general code clean-up
This commit is contained in:
parent
b49206407a
commit
0fa701a878
@ -8,11 +8,11 @@ import glob
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
from obspy.core import read
|
||||
from pylot.core.util import _getVersionString
|
||||
from pylot.core.read.data import Data
|
||||
from pylot.core.read.inputs import AutoPickParameter
|
||||
from pylot.core.util.structure import DATASTRUCTURE
|
||||
from pylot.core.pick.autopick import autopickevent
|
||||
from pylot.core.util.version import get_git_version as _getVersionString
|
||||
|
||||
__version__ = _getVersionString()
|
||||
|
||||
|
@ -1,10 +1,10 @@
|
||||
<RCC>
|
||||
<qresource>
|
||||
<file>icons/pylot.ico</file>
|
||||
<file>icons/pylot.png</file>
|
||||
<file>icons/pylot.ico</file>
|
||||
<file>icons/pylot.png</file>
|
||||
<file>icons/printer.png</file>
|
||||
<file>icons/delete.png</file>
|
||||
<file>icons/key_E.png</file>
|
||||
<file>icons/key_E.png</file>
|
||||
<file>icons/key_N.png</file>
|
||||
<file>icons/key_P.png</file>
|
||||
<file>icons/key_Q.png</file>
|
||||
@ -14,7 +14,7 @@
|
||||
<file>icons/key_U.png</file>
|
||||
<file>icons/key_V.png</file>
|
||||
<file>icons/key_W.png</file>
|
||||
<file>icons/key_Z.png</file>
|
||||
<file>icons/key_Z.png</file>
|
||||
<file>icons/filter.png</file>
|
||||
<file>icons/sync.png</file>
|
||||
<file>icons/zoom_0.png</file>
|
||||
|
@ -0,0 +1 @@
|
||||
# -*- coding: utf-8 -*-
|
@ -1 +1,2 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
__author__ = 'sebastianw'
|
||||
|
@ -1,3 +1,4 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
import sys
|
||||
import numpy as np
|
||||
from pylot.core.active import seismicshot
|
||||
@ -14,11 +15,11 @@ class Survey(object):
|
||||
self._sourcefile = sourcefile
|
||||
self._obsdir = path
|
||||
self._generateSurvey()
|
||||
if useDefaultParas == True:
|
||||
if useDefaultParas == True:
|
||||
self.setParametersForShots()
|
||||
self._removeAllEmptyTraces()
|
||||
self._updateShots()
|
||||
|
||||
|
||||
def _generateSurvey(self):
|
||||
from obspy.core import read
|
||||
|
||||
@ -65,7 +66,7 @@ class Survey(object):
|
||||
if removed is not None:
|
||||
if count == 0: outfile = open(filename, 'w')
|
||||
count += 1
|
||||
outfile.writelines('shot: %s, removed empty traces: %s\n'
|
||||
outfile.writelines('shot: %s, removed empty traces: %s\n'
|
||||
%(shot.getShotnumber(), removed))
|
||||
print ("\nremoveEmptyTraces: Finished! Removed %d traces" %count)
|
||||
if count > 0:
|
||||
@ -83,7 +84,7 @@ class Survey(object):
|
||||
count += 1
|
||||
countTraces += len(del_traceIDs)
|
||||
outfile.writelines("shot: %s, removed traceID(s) %s because "
|
||||
"they were not found in the corresponding stream\n"
|
||||
"they were not found in the corresponding stream\n"
|
||||
%(shot.getShotnumber(), del_traceIDs))
|
||||
|
||||
print ("\nupdateShots: Finished! Updated %d shots and removed "
|
||||
@ -121,7 +122,7 @@ class Survey(object):
|
||||
shot.pickTraces(traceID, windowsize, folm, HosAic) # picker
|
||||
|
||||
# ++ TEST: set and check SNR before adding to distance bin ############################
|
||||
shot.setSNR(traceID)
|
||||
shot.setSNR(traceID)
|
||||
#if shot.getSNR(traceID)[0] < snrthreshold:
|
||||
if shot.getSNR(traceID)[0] < shot.getSNRthreshold(traceID):
|
||||
shot.removePick(traceID)
|
||||
@ -144,8 +145,8 @@ class Survey(object):
|
||||
|
||||
def countAllTraces(self):
|
||||
numtraces = 0
|
||||
for line in self.getShotlist():
|
||||
for line in self.getReceiverlist():
|
||||
for shot in self.getShotlist():
|
||||
for rec in self.getReceiverlist():
|
||||
numtraces += 1
|
||||
return numtraces
|
||||
|
||||
@ -180,7 +181,7 @@ class Survey(object):
|
||||
|
||||
def getReceiverfile(self):
|
||||
return self._recfile
|
||||
|
||||
|
||||
def getPath(self):
|
||||
return self._obsdir
|
||||
|
||||
@ -228,7 +229,7 @@ class Survey(object):
|
||||
(x, y, z) = shot.getSrcLoc() # getSrcLoc returns (x, y, z)
|
||||
srcfile.writelines('%10s %10s %10s\n' %(getAngle(y), getAngle(x), (-1)*z)) # lat, lon, depth
|
||||
LatAll.append(getAngle(y)); LonAll.append(getAngle(x)); DepthAll.append((-1)*z)
|
||||
srcfile.writelines('%10s\n' %1) #
|
||||
srcfile.writelines('%10s\n' %1) #
|
||||
srcfile.writelines('%10s %10s %10s\n' %(1, 1, ttfilename))
|
||||
ttfile = open(directory + '/' + ttfilename, 'w')
|
||||
traceIDlist = shot.getTraceIDlist()
|
||||
@ -243,7 +244,7 @@ class Survey(object):
|
||||
LatAll.append(getAngle(y)); LonAll.append(getAngle(x)); DepthAll.append((-1)*z)
|
||||
count += 1
|
||||
ttfile.close()
|
||||
srcfile.close()
|
||||
srcfile.close()
|
||||
print 'Wrote output for %s traces' %count
|
||||
print 'WARNING: output generated for FMTOMO-obsdata. Obsdata seems to take Lat, Lon, Depth and creates output for FMTOMO as Depth, Lat, Lon'
|
||||
print 'Dimensions of the seismic Array, transformed for FMTOMO, are Depth(%s, %s), Lat(%s, %s), Lon(%s, %s)'%(
|
||||
@ -271,7 +272,7 @@ class Survey(object):
|
||||
for shot in self.data.values():
|
||||
for traceID in shot.getTraceIDlist():
|
||||
if plotDeleted == False:
|
||||
if shot.getPick(traceID) is not None:
|
||||
if shot.getPick(traceID) is not None:
|
||||
dist.append(shot.getDistance(traceID))
|
||||
pick.append(shot.getPick(traceID))
|
||||
snrloglist.append(math.log10(shot.getSNR(traceID)[0]))
|
||||
@ -303,7 +304,7 @@ class Survey(object):
|
||||
return ax
|
||||
|
||||
def _update_progress(self, shotname, tend, progress):
|
||||
sys.stdout.write("Working on shot %s. ETC is %02d:%02d:%02d [%2.2f %%]\r"
|
||||
sys.stdout.write("Working on shot %s. ETC is %02d:%02d:%02d [%2.2f %%]\r"
|
||||
%(shotname, tend.hour, tend.minute, tend.second, progress))
|
||||
sys.stdout.flush()
|
||||
|
||||
@ -313,8 +314,8 @@ class Survey(object):
|
||||
|
||||
cPickle.dump(self, outfile, -1)
|
||||
print('saved Survey to file %s'%(filename))
|
||||
|
||||
@staticmethod
|
||||
|
||||
@staticmethod
|
||||
def from_pickle(filename):
|
||||
import cPickle
|
||||
infile = open(filename, 'rb')
|
||||
|
@ -1,3 +1,4 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
import numpy as np
|
||||
|
||||
def vgrids2VTK(inputfile = 'vgrids.in', outputfile = 'vgrids.vtk'):
|
||||
@ -73,7 +74,7 @@ def vgrids2VTK(inputfile = 'vgrids.in', outputfile = 'vgrids.vtk'):
|
||||
|
||||
dX = getDistance(np.rad2deg(dPhi))
|
||||
dY = getDistance(np.rad2deg(dTheta))
|
||||
|
||||
|
||||
nPoints = nX * nY * nZ
|
||||
|
||||
dZ = dR
|
||||
@ -114,7 +115,7 @@ def rays2VTK(fnin, fdirout = './vtk_files/', nthPoint = 50):
|
||||
R = 6371.
|
||||
distance = angle / 180 * (PI * R)
|
||||
return distance
|
||||
|
||||
|
||||
infile = open(fnin, 'r')
|
||||
R = 6371
|
||||
rays = {}
|
||||
@ -124,7 +125,7 @@ def rays2VTK(fnin, fdirout = './vtk_files/', nthPoint = 50):
|
||||
### NOTE: rays.dat seems to be in km and radians
|
||||
|
||||
while True:
|
||||
raynumber += 1
|
||||
raynumber += 1
|
||||
firstline = infile.readline()
|
||||
if firstline == '': break # break at EOF
|
||||
shotnumber = int(firstline.split()[1])
|
||||
|
@ -1,3 +1,4 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
import sys
|
||||
from obspy import read
|
||||
from obspy import Stream
|
||||
@ -28,7 +29,7 @@ if rockeskyll == True:
|
||||
obsdir = "/rscratch/minos22/marcel/flachseismik/rockeskyll_200615_270615/"
|
||||
filename = 'survey_rockes.pickle'
|
||||
else:
|
||||
receiverfile = "Geophone_interpoliert_GZB"
|
||||
receiverfile = "Geophone_interpoliert_GZB"
|
||||
sourcefile = "Schusspunkte_GZB"
|
||||
obsdir = "/rscratch/minos22/marcel/flachseismik/GZB_26_06_15_01/"
|
||||
filename = 'survey_GZB.pickle'
|
||||
@ -85,9 +86,9 @@ for shot in survey.data.values():
|
||||
shot.setPickwindow(traceID, pickwin_used)
|
||||
shot.pickTraces(traceID, windowsize, folm, HosAic) # picker
|
||||
#shot.setManualPicks(traceID, picklist) # set manual picks if given (yet used on 2D only)
|
||||
|
||||
|
||||
# ++ TEST: set and check SNR before adding to distance bin ############################
|
||||
shot.setSNR(traceID)
|
||||
shot.setSNR(traceID)
|
||||
#if shot.getSNR(traceID)[0] < snrthreshold:
|
||||
if shot.getSNR(traceID)[0] < shot.getSNRthreshold(traceID):
|
||||
shot.removePick(traceID)
|
||||
|
@ -1,3 +1,4 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
import sys
|
||||
import numpy as np
|
||||
from scipy.interpolate import griddata
|
||||
@ -28,12 +29,12 @@ class SeisArray(object):
|
||||
|
||||
def _generateReceiverlines(self):
|
||||
'''
|
||||
Connects the traceIDs to the lineIDs
|
||||
Connects the traceIDs to the lineIDs
|
||||
for each receiverline in a dictionary.
|
||||
'''
|
||||
for receiver in self._receiverlist:
|
||||
traceID = int(receiver.split()[0])
|
||||
lineID = int(receiver.split()[1])
|
||||
traceID = int(receiver.split()[0])
|
||||
lineID = int(receiver.split()[1])
|
||||
if not lineID in self._receiverlines.keys():
|
||||
self._receiverlines[lineID] = []
|
||||
self._receiverlines[lineID].append(traceID)
|
||||
@ -43,16 +44,16 @@ class SeisArray(object):
|
||||
Fills the three x, y, z dictionaries with measured coordinates
|
||||
'''
|
||||
for line in self._getReceiverlist():
|
||||
traceID = int(line.split()[0])
|
||||
x = float(line.split()[3])
|
||||
y = float(line.split()[4])
|
||||
z = float(line.split()[5])
|
||||
traceID = int(line.split()[0])
|
||||
x = float(line.split()[3])
|
||||
y = float(line.split()[4])
|
||||
z = float(line.split()[5])
|
||||
self._receiverCoords[traceID] = (x, y, z)
|
||||
self._measuredReceivers[traceID] = (x, y, z)
|
||||
|
||||
def _setGeophoneNumbers(self):
|
||||
for line in self._getReceiverlist():
|
||||
traceID = int(line.split()[0])
|
||||
traceID = int(line.split()[0])
|
||||
gphoneNum = float(line.split()[2])
|
||||
self._geophoneNumbers[traceID] = gphoneNum
|
||||
|
||||
@ -93,7 +94,7 @@ class SeisArray(object):
|
||||
return self._geophoneNumbers[traceID]
|
||||
|
||||
def getMeasuredReceivers(self):
|
||||
return self._measuredReceivers
|
||||
return self._measuredReceivers
|
||||
|
||||
def getMeasuredTopo(self):
|
||||
return self._measuredTopo
|
||||
@ -139,11 +140,11 @@ class SeisArray(object):
|
||||
if self._getReceiverValue(traceID1, coordinate) < self._getReceiverValue(traceID2, coordinate):
|
||||
direction = +1
|
||||
return direction
|
||||
if self._getReceiverValue(traceID1, coordinate) > self._getReceiverValue(traceID2, coordinate):
|
||||
if self._getReceiverValue(traceID1, coordinate) > self._getReceiverValue(traceID2, coordinate):
|
||||
direction = -1
|
||||
return direction
|
||||
print "Error: Same Value for traceID1 = %s and traceID2 = %s" %(traceID1, traceID2)
|
||||
|
||||
|
||||
def _interpolateMeanDistances(self, traceID1, traceID2, coordinate):
|
||||
'''
|
||||
Returns the mean distance between two traceID's depending on the number of geophones in between
|
||||
@ -186,7 +187,7 @@ class SeisArray(object):
|
||||
x = float(line[1])
|
||||
y = float(line[2])
|
||||
z = float(line[3])
|
||||
self._measuredTopo[pointID] = (x, y, z)
|
||||
self._measuredTopo[pointID] = (x, y, z)
|
||||
|
||||
def addSourceLocations(self, filename):
|
||||
'''
|
||||
@ -202,7 +203,7 @@ class SeisArray(object):
|
||||
x = float(line[1])
|
||||
y = float(line[2])
|
||||
z = float(line[3])
|
||||
self._sourceLocs[pointID] = (x, y, z)
|
||||
self._sourceLocs[pointID] = (x, y, z)
|
||||
|
||||
def interpZcoords4rec(self, method = 'linear'):
|
||||
'''
|
||||
@ -239,9 +240,9 @@ class SeisArray(object):
|
||||
'''
|
||||
x = []; y = []; z = []
|
||||
for traceID in self.getMeasuredReceivers().keys():
|
||||
x.append(self.getMeasuredReceivers()[traceID][0])
|
||||
x.append(self.getMeasuredReceivers()[traceID][0])
|
||||
y.append(self.getMeasuredReceivers()[traceID][1])
|
||||
z.append(self.getMeasuredReceivers()[traceID][2])
|
||||
z.append(self.getMeasuredReceivers()[traceID][2])
|
||||
return x, y, z
|
||||
|
||||
def getMeasuredTopoLists(self):
|
||||
@ -250,9 +251,9 @@ class SeisArray(object):
|
||||
'''
|
||||
x = []; y = []; z = []
|
||||
for pointID in self.getMeasuredTopo().keys():
|
||||
x.append(self.getMeasuredTopo()[pointID][0])
|
||||
x.append(self.getMeasuredTopo()[pointID][0])
|
||||
y.append(self.getMeasuredTopo()[pointID][1])
|
||||
z.append(self.getMeasuredTopo()[pointID][2])
|
||||
z.append(self.getMeasuredTopo()[pointID][2])
|
||||
return x, y, z
|
||||
|
||||
def getSourceLocsLists(self):
|
||||
@ -261,9 +262,9 @@ class SeisArray(object):
|
||||
'''
|
||||
x = []; y = []; z = []
|
||||
for pointID in self.getSourceLocations().keys():
|
||||
x.append(self.getSourceLocations()[pointID][0])
|
||||
x.append(self.getSourceLocations()[pointID][0])
|
||||
y.append(self.getSourceLocations()[pointID][1])
|
||||
z.append(self.getSourceLocations()[pointID][2])
|
||||
z.append(self.getSourceLocations()[pointID][2])
|
||||
return x, y, z
|
||||
|
||||
def getAllMeasuredPointsLists(self):
|
||||
@ -289,7 +290,7 @@ class SeisArray(object):
|
||||
y.append(self.getReceiverCoordinates()[traceID][1])
|
||||
z.append(self.getReceiverCoordinates()[traceID][2])
|
||||
return x, y, z
|
||||
|
||||
|
||||
def _interpolateXY4rec(self):
|
||||
'''
|
||||
Interpolates the X and Y coordinates for all receivers.
|
||||
@ -317,7 +318,7 @@ class SeisArray(object):
|
||||
|
||||
:param: phiWE (W, E) extensions of the model in degree
|
||||
type: tuple
|
||||
'''
|
||||
'''
|
||||
|
||||
surface = []
|
||||
elevation = 0.25 # elevate topography so that no source lies above the surface
|
||||
@ -356,9 +357,9 @@ class SeisArray(object):
|
||||
progress = float(count) / float(nTotal) * 100
|
||||
self._update_progress(progress)
|
||||
|
||||
if filename is not None:
|
||||
if filename is not None:
|
||||
outfile.writelines('%10s\n'%(z + elevation))
|
||||
|
||||
|
||||
return surface
|
||||
|
||||
def generateVgrid(self, nTheta = 80, nPhi = 80, nR = 120,
|
||||
@ -415,7 +416,7 @@ class SeisArray(object):
|
||||
thetaDelta = abs(thetaN - thetaS) / (nTheta - 1)
|
||||
phiDelta = abs(phiE - phiW) / (nPhi - 1)
|
||||
rDelta = abs(rbot - rtop) / (nR - 1)
|
||||
|
||||
|
||||
# create a regular grid including +2 cushion nodes in every direction
|
||||
thetaGrid = np.linspace(thetaS - thetaDelta, thetaN + thetaDelta, num = nTheta + 2) # +2 cushion nodes
|
||||
phiGrid = np.linspace(phiW - phiDelta, phiE + phiDelta, num = nPhi + 2) # +2 cushion nodes
|
||||
@ -455,7 +456,7 @@ class SeisArray(object):
|
||||
|
||||
progress = float(count) / float(nTotal) * 100
|
||||
self._update_progress(progress)
|
||||
|
||||
|
||||
outfile.close()
|
||||
|
||||
def exportAll(self, filename = 'interpolated_receivers.out'):
|
||||
@ -463,7 +464,7 @@ class SeisArray(object):
|
||||
count = 0
|
||||
for traceID in self.getReceiverCoordinates().keys():
|
||||
count += 1
|
||||
x, y, z = self.getReceiverCoordinates()[traceID]
|
||||
x, y, z = self.getReceiverCoordinates()[traceID]
|
||||
recfile_out.writelines('%5s %15s %15s %15s\n' %(traceID, x, y, z))
|
||||
print "Exported coordinates for %s traces to file > %s" %(count, filename)
|
||||
recfile_out.close()
|
||||
@ -472,15 +473,15 @@ class SeisArray(object):
|
||||
import matplotlib.pyplot as plt
|
||||
plt.interactive(True)
|
||||
plt.figure()
|
||||
xmt, ymt, zmt = self.getMeasuredTopoLists()
|
||||
xmt, ymt, zmt = self.getMeasuredTopoLists()
|
||||
xsc, ysc, zsc = self.getSourceLocsLists()
|
||||
xmr, ymr, zmr = self.getMeasuredReceiverLists()
|
||||
xrc, yrc, zrc = self.getReceiverLists()
|
||||
xmr, ymr, zmr = self.getMeasuredReceiverLists()
|
||||
xrc, yrc, zrc = self.getReceiverLists()
|
||||
|
||||
plt.plot(xrc, yrc, 'k.', markersize = 10, label = 'all receivers')
|
||||
plt.plot(xsc, ysc, 'b*', markersize = 10, label = 'shot locations')
|
||||
|
||||
if plot_topo == True:
|
||||
if plot_topo == True:
|
||||
plt.plot(xmt, ymt, 'b', markersize = 10, label = 'measured topo points')
|
||||
if highlight_measured == True:
|
||||
plt.plot(xmr, ymr, 'ro', label = 'measured receivers')
|
||||
@ -501,9 +502,9 @@ class SeisArray(object):
|
||||
fig = plt.figure()
|
||||
ax = plt.axes(projection = '3d')
|
||||
|
||||
xmt, ymt, zmt = self.getMeasuredTopoLists()
|
||||
xmr, ymr, zmr = self.getMeasuredReceiverLists()
|
||||
xin, yin, zin = self.getReceiverLists()
|
||||
xmt, ymt, zmt = self.getMeasuredTopoLists()
|
||||
xmr, ymr, zmr = self.getMeasuredReceiverLists()
|
||||
xin, yin, zin = self.getReceiverLists()
|
||||
|
||||
ax.plot(xmt, ymt, zmt, 'b*', markersize = 10, label = 'measured topo points')
|
||||
ax.plot(xin, yin, zin, 'k.', markersize = 10, label = 'interpolated receivers')
|
||||
@ -512,8 +513,8 @@ class SeisArray(object):
|
||||
ax.legend()
|
||||
|
||||
return ax
|
||||
|
||||
|
||||
|
||||
|
||||
def plotSurface3D(self, ax = None, step = 0.5, method = 'linear'):
|
||||
from matplotlib import cm
|
||||
import matplotlib.pyplot as plt
|
||||
@ -657,8 +658,8 @@ class SeisArray(object):
|
||||
|
||||
cPickle.dump(self, outfile, -1)
|
||||
print('saved SeisArray to file %s'%(filename))
|
||||
|
||||
@staticmethod
|
||||
|
||||
@staticmethod
|
||||
def from_pickle(filename):
|
||||
import cPickle
|
||||
infile = open(filename, 'rb')
|
||||
|
@ -1,3 +1,4 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
import sys
|
||||
import numpy as np
|
||||
from scipy.interpolate import griddata
|
||||
@ -28,12 +29,12 @@ class SeisArray(object):
|
||||
|
||||
def _generateReceiverlines(self):
|
||||
'''
|
||||
Connects the traceIDs to the lineIDs
|
||||
Connects the traceIDs to the lineIDs
|
||||
for each receiverline in a dictionary.
|
||||
'''
|
||||
for receiver in self._receiverlist:
|
||||
traceID = int(receiver.split()[0])
|
||||
lineID = int(receiver.split()[1])
|
||||
traceID = int(receiver.split()[0])
|
||||
lineID = int(receiver.split()[1])
|
||||
if not lineID in self._receiverlines.keys():
|
||||
self._receiverlines[lineID] = []
|
||||
self._receiverlines[lineID].append(traceID)
|
||||
@ -43,16 +44,16 @@ class SeisArray(object):
|
||||
Fills the three x, y, z dictionaries with measured coordinates
|
||||
'''
|
||||
for line in self._getReceiverlist():
|
||||
traceID = int(line.split()[0])
|
||||
x = float(line.split()[3])
|
||||
y = float(line.split()[4])
|
||||
z = float(line.split()[5])
|
||||
traceID = int(line.split()[0])
|
||||
x = float(line.split()[3])
|
||||
y = float(line.split()[4])
|
||||
z = float(line.split()[5])
|
||||
self._receiverCoords[traceID] = (x, y, z)
|
||||
self._measuredReceivers[traceID] = (x, y, z)
|
||||
|
||||
def _setGeophoneNumbers(self):
|
||||
for line in self._getReceiverlist():
|
||||
traceID = int(line.split()[0])
|
||||
traceID = int(line.split()[0])
|
||||
gphoneNum = float(line.split()[2])
|
||||
self._geophoneNumbers[traceID] = gphoneNum
|
||||
|
||||
@ -93,7 +94,7 @@ class SeisArray(object):
|
||||
return self._geophoneNumbers[traceID]
|
||||
|
||||
def getMeasuredReceivers(self):
|
||||
return self._measuredReceivers
|
||||
return self._measuredReceivers
|
||||
|
||||
def getMeasuredTopo(self):
|
||||
return self._measuredTopo
|
||||
@ -139,11 +140,11 @@ class SeisArray(object):
|
||||
if self._getReceiverValue(traceID1, coordinate) < self._getReceiverValue(traceID2, coordinate):
|
||||
direction = +1
|
||||
return direction
|
||||
if self._getReceiverValue(traceID1, coordinate) > self._getReceiverValue(traceID2, coordinate):
|
||||
if self._getReceiverValue(traceID1, coordinate) > self._getReceiverValue(traceID2, coordinate):
|
||||
direction = -1
|
||||
return direction
|
||||
print "Error: Same Value for traceID1 = %s and traceID2 = %s" %(traceID1, traceID2)
|
||||
|
||||
|
||||
def _interpolateMeanDistances(self, traceID1, traceID2, coordinate):
|
||||
'''
|
||||
Returns the mean distance between two traceID's depending on the number of geophones in between
|
||||
@ -186,7 +187,7 @@ class SeisArray(object):
|
||||
x = float(line[1])
|
||||
y = float(line[2])
|
||||
z = float(line[3])
|
||||
self._measuredTopo[pointID] = (x, y, z)
|
||||
self._measuredTopo[pointID] = (x, y, z)
|
||||
|
||||
def addSourceLocations(self, filename):
|
||||
'''
|
||||
@ -202,7 +203,7 @@ class SeisArray(object):
|
||||
x = float(line[1])
|
||||
y = float(line[2])
|
||||
z = float(line[3])
|
||||
self._sourceLocs[pointID] = (x, y, z)
|
||||
self._sourceLocs[pointID] = (x, y, z)
|
||||
|
||||
def interpZcoords4rec(self, method = 'linear'):
|
||||
'''
|
||||
@ -239,9 +240,9 @@ class SeisArray(object):
|
||||
'''
|
||||
x = []; y = []; z = []
|
||||
for traceID in self.getMeasuredReceivers().keys():
|
||||
x.append(self.getMeasuredReceivers()[traceID][0])
|
||||
x.append(self.getMeasuredReceivers()[traceID][0])
|
||||
y.append(self.getMeasuredReceivers()[traceID][1])
|
||||
z.append(self.getMeasuredReceivers()[traceID][2])
|
||||
z.append(self.getMeasuredReceivers()[traceID][2])
|
||||
return x, y, z
|
||||
|
||||
def getMeasuredTopoLists(self):
|
||||
@ -250,9 +251,9 @@ class SeisArray(object):
|
||||
'''
|
||||
x = []; y = []; z = []
|
||||
for pointID in self.getMeasuredTopo().keys():
|
||||
x.append(self.getMeasuredTopo()[pointID][0])
|
||||
x.append(self.getMeasuredTopo()[pointID][0])
|
||||
y.append(self.getMeasuredTopo()[pointID][1])
|
||||
z.append(self.getMeasuredTopo()[pointID][2])
|
||||
z.append(self.getMeasuredTopo()[pointID][2])
|
||||
return x, y, z
|
||||
|
||||
def getSourceLocsLists(self):
|
||||
@ -261,9 +262,9 @@ class SeisArray(object):
|
||||
'''
|
||||
x = []; y = []; z = []
|
||||
for pointID in self.getSourceLocations().keys():
|
||||
x.append(self.getSourceLocations()[pointID][0])
|
||||
x.append(self.getSourceLocations()[pointID][0])
|
||||
y.append(self.getSourceLocations()[pointID][1])
|
||||
z.append(self.getSourceLocations()[pointID][2])
|
||||
z.append(self.getSourceLocations()[pointID][2])
|
||||
return x, y, z
|
||||
|
||||
def getAllMeasuredPointsLists(self):
|
||||
@ -289,7 +290,7 @@ class SeisArray(object):
|
||||
y.append(self.getReceiverCoordinates()[traceID][1])
|
||||
z.append(self.getReceiverCoordinates()[traceID][2])
|
||||
return x, y, z
|
||||
|
||||
|
||||
def _interpolateXY4rec(self):
|
||||
'''
|
||||
Interpolates the X and Y coordinates for all receivers.
|
||||
@ -317,7 +318,7 @@ class SeisArray(object):
|
||||
|
||||
:param: phiWE (W, E) extensions of the model in degree
|
||||
type: tuple
|
||||
'''
|
||||
'''
|
||||
|
||||
surface = []
|
||||
elevation = 0.25 # elevate topography so that no source lies above the surface
|
||||
@ -356,9 +357,9 @@ class SeisArray(object):
|
||||
progress = float(count) / float(nTotal) * 100
|
||||
self._update_progress(progress)
|
||||
|
||||
if filename is not None:
|
||||
if filename is not None:
|
||||
outfile.writelines('%10s\n'%(z + elevation))
|
||||
|
||||
|
||||
return surface
|
||||
|
||||
def generateVgrid(self, nTheta = 80, nPhi = 80, nR = 120,
|
||||
@ -415,7 +416,7 @@ class SeisArray(object):
|
||||
thetaDelta = abs(thetaN - thetaS) / (nTheta - 1)
|
||||
phiDelta = abs(phiE - phiW) / (nPhi - 1)
|
||||
rDelta = abs(rbot - rtop) / (nR - 1)
|
||||
|
||||
|
||||
# create a regular grid including +2 cushion nodes in every direction
|
||||
thetaGrid = np.linspace(thetaS - thetaDelta, thetaN + thetaDelta, num = nTheta + 2) # +2 cushion nodes
|
||||
phiGrid = np.linspace(phiW - phiDelta, phiE + phiDelta, num = nPhi + 2) # +2 cushion nodes
|
||||
@ -455,7 +456,7 @@ class SeisArray(object):
|
||||
|
||||
progress = float(count) / float(nTotal) * 100
|
||||
self._update_progress(progress)
|
||||
|
||||
|
||||
outfile.close()
|
||||
|
||||
def exportAll(self, filename = 'interpolated_receivers.out'):
|
||||
@ -463,7 +464,7 @@ class SeisArray(object):
|
||||
count = 0
|
||||
for traceID in self.getReceiverCoordinates().keys():
|
||||
count += 1
|
||||
x, y, z = self.getReceiverCoordinates()[traceID]
|
||||
x, y, z = self.getReceiverCoordinates()[traceID]
|
||||
recfile_out.writelines('%5s %15s %15s %15s\n' %(traceID, x, y, z))
|
||||
print "Exported coordinates for %s traces to file > %s" %(count, filename)
|
||||
recfile_out.close()
|
||||
@ -472,15 +473,15 @@ class SeisArray(object):
|
||||
import matplotlib.pyplot as plt
|
||||
plt.interactive(True)
|
||||
plt.figure()
|
||||
xmt, ymt, zmt = self.getMeasuredTopoLists()
|
||||
xmt, ymt, zmt = self.getMeasuredTopoLists()
|
||||
xsc, ysc, zsc = self.getSourceLocsLists()
|
||||
xmr, ymr, zmr = self.getMeasuredReceiverLists()
|
||||
xrc, yrc, zrc = self.getReceiverLists()
|
||||
xmr, ymr, zmr = self.getMeasuredReceiverLists()
|
||||
xrc, yrc, zrc = self.getReceiverLists()
|
||||
|
||||
plt.plot(xrc, yrc, 'k.', markersize = 10, label = 'all receivers')
|
||||
plt.plot(xsc, ysc, 'b*', markersize = 10, label = 'shot locations')
|
||||
|
||||
if plot_topo == True:
|
||||
if plot_topo == True:
|
||||
plt.plot(xmt, ymt, 'b', markersize = 10, label = 'measured topo points')
|
||||
if highlight_measured == True:
|
||||
plt.plot(xmr, ymr, 'ro', label = 'measured receivers')
|
||||
@ -501,9 +502,9 @@ class SeisArray(object):
|
||||
fig = plt.figure()
|
||||
ax = plt.axes(projection = '3d')
|
||||
|
||||
xmt, ymt, zmt = self.getMeasuredTopoLists()
|
||||
xmr, ymr, zmr = self.getMeasuredReceiverLists()
|
||||
xin, yin, zin = self.getReceiverLists()
|
||||
xmt, ymt, zmt = self.getMeasuredTopoLists()
|
||||
xmr, ymr, zmr = self.getMeasuredReceiverLists()
|
||||
xin, yin, zin = self.getReceiverLists()
|
||||
|
||||
ax.plot(xmt, ymt, zmt, 'b*', markersize = 10, label = 'measured topo points')
|
||||
ax.plot(xin, yin, zin, 'k.', markersize = 10, label = 'interpolated receivers')
|
||||
@ -512,8 +513,8 @@ class SeisArray(object):
|
||||
ax.legend()
|
||||
|
||||
return ax
|
||||
|
||||
|
||||
|
||||
|
||||
def plotSurface3D(self, ax = None, step = 0.5, method = 'linear'):
|
||||
from matplotlib import cm
|
||||
import matplotlib.pyplot as plt
|
||||
@ -657,8 +658,8 @@ class SeisArray(object):
|
||||
|
||||
cPickle.dump(self, outfile, -1)
|
||||
print('saved SeisArray to file %s'%(filename))
|
||||
|
||||
@staticmethod
|
||||
|
||||
@staticmethod
|
||||
def from_pickle(filename):
|
||||
import cPickle
|
||||
infile = open(filename, 'rb')
|
||||
|
@ -35,8 +35,7 @@ class SeismicShot(object):
|
||||
self.snr = {}
|
||||
self.snrthreshold = {}
|
||||
self.timeArray = {}
|
||||
self.paras = {}
|
||||
self.paras['shotname'] = obsfile
|
||||
self.paras = {'shotname': obsfile}
|
||||
|
||||
def removeEmptyTraces(self):
|
||||
traceIDs = []
|
||||
|
@ -1,3 +1,4 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
import matplotlib.pyplot as plt
|
||||
plt.interactive(True)
|
||||
|
||||
@ -13,9 +14,9 @@ class regions(object):
|
||||
self.shots_for_deletion = {}
|
||||
|
||||
def _onselect(self, eclick, erelease):
|
||||
'eclick and erelease are matplotlib events at press and release' #print ' startposition : (%f, %f)' % (eclick.xdata, eclick.ydata)
|
||||
#print ' endposition : (%f, %f)' % (erelease.xdata, erelease.ydata)
|
||||
print 'region selected x0, y0 = (%3s, %3s), x1, y1 = (%3s, %3s)'%(eclick.xdata, eclick.ydata, erelease.xdata, erelease.ydata)
|
||||
'eclick and erelease are matplotlib events at press and release' #print ' startposition : (%f, %f)' % (eclick.xdata, eclick.ydata)
|
||||
#print ' endposition : (%f, %f)' % (erelease.xdata, erelease.ydata)
|
||||
print 'region selected x0, y0 = (%3s, %3s), x1, y1 = (%3s, %3s)'%(eclick.xdata, eclick.ydata, erelease.xdata, erelease.ydata)
|
||||
x0 = min(eclick.xdata, erelease.xdata)
|
||||
x1 = max(eclick.xdata, erelease.xdata)
|
||||
y0 = min(eclick.ydata, erelease.ydata)
|
||||
@ -51,7 +52,7 @@ class regions(object):
|
||||
return self.shots_for_deletion
|
||||
|
||||
def findTracesInShotDict(self, picks = 'normal'):
|
||||
'''
|
||||
'''
|
||||
Returns traces corresponding to a certain area in a plot with all picks over the distances.
|
||||
'''
|
||||
print "findTracesInShotDict: Searching for marked traces in the shot dictionary... "
|
||||
@ -116,7 +117,7 @@ class regions(object):
|
||||
shot.plot_traces(traceID)
|
||||
else:
|
||||
print 'No picks yet defined in the regions x = (%s, %s), y = (%s, %s)' %(self._x0, self._x1, self._y0, self._y1)
|
||||
|
||||
|
||||
|
||||
def setCurrentRegionsForDeletion(self):
|
||||
# if len(self.shots_found) == 0:
|
||||
|
@ -0,0 +1 @@
|
||||
# -*- coding: utf-8 -*-
|
@ -6,7 +6,7 @@ from obspy.signal.trigger import coincidenceTrigger
|
||||
|
||||
|
||||
|
||||
class CoincidenceTimes():
|
||||
class CoincidenceTimes(object):
|
||||
|
||||
def __init__(self, st, comp='Z', coinum=4, sta=1., lta=10., on=5., off=1.):
|
||||
_type = 'recstalta'
|
||||
@ -54,4 +54,4 @@ def main():
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
main()
|
||||
|
@ -1,3 +1,4 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created August/September 2015.
|
||||
@ -34,7 +35,7 @@ class Magnitude(object):
|
||||
:type: integer
|
||||
|
||||
'''
|
||||
|
||||
|
||||
assert isinstance(wfstream, Stream), "%s is not a stream object" % str(wfstream)
|
||||
|
||||
self.setwfstream(wfstream)
|
||||
@ -62,7 +63,7 @@ class Magnitude(object):
|
||||
|
||||
def setpwin(self, pwin):
|
||||
self.pwin = pwin
|
||||
|
||||
|
||||
def getiplot(self):
|
||||
return self.iplot
|
||||
|
||||
@ -71,7 +72,7 @@ class Magnitude(object):
|
||||
|
||||
def getwapp(self):
|
||||
return self.wapp
|
||||
|
||||
|
||||
def getw0(self):
|
||||
return self.w0
|
||||
|
||||
@ -103,7 +104,7 @@ class WApp(Magnitude):
|
||||
'poles': [5.6089 - 5.4978j, -5.6089 - 5.4978j],
|
||||
'zeros': [0j, 0j],
|
||||
'gain': 2080,
|
||||
'sensitivity': 1}
|
||||
'sensitivity': 1}
|
||||
|
||||
stream.simulate(paz_remove=None, paz_simulate=paz_wa)
|
||||
|
||||
@ -133,19 +134,19 @@ class WApp(Magnitude):
|
||||
raw_input()
|
||||
plt.close(f)
|
||||
|
||||
|
||||
|
||||
class DCfc(Magnitude):
|
||||
'''
|
||||
Method to calculate the source spectrum and to derive from that the plateau
|
||||
(so-called DC-value) and the corner frequency assuming Aki's omega-square
|
||||
Method to calculate the source spectrum and to derive from that the plateau
|
||||
(so-called DC-value) and the corner frequency assuming Aki's omega-square
|
||||
source model. Has to be derived from instrument corrected displacement traces!
|
||||
'''
|
||||
|
||||
def calcsourcespec(self):
|
||||
print ("Calculating source spectrum ....")
|
||||
print ("Calculating source spectrum ....")
|
||||
|
||||
self.w0 = None # DC-value
|
||||
self.fc = None # corner frequency
|
||||
self.fc = None # corner frequency
|
||||
|
||||
stream = self.getwfstream()
|
||||
tr = stream[0]
|
||||
@ -155,7 +156,7 @@ class DCfc(Magnitude):
|
||||
iwin = getsignalwin(t, self.getTo(), self.getpwin())
|
||||
xdat = tr.data[iwin]
|
||||
|
||||
# fft
|
||||
# fft
|
||||
fny = tr.stats.sampling_rate / 2
|
||||
l = len(xdat) / tr.stats.sampling_rate
|
||||
n = tr.stats.sampling_rate * l # number of fft bins after Bath
|
||||
@ -167,7 +168,7 @@ class DCfc(Magnitude):
|
||||
L = (N - 1) / tr.stats.sampling_rate
|
||||
f = np.arange(0, fny, 1/L)
|
||||
|
||||
# remove zero-frequency and frequencies above
|
||||
# remove zero-frequency and frequencies above
|
||||
# corner frequency of seismometer (assumed
|
||||
# to be 100 Hz)
|
||||
fi = np.where((f >= 1) & (f < 100))
|
||||
@ -185,15 +186,15 @@ class DCfc(Magnitude):
|
||||
self.w0 = optspecfit[0]
|
||||
self.fc = optspecfit[1]
|
||||
print ("DCfc: Determined DC-value: %e m/Hz, \n" \
|
||||
"Determined corner frequency: %f Hz" % (self.w0, self.fc))
|
||||
|
||||
|
||||
"Determined corner frequency: %f Hz" % (self.w0, self.fc))
|
||||
|
||||
|
||||
if self.getiplot() > 1:
|
||||
f1 = plt.figure()
|
||||
plt.subplot(2,1,1)
|
||||
# show displacement in mm
|
||||
plt.plot(t, np.multiply(tr, 1000), 'k')
|
||||
plt.plot(t[iwin], np.multiply(xdat, 1000), 'g')
|
||||
plt.plot(t, np.multiply(tr, 1000), 'k')
|
||||
plt.plot(t[iwin], np.multiply(xdat, 1000), 'g')
|
||||
plt.title('Seismogram and P pulse, station %s' % tr.stats.station)
|
||||
plt.xlabel('Time since %s' % tr.stats.starttime)
|
||||
plt.ylabel('Displacement [mm]')
|
||||
@ -214,8 +215,8 @@ class DCfc(Magnitude):
|
||||
|
||||
def synthsourcespec(f, omega0, fcorner):
|
||||
'''
|
||||
Calculates synthetic source spectrum from given plateau and corner
|
||||
frequency assuming Akis omega-square model.
|
||||
Calculates synthetic source spectrum from given plateau and corner
|
||||
frequency assuming Akis omega-square model.
|
||||
|
||||
:param: f, frequencies
|
||||
:type: array
|
||||
@ -226,7 +227,7 @@ def synthsourcespec(f, omega0, fcorner):
|
||||
:param: fcorner, corner frequency of source spectrum
|
||||
:type: float
|
||||
'''
|
||||
|
||||
|
||||
#ssp = omega0 / (pow(2, (1 + f / fcorner)))
|
||||
ssp = omega0 / (1 + pow(2, (f / fcorner)))
|
||||
|
||||
|
@ -1,3 +1,4 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created Oct/Nov 2014
|
||||
@ -119,7 +120,7 @@ class CharacteristicFunction(object):
|
||||
|
||||
def getTimeArray(self):
|
||||
incr = self.getIncrement()
|
||||
self.TimeArray = np.arange(0, len(self.getCF()) * incr, incr) + self.getCut()[0]
|
||||
self.TimeArray = np.arange(0, len(self.getCF()) * incr, incr) + self.getCut()[0]
|
||||
return self.TimeArray
|
||||
|
||||
def getFnoise(self):
|
||||
@ -175,7 +176,7 @@ class CharacteristicFunction(object):
|
||||
h2 = hh[1].copy()
|
||||
hh[0].data = h1.data[int(start):int(stop)]
|
||||
hh[1].data = h2.data[int(start):int(stop)]
|
||||
data = hh
|
||||
data = hh
|
||||
return data
|
||||
elif len(self.orig_data) == 3:
|
||||
if self.cut[0] == 0 and self.cut[1] == 0:
|
||||
@ -196,12 +197,12 @@ class CharacteristicFunction(object):
|
||||
hh[0].data = h1.data[int(start):int(stop)]
|
||||
hh[1].data = h2.data[int(start):int(stop)]
|
||||
hh[2].data = h3.data[int(start):int(stop)]
|
||||
data = hh
|
||||
data = hh
|
||||
return data
|
||||
else:
|
||||
data = self.orig_data.copy()
|
||||
return data
|
||||
|
||||
|
||||
def calcCF(self, data=None):
|
||||
self.cf = data
|
||||
|
||||
@ -285,7 +286,7 @@ class HOScf(CharacteristicFunction):
|
||||
LTA[j] = lta / np.power(lta1, 1.5)
|
||||
elif self.getOrder() == 4:
|
||||
LTA[j] = lta / np.power(lta1, 2)
|
||||
|
||||
|
||||
nn = np.isnan(LTA)
|
||||
if len(nn) > 1:
|
||||
LTA[nn] = 0
|
||||
@ -315,7 +316,7 @@ class ARZcf(CharacteristicFunction):
|
||||
cf = np.zeros(len(xnp))
|
||||
loopstep = self.getARdetStep()
|
||||
arcalci = ldet + self.getOrder() #AR-calculation index
|
||||
for i in range(ldet + self.getOrder(), tend - lpred - 1):
|
||||
for i in range(ldet + self.getOrder(), tend - lpred - 1):
|
||||
if i == arcalci:
|
||||
#determination of AR coefficients
|
||||
#to speed up calculation, AR-coefficients are calculated only every i+loopstep[1]!
|
||||
@ -362,7 +363,7 @@ class ARZcf(CharacteristicFunction):
|
||||
rhs = np.zeros(self.getOrder())
|
||||
for k in range(0, self.getOrder()):
|
||||
for i in range(rind, ldet+1):
|
||||
ki = k + 1
|
||||
ki = k + 1
|
||||
rhs[k] = rhs[k] + data[i] * data[i - ki]
|
||||
|
||||
#recursive calculation of data array (second sum at left part of eq. 6.5 in Kueperkoch et al. 2012)
|
||||
@ -382,7 +383,7 @@ class ARZcf(CharacteristicFunction):
|
||||
def arPredZ(self, data, arpara, rind, lpred):
|
||||
'''
|
||||
Function to predict waveform, assuming an autoregressive process of order
|
||||
p (=size(arpara)), with AR parameters arpara calculated in arDet. After
|
||||
p (=size(arpara)), with AR parameters arpara calculated in arDet. After
|
||||
Thomas Meier (CAU), published in Kueperkoch et al. (2012).
|
||||
:param: data, time series to be predicted
|
||||
:type: array
|
||||
@ -400,9 +401,9 @@ class ARZcf(CharacteristicFunction):
|
||||
'''
|
||||
#be sure of the summation indeces
|
||||
if rind < len(arpara):
|
||||
rind = len(arpara)
|
||||
rind = len(arpara)
|
||||
if rind > len(data) - lpred :
|
||||
rind = len(data) - lpred
|
||||
rind = len(data) - lpred
|
||||
if lpred < 1:
|
||||
lpred = 1
|
||||
if lpred > len(data) - 2:
|
||||
@ -422,7 +423,7 @@ class ARHcf(CharacteristicFunction):
|
||||
def calcCF(self, data):
|
||||
|
||||
print 'Calculating AR-prediction error from both horizontal traces ...'
|
||||
|
||||
|
||||
xnp = self.getDataArray(self.getCut())
|
||||
n0 = np.isnan(xnp[0].data)
|
||||
if len(n0) > 1:
|
||||
@ -430,7 +431,7 @@ class ARHcf(CharacteristicFunction):
|
||||
n1 = np.isnan(xnp[1].data)
|
||||
if len(n1) > 1:
|
||||
xnp[1].data[n1] = 0
|
||||
|
||||
|
||||
#some parameters needed
|
||||
#add noise to time series
|
||||
xenoise = xnp[0].data + np.random.normal(0.0, 1.0, len(xnp[0].data)) * self.getFnoise() * max(abs(xnp[0].data))
|
||||
@ -441,7 +442,7 @@ class ARHcf(CharacteristicFunction):
|
||||
#Time2: length of AR-prediction window [sec]
|
||||
ldet = int(round(self.getTime1() / self.getIncrement())) #length of AR-determination window [samples]
|
||||
lpred = int(np.ceil(self.getTime2() / self.getIncrement())) #length of AR-prediction window [samples]
|
||||
|
||||
|
||||
cf = np.zeros(len(xenoise))
|
||||
loopstep = self.getARdetStep()
|
||||
arcalci = lpred + self.getOrder() - 1 #AR-calculation index
|
||||
@ -515,7 +516,7 @@ class ARHcf(CharacteristicFunction):
|
||||
def arPredH(self, data, arpara, rind, lpred):
|
||||
'''
|
||||
Function to predict waveform, assuming an autoregressive process of order
|
||||
p (=size(arpara)), with AR parameters arpara calculated in arDet. After
|
||||
p (=size(arpara)), with AR parameters arpara calculated in arDet. After
|
||||
Thomas Meier (CAU), published in Kueperkoch et al. (2012).
|
||||
:param: data, horizontal component seismograms to be predicted
|
||||
:type: structured array
|
||||
@ -558,7 +559,7 @@ class AR3Ccf(CharacteristicFunction):
|
||||
def calcCF(self, data):
|
||||
|
||||
print 'Calculating AR-prediction error from all 3 components ...'
|
||||
|
||||
|
||||
xnp = self.getDataArray(self.getCut())
|
||||
n0 = np.isnan(xnp[0].data)
|
||||
if len(n0) > 1:
|
||||
@ -569,7 +570,7 @@ class AR3Ccf(CharacteristicFunction):
|
||||
n2 = np.isnan(xnp[2].data)
|
||||
if len(n2) > 1:
|
||||
xnp[2].data[n2] = 0
|
||||
|
||||
|
||||
#some parameters needed
|
||||
#add noise to time series
|
||||
xenoise = xnp[0].data + np.random.normal(0.0, 1.0, len(xnp[0].data)) * self.getFnoise() * max(abs(xnp[0].data))
|
||||
@ -581,7 +582,7 @@ class AR3Ccf(CharacteristicFunction):
|
||||
#Time2: length of AR-prediction window [sec]
|
||||
ldet = int(round(self.getTime1() / self.getIncrement())) #length of AR-determination window [samples]
|
||||
lpred = int(np.ceil(self.getTime2() / self.getIncrement())) #length of AR-prediction window [samples]
|
||||
|
||||
|
||||
cf = np.zeros(len(xenoise))
|
||||
loopstep = self.getARdetStep()
|
||||
arcalci = ldet + self.getOrder() - 1 #AR-calculation index
|
||||
@ -616,7 +617,7 @@ class AR3Ccf(CharacteristicFunction):
|
||||
Function to calculate AR parameters arpara after Thomas Meier (CAU), published
|
||||
in Kueperkoch et al. (2012). This function solves SLE using the Moore-
|
||||
Penrose inverse, i.e. the least-squares approach. "data" is a structured array.
|
||||
AR parameters are calculated based on both horizontal components and vertical
|
||||
AR parameters are calculated based on both horizontal components and vertical
|
||||
componant.
|
||||
:param: data, horizontal component seismograms to calculate AR parameters from
|
||||
:type: structured array
|
||||
@ -658,7 +659,7 @@ class AR3Ccf(CharacteristicFunction):
|
||||
def arPred3C(self, data, arpara, rind, lpred):
|
||||
'''
|
||||
Function to predict waveform, assuming an autoregressive process of order
|
||||
p (=size(arpara)), with AR parameters arpara calculated in arDet3C. After
|
||||
p (=size(arpara)), with AR parameters arpara calculated in arDet3C. After
|
||||
Thomas Meier (CAU), published in Kueperkoch et al. (2012).
|
||||
:param: data, horizontal and vertical component seismograms to be predicted
|
||||
:type: structured array
|
||||
|
@ -312,7 +312,7 @@ class PragPicker(AutoPicking):
|
||||
else:
|
||||
for i in range(1, len(self.cf)):
|
||||
if i > ismooth:
|
||||
ii1 = i - ismooth;
|
||||
ii1 = i - ismooth
|
||||
cfsmooth[i] = cfsmooth[i - 1] + (self.cf[i] - self.cf[ii1]) / ismooth
|
||||
else:
|
||||
cfsmooth[i] = np.mean(self.cf[1 : i])
|
||||
|
@ -1 +1,2 @@
|
||||
#
|
||||
# -*- coding: utf-8 -*-
|
||||
#
|
||||
|
@ -317,29 +317,29 @@ def autopickstation(wfstream, pickparam):
|
||||
data = Data()
|
||||
[corzdat, restflag] = data.restituteWFData(invdir, zdat)
|
||||
if restflag == 1:
|
||||
# integrate to displacement
|
||||
corintzdat = integrate.cumtrapz(corzdat[0], None, corzdat[0].stats.delta)
|
||||
# class needs stream object => build it
|
||||
z_copy = zdat.copy()
|
||||
z_copy[0].data = corintzdat
|
||||
# largest detectable period == window length
|
||||
# after P pulse for calculating source spectrum
|
||||
winzc = (1 / bpz2[0]) * z_copy[0].stats.sampling_rate
|
||||
impickP = mpickP * z_copy[0].stats.sampling_rate
|
||||
wfzc = z_copy[0].data[impickP : impickP + winzc]
|
||||
# calculate spectrum using only first cycles of
|
||||
# waveform after P onset!
|
||||
zc = crossings_nonzero_all(wfzc)
|
||||
if np.size(zc) == 0:
|
||||
print ("Something is wrong with the waveform, " \
|
||||
"no zero crossings derived!")
|
||||
print ("Cannot calculate source spectrum!")
|
||||
else:
|
||||
calcwin = (zc[3] - zc[0]) * z_copy[0].stats.delta
|
||||
# calculate source spectrum and get w0 and fc
|
||||
specpara = DCfc(z_copy, mpickP, calcwin, iplot)
|
||||
w0 = specpara.getw0()
|
||||
fc = specpara.getfc()
|
||||
# integrate to displacement
|
||||
corintzdat = integrate.cumtrapz(corzdat[0], None, corzdat[0].stats.delta)
|
||||
# class needs stream object => build it
|
||||
z_copy = zdat.copy()
|
||||
z_copy[0].data = corintzdat
|
||||
# largest detectable period == window length
|
||||
# after P pulse for calculating source spectrum
|
||||
winzc = (1 / bpz2[0]) * z_copy[0].stats.sampling_rate
|
||||
impickP = mpickP * z_copy[0].stats.sampling_rate
|
||||
wfzc = z_copy[0].data[impickP : impickP + winzc]
|
||||
# calculate spectrum using only first cycles of
|
||||
# waveform after P onset!
|
||||
zc = crossings_nonzero_all(wfzc)
|
||||
if np.size(zc) == 0:
|
||||
print ("Something is wrong with the waveform, " \
|
||||
"no zero crossings derived!")
|
||||
print ("Cannot calculate source spectrum!")
|
||||
else:
|
||||
calcwin = (zc[3] - zc[0]) * z_copy[0].stats.delta
|
||||
# calculate source spectrum and get w0 and fc
|
||||
specpara = DCfc(z_copy, mpickP, calcwin, iplot)
|
||||
w0 = specpara.getw0()
|
||||
fc = specpara.getfc()
|
||||
|
||||
print ("autopickstation: P-weight: %d, SNR: %f, SNR[dB]: %f, " \
|
||||
"Polarity: %s" % (Pweight, SNRP, SNRPdB, FM))
|
||||
@ -560,7 +560,7 @@ def autopickstation(wfstream, pickparam):
|
||||
hdat += ndat
|
||||
h_copy = hdat.copy()
|
||||
[cordat, restflag] = data.restituteWFData(invdir, h_copy)
|
||||
# calculate WA-peak-to-peak amplitude
|
||||
# calculate WA-peak-to-peak amplitude
|
||||
# using subclass WApp of superclass Magnitude
|
||||
if restflag == 1:
|
||||
if Sweight < 4:
|
||||
@ -591,7 +591,7 @@ def autopickstation(wfstream, pickparam):
|
||||
h_copy = hdat.copy()
|
||||
[cordat, restflag] = data.restituteWFData(invdir, h_copy)
|
||||
if restflag == 1:
|
||||
# calculate WA-peak-to-peak amplitude
|
||||
# calculate WA-peak-to-peak amplitude
|
||||
# using subclass WApp of superclass Magnitude
|
||||
wapp = WApp(cordat, mpickP, mpickP + sstop + (0.5 * (mpickP \
|
||||
+ sstop)), iplot)
|
||||
|
@ -1,4 +1,5 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- coding: utf-8 -*-
|
||||
#
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
@ -91,7 +92,7 @@ def earllatepicker(X, nfac, TSNR, Pick1, iplot=None):
|
||||
T0 = np.mean(np.diff(zc)) * X[0].stats.delta # this is half wave length
|
||||
# T0/4 is assumed as time difference between most likely and earliest possible pick!
|
||||
EPick = Pick1 - T0 / 2
|
||||
|
||||
|
||||
|
||||
# get symmetric pick error as mean from earliest and latest possible pick
|
||||
# by weighting latest possible pick two times earliest possible pick
|
||||
@ -493,9 +494,9 @@ def wadaticheck(pickdic, dttolerance, iplot):
|
||||
|
||||
|
||||
if len(SPtimes) >= 3:
|
||||
# calculate slope
|
||||
p1 = np.polyfit(Ppicks, SPtimes, 1)
|
||||
wdfit = np.polyval(p1, Ppicks)
|
||||
# calculate slope
|
||||
p1 = np.polyfit(Ppicks, SPtimes, 1)
|
||||
wdfit = np.polyval(p1, Ppicks)
|
||||
wfitflag = 0
|
||||
|
||||
# calculate vp/vs ratio before check
|
||||
@ -532,40 +533,40 @@ def wadaticheck(pickdic, dttolerance, iplot):
|
||||
pickdic[key]['S']['marked'] = marker
|
||||
|
||||
if len(checkedPpicks) >= 3:
|
||||
# calculate new slope
|
||||
p2 = np.polyfit(checkedPpicks, checkedSPtimes, 1)
|
||||
wdfit2 = np.polyval(p2, checkedPpicks)
|
||||
# calculate new slope
|
||||
p2 = np.polyfit(checkedPpicks, checkedSPtimes, 1)
|
||||
wdfit2 = np.polyval(p2, checkedPpicks)
|
||||
|
||||
# calculate vp/vs ratio after check
|
||||
cvpvsr = p2[0] + 1
|
||||
print ("wadaticheck: Average Vp/Vs ratio after check: %f" % cvpvsr)
|
||||
print ("wadatacheck: Skipped %d S pick(s)" % ibad)
|
||||
# calculate vp/vs ratio after check
|
||||
cvpvsr = p2[0] + 1
|
||||
print ("wadaticheck: Average Vp/Vs ratio after check: %f" % cvpvsr)
|
||||
print ("wadatacheck: Skipped %d S pick(s)" % ibad)
|
||||
else:
|
||||
print ("###############################################")
|
||||
print ("wadatacheck: Not enough checked S-P times available!")
|
||||
print ("Skip Wadati check!")
|
||||
print ("###############################################")
|
||||
print ("wadatacheck: Not enough checked S-P times available!")
|
||||
print ("Skip Wadati check!")
|
||||
|
||||
checkedonsets = pickdic
|
||||
|
||||
else:
|
||||
print ("wadaticheck: Not enough S-P times available for reliable regression!")
|
||||
print ("wadaticheck: Not enough S-P times available for reliable regression!")
|
||||
print ("Skip wadati check!")
|
||||
wfitflag = 1
|
||||
|
||||
# plot results
|
||||
if iplot > 1:
|
||||
plt.figure(iplot)
|
||||
f1, = plt.plot(Ppicks, SPtimes, 'ro')
|
||||
plt.figure(iplot)
|
||||
f1, = plt.plot(Ppicks, SPtimes, 'ro')
|
||||
if wfitflag == 0:
|
||||
f2, = plt.plot(Ppicks, wdfit, 'k')
|
||||
f3, = plt.plot(checkedPpicks, checkedSPtimes, 'ko')
|
||||
f4, = plt.plot(checkedPpicks, wdfit2, 'g')
|
||||
plt.title('Wadati-Diagram, %d S-P Times, Vp/Vs(raw)=%5.2f,' \
|
||||
'Vp/Vs(checked)=%5.2f' % (len(SPtimes), vpvsr, cvpvsr))
|
||||
plt.legend([f1, f2, f3, f4], ['Skipped S-Picks', 'Wadati 1', \
|
||||
'Reliable S-Picks', 'Wadati 2'], loc='best')
|
||||
f2, = plt.plot(Ppicks, wdfit, 'k')
|
||||
f3, = plt.plot(checkedPpicks, checkedSPtimes, 'ko')
|
||||
f4, = plt.plot(checkedPpicks, wdfit2, 'g')
|
||||
plt.title('Wadati-Diagram, %d S-P Times, Vp/Vs(raw)=%5.2f,' \
|
||||
'Vp/Vs(checked)=%5.2f' % (len(SPtimes), vpvsr, cvpvsr))
|
||||
plt.legend([f1, f2, f3, f4], ['Skipped S-Picks', 'Wadati 1', \
|
||||
'Reliable S-Picks', 'Wadati 2'], loc='best')
|
||||
else:
|
||||
plt.title('Wadati-Diagram, %d S-P Times' % len(SPtimes))
|
||||
plt.title('Wadati-Diagram, %d S-P Times' % len(SPtimes))
|
||||
|
||||
plt.ylabel('S-P Times [s]')
|
||||
plt.xlabel('P Times [s]')
|
||||
@ -579,8 +580,8 @@ def wadaticheck(pickdic, dttolerance, iplot):
|
||||
def checksignallength(X, pick, TSNR, minsiglength, nfac, minpercent, iplot):
|
||||
'''
|
||||
Function to detect spuriously picked noise peaks.
|
||||
Uses RMS trace of all 3 components (if available) to determine,
|
||||
how many samples [per cent] after P onset are below certain
|
||||
Uses RMS trace of all 3 components (if available) to determine,
|
||||
how many samples [per cent] after P onset are below certain
|
||||
threshold, calculated from noise level times noise factor.
|
||||
|
||||
: param: X, time series (seismogram)
|
||||
@ -612,7 +613,7 @@ def checksignallength(X, pick, TSNR, minsiglength, nfac, minpercent, iplot):
|
||||
print ("Checking signal length ...")
|
||||
|
||||
if len(X) > 1:
|
||||
# all three components available
|
||||
# all three components available
|
||||
# make sure, all components have equal lengths
|
||||
ilen = min([len(X[0].data), len(X[1].data), len(X[2].data)])
|
||||
x1 = X[0][0:ilen]
|
||||
@ -639,7 +640,7 @@ def checksignallength(X, pick, TSNR, minsiglength, nfac, minpercent, iplot):
|
||||
numoverthr = len(np.where(rms[isignal] >= minsiglevel)[0])
|
||||
|
||||
if numoverthr >= minnum:
|
||||
print ("checksignallength: Signal reached required length.")
|
||||
print ("checksignallength: Signal reached required length.")
|
||||
returnflag = 1
|
||||
else:
|
||||
print ("checksignallength: Signal shorter than required minimum signal length!")
|
||||
@ -649,7 +650,7 @@ def checksignallength(X, pick, TSNR, minsiglength, nfac, minpercent, iplot):
|
||||
|
||||
if iplot == 2:
|
||||
plt.figure(iplot)
|
||||
p1, = plt.plot(t,rms, 'k')
|
||||
p1, = plt.plot(t,rms, 'k')
|
||||
p2, = plt.plot(t[inoise], rms[inoise], 'c')
|
||||
p3, = plt.plot(t[isignal],rms[isignal], 'r')
|
||||
p4, = plt.plot([t[isignal[0]], t[isignal[len(isignal)-1]]], \
|
||||
@ -729,27 +730,27 @@ def checkPonsets(pickdic, dttolerance, iplot):
|
||||
badjkmarker = 'badjkcheck'
|
||||
for i in range(0, len(goodstations)):
|
||||
# mark P onset as checked and keep P weight
|
||||
pickdic[goodstations[i]]['P']['marked'] = goodmarker
|
||||
pickdic[goodstations[i]]['P']['marked'] = goodmarker
|
||||
for i in range(0, len(badstations)):
|
||||
# mark P onset and downgrade P weight to 9
|
||||
# (not used anymore)
|
||||
pickdic[badstations[i]]['P']['marked'] = badmarker
|
||||
pickdic[badstations[i]]['P']['weight'] = 9
|
||||
# mark P onset and downgrade P weight to 9
|
||||
# (not used anymore)
|
||||
pickdic[badstations[i]]['P']['marked'] = badmarker
|
||||
pickdic[badstations[i]]['P']['weight'] = 9
|
||||
for i in range(0, len(badjkstations)):
|
||||
# mark P onset and downgrade P weight to 9
|
||||
# (not used anymore)
|
||||
pickdic[badjkstations[i]]['P']['marked'] = badjkmarker
|
||||
pickdic[badjkstations[i]]['P']['weight'] = 9
|
||||
# mark P onset and downgrade P weight to 9
|
||||
# (not used anymore)
|
||||
pickdic[badjkstations[i]]['P']['marked'] = badjkmarker
|
||||
pickdic[badjkstations[i]]['P']['weight'] = 9
|
||||
|
||||
checkedonsets = pickdic
|
||||
|
||||
if iplot > 1:
|
||||
p1, = plt.plot(np.arange(0, len(Ppicks)), Ppicks, 'r+', markersize=14)
|
||||
p1, = plt.plot(np.arange(0, len(Ppicks)), Ppicks, 'r+', markersize=14)
|
||||
p2, = plt.plot(igood, np.array(Ppicks)[igood], 'g*', markersize=14)
|
||||
p3, = plt.plot([0, len(Ppicks) - 1], [pmedian, pmedian], 'g', \
|
||||
linewidth=2)
|
||||
for i in range(0, len(Ppicks)):
|
||||
plt.text(i, Ppicks[i] + 0.2, stations[i])
|
||||
plt.text(i, Ppicks[i] + 0.2, stations[i])
|
||||
|
||||
plt.xlabel('Number of P Picks')
|
||||
plt.ylabel('Onset Time [s] from 1.1.1970')
|
||||
@ -789,37 +790,37 @@ def jackknife(X, phi, h):
|
||||
g = len(X) / h
|
||||
|
||||
if type(g) is not int:
|
||||
print ("jackknife: Cannot divide quantity X in equal sized subgroups!")
|
||||
print ("jackknife: Cannot divide quantity X in equal sized subgroups!")
|
||||
print ("Choose another size for subgroups!")
|
||||
return PHI_jack, PHI_pseudo, PHI_sub
|
||||
else:
|
||||
# estimator of undisturbed spot check
|
||||
if phi == 'MEA':
|
||||
phi_sc = np.mean(X)
|
||||
# estimator of undisturbed spot check
|
||||
if phi == 'MEA':
|
||||
phi_sc = np.mean(X)
|
||||
elif phi == 'VAR':
|
||||
phi_sc = np.var(X)
|
||||
phi_sc = np.var(X)
|
||||
elif phi == 'MED':
|
||||
phi_sc = np.median(X)
|
||||
phi_sc = np.median(X)
|
||||
|
||||
# estimators of subgroups
|
||||
# estimators of subgroups
|
||||
PHI_pseudo = []
|
||||
PHI_sub = []
|
||||
for i in range(0, g - 1):
|
||||
# subgroup i, remove i-th sample
|
||||
xx = X[:]
|
||||
del xx[i]
|
||||
# calculate estimators of disturbed spot check
|
||||
if phi == 'MEA':
|
||||
phi_sub = np.mean(xx)
|
||||
elif phi == 'VAR':
|
||||
phi_sub = np.var(xx)
|
||||
elif phi == 'MED':
|
||||
phi_sub = np.median(xx)
|
||||
# subgroup i, remove i-th sample
|
||||
xx = X[:]
|
||||
del xx[i]
|
||||
# calculate estimators of disturbed spot check
|
||||
if phi == 'MEA':
|
||||
phi_sub = np.mean(xx)
|
||||
elif phi == 'VAR':
|
||||
phi_sub = np.var(xx)
|
||||
elif phi == 'MED':
|
||||
phi_sub = np.median(xx)
|
||||
|
||||
PHI_sub.append(phi_sub)
|
||||
# pseudo values
|
||||
phi_pseudo = g * phi_sc - ((g - 1) * phi_sub)
|
||||
PHI_pseudo.append(phi_pseudo)
|
||||
PHI_sub.append(phi_sub)
|
||||
# pseudo values
|
||||
phi_pseudo = g * phi_sc - ((g - 1) * phi_sub)
|
||||
PHI_pseudo.append(phi_pseudo)
|
||||
# jackknife estimator
|
||||
PHI_jack = np.mean(PHI_pseudo)
|
||||
|
||||
@ -899,17 +900,17 @@ def checkZ4S(X, pick, zfac, checkwin, iplot):
|
||||
# vertical P-coda level must exceed horizontal P-coda level
|
||||
# zfac times encodalevel
|
||||
if zcodalevel < minsiglevel:
|
||||
print ("checkZ4S: Maybe S onset? Skip this P pick!")
|
||||
print ("checkZ4S: Maybe S onset? Skip this P pick!")
|
||||
else:
|
||||
print ("checkZ4S: P onset passes checkZ4S test!")
|
||||
returnflag = 1
|
||||
|
||||
if iplot > 1:
|
||||
te = np.arange(0, edat[0].stats.npts / edat[0].stats.sampling_rate,
|
||||
te = np.arange(0, edat[0].stats.npts / edat[0].stats.sampling_rate,
|
||||
edat[0].stats.delta)
|
||||
tn = np.arange(0, ndat[0].stats.npts / ndat[0].stats.sampling_rate,
|
||||
tn = np.arange(0, ndat[0].stats.npts / ndat[0].stats.sampling_rate,
|
||||
ndat[0].stats.delta)
|
||||
plt.plot(tz, z / max(z), 'k')
|
||||
plt.plot(tz, z / max(z), 'k')
|
||||
plt.plot(tz[isignal], z[isignal] / max(z), 'r')
|
||||
plt.plot(te, edat[0].data / max(edat[0].data) + 1, 'k')
|
||||
plt.plot(te[isignal], edat[0].data[isignal] / max(edat[0].data) + 1, 'r')
|
||||
|
@ -1 +1 @@
|
||||
|
||||
# -*- coding: utf-8 -*-
|
||||
|
@ -208,8 +208,7 @@ class FilterOptions(object):
|
||||
|
||||
def parseFilterOptions(self):
|
||||
if self.getFilterType():
|
||||
robject = {'type':self.getFilterType()}
|
||||
robject['corners'] = self.getOrder()
|
||||
robject = {'type': self.getFilterType(), 'corners': self.getOrder()}
|
||||
if len(self.getFreq()) > 1:
|
||||
robject['freqmin'] = self.getFreq()[0]
|
||||
robject['freqmax'] = self.getFreq()[1]
|
||||
|
@ -1 +1,2 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
from pylot.core.util.version import get_git_version as _getVersionString
|
||||
|
@ -1,3 +1,4 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
'''
|
||||
Created on 10.11.2014
|
||||
|
||||
@ -23,4 +24,4 @@ class Test(unittest.TestCase):
|
||||
|
||||
if __name__ == "__main__":
|
||||
#import sys;sys.argv = ['', 'Test.testName']
|
||||
unittest.main()
|
||||
unittest.main()
|
||||
|
@ -1,3 +1,4 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
'''
|
||||
Created on 10.11.2014
|
||||
|
||||
@ -15,4 +16,4 @@ class Test(unittest.TestCase):
|
||||
|
||||
if __name__ == "__main__":
|
||||
#import sys;sys.argv = ['', 'Test.testName']
|
||||
unittest.main()
|
||||
unittest.main()
|
||||
|
@ -1,3 +1,4 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
import sys
|
||||
from PySide.QtCore import QThread, Signal
|
||||
|
||||
|
@ -1,4 +1,5 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- coding: utf-8 -*-
|
||||
#
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
|
@ -1,4 +1,5 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
import sys, time
|
||||
from PySide.QtGui import QApplication
|
||||
|
@ -1,4 +1,5 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
import sys
|
||||
import matplotlib
|
||||
|
@ -1,4 +1,5 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
import sys, time
|
||||
from PySide.QtGui import QApplication
|
||||
@ -8,4 +9,4 @@ app = QApplication(sys.argv)
|
||||
|
||||
win = PropertiesDlg()
|
||||
win.show()
|
||||
app.exec_()
|
||||
app.exec_()
|
||||
|
@ -1,4 +1,6 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
|
||||
import sys, time
|
||||
from PySide.QtGui import QApplication
|
||||
@ -9,7 +11,7 @@ dialogs = [FilterOptionsDialog, PropertiesDlg, HelpForm]
|
||||
app = QApplication(sys.argv)
|
||||
|
||||
for dlg in dialogs:
|
||||
win = dlg()
|
||||
win.show()
|
||||
time.sleep(1)
|
||||
win.destroy()
|
||||
win = dlg()
|
||||
win.show()
|
||||
time.sleep(1)
|
||||
win.destroy()
|
||||
|
Loading…
Reference in New Issue
Block a user