Included autoregressive prediction on horizontal components

This commit is contained in:
Ludger Küperkoch 2014-11-20 09:05:30 +01:00
parent fbce83293d
commit 03033f57a1

View File

@ -17,6 +17,7 @@ autoregressive prediction: application ot local and regional distances, Geophys.
"""
import numpy as np
from obspy.core import Stream
import scipy
class CharacteristicFunction(object):
'''
@ -46,10 +47,10 @@ class CharacteristicFunction(object):
:type: float (optional, only for AR)
'''
assert isinstance(data, Stream), "%s is not a Stream object" % str(data)
assert isinstance(data, Stream), "%s is not a stream object" % str(data)
self.orig_data = data[0]
self.dt = self.orig_data.stats.delta
self.orig_data = data
self.dt = self.orig_data[0].stats.delta
self.setCut(cut)
self.setTime1(t1)
self.setTime2(t2)
@ -118,26 +119,33 @@ class CharacteristicFunction(object):
cutting window
'''
if cut is not None:
if self.cut[0] == 0:
start = 0
else:
start = self.cut[0] / self.dt
stop = self.cut[1] / self.dt
data = self.orig_data.data[start:stop]
return data
return self.orig_data.data
if self.cut[0] == 0:
start = 0
else:
start = self.cut[0] / self.dt
stop = self.cut[1] / self.dt
if len(self.orig_data) == 1:
data = self.orig_data[0].data[start:stop]
return data
elif len(self.orig_data) == 2:
hh = self.orig_data.copy()
h1 = hh[0].copy()
h2 = hh[1].copy()
hh[0].data = h1.data[start:stop]
hh[1].data = h2.data[start:stop]
data = hh
return data
else:
if len(self.orig_data) == 1:
data = self.orig_data[0]
return data
elif len(self.orig_data) == 2:
data = self.orig_data
return data
def calcCF(self, data=None):
self.cf = data
def arDet(self, data, order, rind, ldet):
pass
def arPred(self, data, arpara, rind, lpred):
pass
class AICcf(CharacteristicFunction):
'''
@ -150,6 +158,7 @@ class AICcf(CharacteristicFunction):
'''
def calcCF(self, data):
print 'Calculating AIC ...'
xnp = self.getDataArray()
datlen = len(xnp)
@ -158,8 +167,8 @@ class AICcf(CharacteristicFunction):
cumsumcf = np.cumsum(np.power(xnp, 2))
i = np.where(cumsumcf == 0)
cumsumcf[i] = np.finfo(np.float64).eps
cf[k] = ((k - 1) * np.log(cumsumcf[k] / k) + (datlen - k + 1) *
np.log((cumsumcf[datlen - 1] -
cf[k] = ((k - 1) * np.log(cumsumcf[k] / k) + (datlen - k + 1) *
np.log((cumsumcf[datlen - 1] -
cumsumcf[k - 1]) / (datlen - k + 1)))
cf[0] = cf[1]
inf = np.isinf(cf)
@ -180,7 +189,6 @@ class HOScf(CharacteristicFunction):
def calcCF(self, data):
xnp = self.getDataArray(self.getCut())
if self.getOrder() == 3: # this is skewness
print 'Calculating skewness ...'
y = np.power(xnp, 3)
@ -190,22 +198,22 @@ class HOScf(CharacteristicFunction):
y = np.power(xnp, 4)
y1 = np.power(xnp, 2)
# Initialisation
# t2: long term moving window
#Initialisation
#t2: long term moving window
ilta = round(self.getTime2() / self.getIncrement())
lta = y[0]
lta1 = y1[0]
# moving windows
#moving windows
LTA = np.zeros(len(xnp))
for j in range(3, len(xnp)):
if j <= ilta:
lta = (y[j] + lta * (j - 1)) / j
lta1 = (y1[j] + lta1 * (j - 1)) / j
lta = (y[j] + lta * (j-1)) / j
lta1 = (y1[j] + lta1 * (j-1)) / j
else:
lta = (y[j] - y[j - ilta]) / ilta + lta
lta1 = (y1[j] - y1[j - ilta]) / ilta + lta1
# define LTA
#define LTA
if self.getOrder() == 3:
LTA[j] = lta / np.power(lta1, 1.5)
elif self.getOrder() == 4:
@ -222,39 +230,38 @@ class ARZcf(CharacteristicFunction):
print 'Calculating AR-prediction error from single trace ...'
xnp = self.getDataArray(self.getCut())
# some parameters needed
# add noise to time series
#some parameters needed
#add noise to time series
xnoise = xnp + np.random.normal(0.0, 1.0, len(xnp)) * self.getFnoise() * max(abs(xnp))
tend = len(xnp)
# Time1: length of AR-determination window [sec]
# Time2: length of AR-prediction window [sec]
ldet = int(round(self.getTime1() / self.getIncrement())) # length of AR-determination window [samples]
lpred = int(np.ceil(self.getTime2() / self.getIncrement())) # length of AR-prediction window [samples]
#Time1: length of AR-determination window [sec]
#Time2: length of AR-prediction window [sec]
ldet = int(round(self.getTime1() / self.getIncrement())) #length of AR-determination window [samples]
lpred = int(np.ceil(self.getTime2() / self.getIncrement())) #length of AR-prediction window [samples]
cf = []
step = ldet + self.getOrder() - 1
for i in range(ldet + self.getOrder() - 1, tend - lpred + 1):
if i == step:
'''
In order to speed up the algorithm AR parameters are kept for time
intervals of length lpred
'''
# determination of AR coefficients
self.arDet(xnoise, self.getOrder(), i - ldet, i)
step = step + lpred
'''
In order to speed up the algorithm AR parameters are kept for time
intervals of length ldet
'''
#determination of AR coefficients
self.arDetZ(xnoise, self.getOrder(), i-ldet, i)
step = step + ldet
# AR prediction of waveform using calculated AR coefficients
self.arPred(xnp, self.arpara, i + 1, lpred)
# prediction error = CF
#AR prediction of waveform using calculated AR coefficients
self.arPredZ(xnp, self.arpara, i + 1, lpred)
#prediction error = CF
err = np.sqrt(np.sum(np.power(self.xpred[i:i + lpred] - xnp[i:i + lpred], 2)) / lpred)
cf.append(err)
# convert list to numpy array
#convert list to numpy array
cf = np.asarray(cf)
self.cf = cf
def arDet(self, data, order, rind, ldet):
def arDetZ(self, data, order, rind, ldet):
'''
Function to calculate AR parameters arpara after Thomas Meier (CAU), published
in Kueperkoch et al. (2012). This function solves SLE using the Moore-
@ -274,27 +281,27 @@ class ARZcf(CharacteristicFunction):
Output: AR parameters arpara
'''
# recursive calculation of data vector (right part of eq. 6.5 in Kueperkoch et al. (2012)
#recursive calculation of data vector (right part of eq. 6.5 in Kueperkoch et al. (2012)
rhs = np.zeros(self.getOrder())
for k in range(0, self.getOrder()):
for i in range(rind, ldet):
rhs[k] = rhs[k] + data[i] * data[i - k]
# recursive calculation of data array (second sum at left part of eq. 6.5 in Kueperkoch et al. 2012)
A = np.array([[0, 0], [0, 0]])
#recursive calculation of data array (second sum at left part of eq. 6.5 in Kueperkoch et al. 2012)
A = np.zeros((2,2))
for k in range(1, self.getOrder() + 1):
for j in range(1, k + 1):
for i in range(rind, ldet):
ki = k - 1
ji = j - 1
A[ki, ji] = A[ki, ji] + data[i - ji] * data[i - ki]
A[ki,ji] = A[ki,ji] + data[i - ji] * data[i - ki]
A[ji, ki] = A[ki, ji]
A[ji,ki] = A[ki,ji]
# apply Moore-Penrose inverse for SVD yielding the AR-parameters
#apply Moore-Penrose pseudo inverse for SVD yielding the AR-parameters
self.arpara = np.dot(np.linalg.pinv(A), rhs)
def arPred(self, data, arpara, rind, lpred):
def arPredZ(self, data, arpara, rind, lpred):
'''
Function to predict waveform, assuming an autoregressive process of order
p (=size(arpara)), with AR parameters arpara calculated in arDet. After
@ -313,7 +320,7 @@ class ARZcf(CharacteristicFunction):
Output: predicted waveform z
'''
# be sure of the summation indeces
#be sure of the summation indeces
if rind < len(arpara) + 1:
rind = len(arpara) + 1
if rind > len(data) - lpred + 1:
@ -334,8 +341,134 @@ class ARZcf(CharacteristicFunction):
class ARHcf(CharacteristicFunction):
pass
def calcCF(self, data):
print 'Calculating AR-prediction error from both horizontal traces ...'
xnp = self.getDataArray(self.getCut())
#some parameters needed
#add noise to time series
xenoise = xnp[0].data + np.random.normal(0.0, 1.0, len(xnp[0].data)) * self.getFnoise() * max(abs(xnp[0].data))
xnnoise = xnp[1].data + np.random.normal(0.0, 1.0, len(xnp[1].data)) * self.getFnoise() * max(abs(xnp[1].data))
Xnoise = np.array( [xenoise.tolist(), xnnoise.tolist()] )
tend = len(xnp[0].data)
#Time1: length of AR-determination window [sec]
#Time2: length of AR-prediction window [sec]
ldet = int(round(self.getTime1() / self.getIncrement())) #length of AR-determination window [samples]
lpred = int(np.ceil(self.getTime2() / self.getIncrement())) #length of AR-prediction window [samples]
cf = []
arstep = ldet + self.getOrder() - 3
for i in range(ldet + self.getOrder() - 3, tend - lpred + 1):
if i == arstep:
'''
In order to speed up the algorithm AR parameters are kept for time
intervals of length ldet
'''
#determination of AR coefficients
self.arDetH(Xnoise, self.getOrder(), i-ldet, i)
arstep = arstep + ldet
#AR prediction of waveform using calculated AR coefficients
self.arPredH(xnp, self.arpara, i + 1, lpred)
#prediction error = CF
err = np.sqrt(np.sum(np.power(self.xpred[0][i:i + lpred] - xnp[0][i:i + lpred], 2) \
+ np.power(self.xpred[1][i:i + lpred] - xnp[1][i:i + lpred], 2)) / (2 * lpred))
cf.append(err)
#convert list to numpy array
cf = np.asarray(cf)
self.cf = cf
def arDetH(self, data, order, rind, ldet):
'''
Function to calculate AR parameters arpara after Thomas Meier (CAU), published
in Kueperkoch et al. (2012). This function solves SLE using the Moore-
Penrose inverse, i.e. the least-squares approach. "data" is a structured array.
AR parameters are calculated based on both horizontal components in order
to account for polarization.
:param: data, horizontal component seismograms to calculate AR parameters from
:type: structured array
:param: order, order of AR process
:type: int
:param: rind, first running summation index
:type: int
:param: ldet, length of AR-determination window (=end of summation index)
:type: int
Output: AR parameters arpara
'''
#recursive calculation of data vector (right part of eq. 6.5 in Kueperkoch et al. (2012)
rhs = np.zeros(self.getOrder())
for k in range(0, self.getOrder()):
for i in range(rind, ldet):
rhs[k] = rhs[k] + data[0,i] * data[0,i - k] + data[1,i] * data[1,i - k]
#recursive calculation of data array (second sum at left part of eq. 6.5 in Kueperkoch et al. 2012)
A = np.zeros((4,4))
for k in range(1, self.getOrder() + 1):
for j in range(1, k + 1):
for i in range(rind, ldet):
ki = k - 1
ji = j - 1
A[ki,ji] = A[ki,ji] + data[0,i - ji] * data[0,i - ki] + data[1,i - ji] *data[1,i - ki]
A[ji,ki] = A[ki,ji]
#apply Moore-Penrose pseudo inverse for SVD yielding the AR-parameters
#self.arpara = np.dot(np.linalg.pinv(A), rhs)
#self.arpara = np.linalg.solve(A, rhs)
#arpara = scipy.linalg.lstsq(A, rhs)
#arpara = np.linalg.lstsq(A, rhs)
#self.arpara = arpara[0]
self.arpara = np.dot(scipy.linalg.pinv(A), rhs)
def arPredH(self, data, arpara, rind, lpred):
'''
Function to predict waveform, assuming an autoregressive process of order
p (=size(arpara)), with AR parameters arpara calculated in arDet. After
Thomas Meier (CAU), published in Kueperkoch et al. (2012).
:param: data, horizontal component seismograms to be predicted
:type: structured array
:param: arpara, AR parameters
:type: float
:param: rind, first running summation index
:type: int
:param: lpred, length of prediction window (=end of summation index)
:type: int
Output: predicted waveform z
:type: structured array
'''
#be sure of the summation indeces
if rind < len(arpara) + 1:
rind = len(arpara) + 1
if rind > len(data[0]) - lpred + 1:
rind = len(data[0]) - lpred + 1
if lpred < 1:
lpred = 1
if lpred > len(data[0]) - 1:
lpred = len(data[0]) - 1
z1 = np.append(data[0][0:rind], np.zeros(lpred))
z2 = np.append(data[1][0:rind], np.zeros(lpred))
for i in range(rind, rind + lpred):
for j in range(1, len(arpara) + 1):
ji = j - 1
z1[i] = z1[i] + arpara[ji] * z1[i - ji]
z2[i] = z2[i] + arpara[ji] * z2[i - ji]
z = np.array( [z1.tolist(), z2.tolist()] )
self.xpred = z
class AR3Ccf(CharacteristicFunction):