clean-up to meet coding conventions
This commit is contained in:
parent
a46fb88282
commit
0fcd6fab9d
@ -14,6 +14,8 @@ import matplotlib.pyplot as plt
|
||||
from obspy.core import Stream, UTCDateTime
|
||||
import warnings
|
||||
import pdb
|
||||
|
||||
|
||||
def earllatepicker(X, nfac, TSNR, Pick1, iplot=None):
|
||||
'''
|
||||
Function to derive earliest and latest possible pick after Diehl & Kissling (2009)
|
||||
@ -432,7 +434,7 @@ def getResolutionWindow(snr):
|
||||
else:
|
||||
time_resolution = res_wins['HRW']
|
||||
|
||||
return time_resolution/2
|
||||
return time_resolution / 2
|
||||
|
||||
|
||||
def wadaticheck(pickdic, dttolerance, iplot):
|
||||
@ -471,7 +473,6 @@ def wadaticheck(pickdic, dttolerance, iplot):
|
||||
Spicks.append(UTCSpick.timestamp)
|
||||
SPtimes.append(spt)
|
||||
|
||||
|
||||
if len(SPtimes) >= 3:
|
||||
# calculate slope
|
||||
p1 = np.polyfit(Ppicks, SPtimes, 1)
|
||||
@ -503,7 +504,8 @@ def wadaticheck(pickdic, dttolerance, iplot):
|
||||
checkedPpicks.append(checkedPpick.timestamp)
|
||||
checkedSpick = UTCDateTime(pickdic[key]['S']['mpp'])
|
||||
checkedSpicks.append(checkedSpick.timestamp)
|
||||
checkedSPtime = pickdic[key]['S']['mpp'] - pickdic[key]['P']['mpp']
|
||||
checkedSPtime = pickdic[key]['S']['mpp'] - \
|
||||
pickdic[key]['P']['mpp']
|
||||
checkedSPtimes.append(checkedSPtime)
|
||||
|
||||
pickdic[key]['S']['marked'] = marker
|
||||
@ -526,7 +528,7 @@ def wadaticheck(pickdic, dttolerance, iplot):
|
||||
print 'wadaticheck: Not enough S-P times available for reliable regression!'
|
||||
print 'Skip wadati check!'
|
||||
wfitflag = 1
|
||||
iplot=2
|
||||
iplot = 2
|
||||
# plot results
|
||||
if iplot > 1:
|
||||
plt.figure(iplot)
|
||||
@ -538,7 +540,8 @@ def wadaticheck(pickdic, dttolerance, iplot):
|
||||
plt.title('Wadati-Diagram, %d S-P Times, Vp/Vs(raw)=%5.2f,' \
|
||||
'Vp/Vs(checked)=%5.2f' % (len(SPtimes), vpvsr, cvpvsr))
|
||||
plt.legend([f1, f2, f3, f4], ['Skipped S-Picks', 'Wadati 1', \
|
||||
'Reliable S-Picks', 'Wadati 2'], loc='best')
|
||||
'Reliable S-Picks', 'Wadati 2'],
|
||||
loc='best')
|
||||
else:
|
||||
plt.title('Wadati-Diagram, %d S-P Times' % len(SPtimes))
|
||||
|
||||
@ -600,7 +603,7 @@ def checksignallength(X, pick, TSNR, minsiglength, nfac, minpercent, iplot):
|
||||
# calculate minimum adjusted signal level
|
||||
minsiglevel = max(e[inoise]) * nfac
|
||||
# minimum adjusted number of samples over minimum signal level
|
||||
minnum = len(isignal) * minpercent/100
|
||||
minnum = len(isignal) * minpercent / 100
|
||||
# get number of samples above minimum adjusted signal level
|
||||
numoverthr = len(np.where(e[isignal] >= minsiglevel)[0])
|
||||
|
||||
@ -614,16 +617,17 @@ def checksignallength(X, pick, TSNR, minsiglength, nfac, minpercent, iplot):
|
||||
|
||||
if iplot == 2:
|
||||
plt.figure(iplot)
|
||||
p1, = plt.plot(t,x, 'k')
|
||||
p1, = plt.plot(t, x, 'k')
|
||||
p2, = plt.plot(t[inoise], e[inoise], 'c')
|
||||
p3, = plt.plot(t[isignal],e[isignal], 'r')
|
||||
p3, = plt.plot(t[isignal], e[isignal], 'r')
|
||||
p2, = plt.plot(t[inoise], e[inoise])
|
||||
p3, = plt.plot(t[isignal],e[isignal], 'r')
|
||||
p4, = plt.plot([t[isignal[0]], t[isignal[len(isignal)-1]]], \
|
||||
p3, = plt.plot(t[isignal], e[isignal], 'r')
|
||||
p4, = plt.plot([t[isignal[0]], t[isignal[len(isignal) - 1]]], \
|
||||
[minsiglevel, minsiglevel], 'g')
|
||||
p5, = plt.plot([pick, pick], [min(x), max(x)], 'b', linewidth=2)
|
||||
plt.legend([p1, p2, p3, p4, p5], ['Data', 'Envelope Noise Window', \
|
||||
'Envelope Signal Window', 'Minimum Signal Level', \
|
||||
'Envelope Signal Window',
|
||||
'Minimum Signal Level', \
|
||||
'Onset'], loc='best')
|
||||
plt.xlabel('Time [s] since %s' % X[0].stats.starttime)
|
||||
plt.ylabel('Counts')
|
||||
@ -667,7 +671,7 @@ def checkPonsets(pickdic, dttolerance, iplot):
|
||||
|
||||
# apply jackknife bootstrapping on variance of P onsets
|
||||
print 'checkPonsets: Apply jackknife bootstrapping on P-onset times ...'
|
||||
[xjack,PHI_pseudo,PHI_sub] = jackknife(Ppicks, 'VAR', 1)
|
||||
[xjack, PHI_pseudo, PHI_sub] = jackknife(Ppicks, 'VAR', 1)
|
||||
# get pseudo variances smaller than average variances
|
||||
# these picks passed jackknife test
|
||||
ij = np.where(PHI_pseudo <= xjack)
|
||||
@ -686,7 +690,8 @@ def checkPonsets(pickdic, dttolerance, iplot):
|
||||
badstations = np.array(stations)[ibad]
|
||||
|
||||
print 'checkPonset: Skipped %d P onsets out of %d' % (len(badstations) \
|
||||
+ len(badjkstations), len(stations))
|
||||
+ len(badjkstations),
|
||||
len(stations))
|
||||
|
||||
goodmarker = 'goodPonsetcheck'
|
||||
badmarker = 'badPonsetcheck'
|
||||
@ -726,6 +731,7 @@ def checkPonsets(pickdic, dttolerance, iplot):
|
||||
|
||||
return checkedonsets
|
||||
|
||||
|
||||
def jackknife(X, phi, h):
|
||||
'''
|
||||
Function to calculate the Jackknife Estimator for a given quantity,
|
||||
@ -790,7 +796,7 @@ def jackknife(X, phi, h):
|
||||
return PHI_jack, PHI_pseudo, PHI_sub
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
import doctest
|
||||
|
||||
doctest.testmod()
|
||||
|
Loading…
Reference in New Issue
Block a user