[bugfix/improvement] checkZ4s independent of different trace starttimes and sampling rates
This commit is contained in:
parent
176f13db09
commit
1918c11b42
@ -1 +1 @@
|
|||||||
2633-dirty
|
176f-dirty
|
||||||
|
@ -645,6 +645,11 @@ def wadaticheck(pickdic, dttolerance, iplot):
|
|||||||
|
|
||||||
return checkedonsets
|
return checkedonsets
|
||||||
|
|
||||||
|
def RMS(X):
|
||||||
|
'''
|
||||||
|
Function returns root mean square of a given array X
|
||||||
|
'''
|
||||||
|
return np.sqrt(np.sum(np.power(X, 2))/len(X))
|
||||||
|
|
||||||
def checksignallength(X, pick, TSNR, minsiglength, nfac, minpercent, iplot=0, fig=None):
|
def checksignallength(X, pick, TSNR, minsiglength, nfac, minpercent, iplot=0, fig=None):
|
||||||
'''
|
'''
|
||||||
@ -942,71 +947,80 @@ def checkZ4S(X, pick, zfac, checkwin, iplot, fig=None):
|
|||||||
if len(ndat) == 0: # check for other components
|
if len(ndat) == 0: # check for other components
|
||||||
ndat = X.select(component="1")
|
ndat = X.select(component="1")
|
||||||
|
|
||||||
z = zdat[0].data
|
# get earliest time of all 3 traces
|
||||||
|
min_t = min(zdat[0].stats.starttime, edat[0].stats.starttime, ndat[0].stats.starttime)
|
||||||
|
|
||||||
|
# generate time arrays for all 3 traces
|
||||||
tz = np.arange(0, zdat[0].stats.npts / zdat[0].stats.sampling_rate,
|
tz = np.arange(0, zdat[0].stats.npts / zdat[0].stats.sampling_rate,
|
||||||
zdat[0].stats.delta)
|
zdat[0].stats.delta)
|
||||||
|
tn = np.arange(0, ndat[0].stats.npts / ndat[0].stats.sampling_rate,
|
||||||
|
ndat[0].stats.delta)
|
||||||
|
te = np.arange(0, edat[0].stats.npts / edat[0].stats.sampling_rate,
|
||||||
|
edat[0].stats.delta)
|
||||||
|
|
||||||
# calculate RMS trace from vertical component
|
zdiff = (zdat[0].stats.starttime - min_t)
|
||||||
absz = np.sqrt(np.power(z, 2))
|
ndiff = (ndat[0].stats.starttime - min_t)
|
||||||
# calculate RMS trace from both horizontal traces
|
ediff = (edat[0].stats.starttime - min_t)
|
||||||
# make sure, both traces have equal lengths
|
|
||||||
lene = len(edat[0].data)
|
|
||||||
lenn = len(ndat[0].data)
|
|
||||||
minlen = min([lene, lenn])
|
|
||||||
absen = np.sqrt(np.power(edat[0].data[0:minlen - 1], 2) \
|
|
||||||
+ np.power(ndat[0].data[0:minlen - 1], 2))
|
|
||||||
|
|
||||||
# get signal window
|
# get signal windows
|
||||||
isignal = getsignalwin(tz, pick, checkwin)
|
isignalz = getsignalwin(tz, pick-zdiff, checkwin)
|
||||||
|
isignaln = getsignalwin(tn, pick-ndiff, checkwin)
|
||||||
|
isignale = getsignalwin(te, pick-ediff, checkwin)
|
||||||
|
|
||||||
# calculate energy levels
|
# calculate RMS of traces
|
||||||
try:
|
rmsz = RMS(zdat[0].data[isignalz])
|
||||||
zcodalevel = max(absz[isignal])
|
rmsn = RMS(ndat[0].data[isignaln])
|
||||||
except:
|
rmse = RMS(edat[0].data[isignale])
|
||||||
ii = np.where(isignal <= len(absz))
|
|
||||||
isignal = isignal[ii]
|
|
||||||
zcodalevel = max(absz[isignal - 1])
|
|
||||||
try:
|
|
||||||
encodalevel = max(absen[isignal])
|
|
||||||
except:
|
|
||||||
ii = np.where(isignal <= len(absen))
|
|
||||||
isignal = isignal[ii]
|
|
||||||
encodalevel = max(absen[isignal - 1])
|
|
||||||
|
|
||||||
# calculate threshold
|
# calculate threshold
|
||||||
minsiglevel = encodalevel * zfac
|
minsiglevel = (rmsn + rmse) * zfac
|
||||||
|
|
||||||
# vertical P-coda level must exceed horizontal P-coda level
|
# vertical P-coda level must exceed horizontal P-coda level
|
||||||
# zfac times encodalevel
|
# zfac times encodalevel
|
||||||
if zcodalevel < minsiglevel:
|
if rmsz < minsiglevel:
|
||||||
print ("checkZ4S: Maybe S onset? Skip this P pick!")
|
print ("checkZ4S: Maybe S onset? Skip this P pick!")
|
||||||
else:
|
else:
|
||||||
print ("checkZ4S: P onset passes checkZ4S test!")
|
print ("checkZ4S: P onset passes checkZ4S test!")
|
||||||
returnflag = 1
|
returnflag = 1
|
||||||
|
|
||||||
if iplot > 1:
|
if iplot > 1:
|
||||||
te = np.arange(0, edat[0].stats.npts / edat[0].stats.sampling_rate,
|
rms_dict = {'Z': rmsz,
|
||||||
edat[0].stats.delta)
|
'N': rmsn,
|
||||||
tn = np.arange(0, ndat[0].stats.npts / ndat[0].stats.sampling_rate,
|
'E': rmse}
|
||||||
ndat[0].stats.delta)
|
|
||||||
if not fig:
|
|
||||||
fig = plt.figure()
|
|
||||||
ax = fig.add_subplot(111)
|
|
||||||
ax.plot(tz, z / max(z), 'k')
|
|
||||||
ax.axvspan(tz[isignal[0]], tz[isignal[-1]], color='b', alpha=0.2,
|
|
||||||
lw=0, label='Signal Window')
|
|
||||||
ax.plot(te, edat[0].data / max(edat[0].data) + 1, 'k')
|
|
||||||
ax.plot(tn, ndat[0].data / max(ndat[0].data) + 2, 'k')
|
|
||||||
ax.plot([tz[isignal[0]], tz[isignal[len(isignal) - 1]]],
|
|
||||||
[minsiglevel / max(z), minsiglevel / max(z)], 'g',
|
|
||||||
linewidth=2, label='Minimum Signal Level')
|
|
||||||
ax.set_xlabel('Time [s] since %s' % zdat[0].stats.starttime)
|
|
||||||
ax.set_ylabel('Normalized Counts')
|
|
||||||
ax.set_yticks([0, 1, 2], [zdat[0].stats.channel, edat[0].stats.channel,
|
|
||||||
ndat[0].stats.channel])
|
|
||||||
ax.set_title('CheckZ4S, Station %s' % zdat[0].stats.station)
|
|
||||||
ax.legend()
|
|
||||||
|
|
||||||
|
traces_dict = {'Z': zdat[0],
|
||||||
|
'N': ndat[0],
|
||||||
|
'E': edat[0]}
|
||||||
|
|
||||||
|
diff_dict = {'Z': zdiff,
|
||||||
|
'N': ndiff,
|
||||||
|
'E': ediff}
|
||||||
|
|
||||||
|
signal_dict = {'Z': isignalz,
|
||||||
|
'N': isignaln,
|
||||||
|
'E': isignale}
|
||||||
|
|
||||||
|
for i, key in enumerate(['Z', 'N', 'E']):
|
||||||
|
rms = rms_dict[key]
|
||||||
|
trace = traces_dict[key]
|
||||||
|
t = np.arange(diff_dict[key], trace.stats.npts / trace.stats.sampling_rate+diff_dict[key],
|
||||||
|
trace.stats.delta)
|
||||||
|
if i == 0:
|
||||||
|
ax1 = fig.add_subplot(3, 1, i+1)
|
||||||
|
ax = ax1
|
||||||
|
ax.set_title('CheckZ4S, Station %s' % zdat[0].stats.station)
|
||||||
|
else:
|
||||||
|
ax = fig.add_subplot(3,1,i+1, sharex=ax1)
|
||||||
|
ax.plot(t, abs(trace.data), color='b', label='abs')
|
||||||
|
ax.plot(t, trace.data, color='k')
|
||||||
|
name = str(trace.stats.channel) + ': {}'.format(rms)
|
||||||
|
ax.plot([pick, pick+checkwin], [rms, rms], 'r', label='RMS {}'.format(name))
|
||||||
|
ax.plot([pick, pick], ax.get_ylim(), 'm', label='Pick')
|
||||||
|
ax.set_ylabel('Normalized Counts')
|
||||||
|
ax.axvspan(pick, pick+checkwin, color='c', alpha=0.2,
|
||||||
|
lw=0)
|
||||||
|
ax.legend()
|
||||||
|
ax.set_xlabel('Time [s] since %s' % zdat[0].stats.starttime)
|
||||||
return returnflag
|
return returnflag
|
||||||
|
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user