(A, rhs)
|
||||
#arpara = scipy.linalg.lstsq(A, rhs)
|
||||
#arpara = np.linalg.lstsq(A, rhs)
|
||||
#self.arpara = arpara[0]
|
||||
self.arpara = np.dot(scipy.linalg.pinv(A), rhs)
|
||||
|
||||
|
||||
def arPredH(self, data, arpara, rind, lpred):
|
||||
'''
|
||||
Function to predict waveform, assuming an autoregressive process of order
|
||||
p (=size(arpara)), with AR parameters arpara calculated in arDet. After
|
||||
Thomas Meier (CAU), published in Kueperkoch et al. (2012).
|
||||
:param: data, horizontal component seismograms to be predicted
|
||||
:type: structured array
|
||||
|
||||
:param: arpara, AR parameters
|
||||
:type: float
|
||||
|
||||
:param: rind, first running summation index
|
||||
:type: int
|
||||
|
||||
:param: lpred, length of prediction window (=end of summation index)
|
||||
:type: int
|
||||
|
||||
Output: predicted waveform z
|
||||
:type: structured array
|
||||
'''
|
||||
#be sure of the summation indeces
|
||||
if rind < len(arpara) + 1:
|
||||
rind = len(arpara) + 1
|
||||
if rind > len(data[0]) - lpred + 1:
|
||||
rind = len(data[0]) - lpred + 1
|
||||
if lpred < 1:
|
||||
lpred = 1
|
||||
if lpred > len(data[0]) - 1:
|
||||
lpred = len(data[0]) - 1
|
||||
|
||||
z1 = np.append(data[0][0:rind], np.zeros(lpred))
|
||||
z2 = np.append(data[1][0:rind], np.zeros(lpred))
|
||||
for i in range(rind, rind + lpred):
|
||||
for j in range(1, len(arpara) + 1):
|
||||
ji = j - 1
|
||||
z1[i] = z1[i] + arpara[ji] * z1[i - ji]
|
||||
z2[i] = z2[i] + arpara[ji] * z2[i - ji]
|
||||
|
||||
z = np.array( [z1.tolist(), z2.tolist()] )
|
||||
self.xpred = z
|
||||
|
||||
class AR3Ccf(CharacteristicFunction):
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user