Merge branch 'develop' of ariadne.geophysik.ruhr-uni-bochum.de:/data/git/pylot into develop

This commit is contained in:
Marcel Paffrath 2015-09-30 13:55:01 +02:00
commit 2308695fa8
2 changed files with 81 additions and 21 deletions

View File

@ -9,6 +9,7 @@ import matplotlib.pyplot as plt
import numpy as np import numpy as np
from obspy.core import Stream from obspy.core import Stream
from pylot.core.pick.utils import getsignalwin from pylot.core.pick.utils import getsignalwin
from scipy.optimize import curve_fit
class Magnitude(object): class Magnitude(object):
''' '''
@ -166,20 +167,68 @@ class DCfc(Magnitude):
L = (N - 1) / tr.stats.sampling_rate L = (N - 1) / tr.stats.sampling_rate
f = np.arange(0, fny, 1/L) f = np.arange(0, fny, 1/L)
# remove zero-frequency and frequencies above
# corner frequency of seismometer (assumed
# to be 100 Hz)
fi = np.where((f >= 1) & (f < 100))
F = f[fi]
YY = Y[fi]
# get plateau (DC value) and corner frequency
# initial guess of plateau
DCin = np.mean(YY[0:100])
# initial guess of corner frequency
# where spectral level reached 50% of flat level
iin = np.where(YY >= 0.5 * DCin)
Fcin = F[iin[0][np.size(iin) - 1]]
fit = synthsourcespec(F, DCin, Fcin)
[optspecfit, pcov] = curve_fit(synthsourcespec, F, YY.real, [DCin, Fcin])
self.w0 = optspecfit[0]
self.fc = optspecfit[1]
print ("DCfc: Determined DC-value: %e m/Hz, \n" \
"Determined corner frequency: %f Hz" % (self.w0, self.fc))
if self.getiplot() > 1: if self.getiplot() > 1:
f1 = plt.figure(1) f1 = plt.figure()
plt.subplot(2,1,1) plt.subplot(2,1,1)
plt.plot(t, np.multiply(tr, 1000), 'k') # show displacement in mm # show displacement in mm
plt.plot(t[iwin], np.multiply(xdat, 1000), 'g') # show displacement in mm plt.plot(t, np.multiply(tr, 1000), 'k')
plt.plot(t[iwin], np.multiply(xdat, 1000), 'g')
plt.title('Seismogram and P pulse, station %s' % tr.stats.station) plt.title('Seismogram and P pulse, station %s' % tr.stats.station)
plt.xlabel('Time since %s' % tr.stats.starttime) plt.xlabel('Time since %s' % tr.stats.starttime)
plt.ylabel('Displacement [mm]') plt.ylabel('Displacement [mm]')
plt.subplot(2,1,2) plt.subplot(2,1,2)
plt.semilogy(f, Y.real) plt.loglog(f, Y.real, 'k')
plt.title('Source Spectrum from P Pulse') plt.loglog(F, YY.real)
plt.loglog(F, fit, 'g')
plt.title('Source Spectrum from P Pulse, DC=%e m/Hz, fc=%4.1f Hz' \
% (self.w0, self.fc))
plt.xlabel('Frequency [Hz]') plt.xlabel('Frequency [Hz]')
plt.ylabel('Amplitude [m/Hz]') plt.ylabel('Amplitude [m/Hz]')
plt.grid()
plt.show() plt.show()
raw_input() raw_input()
plt.close(f1) plt.close(f1)
def synthsourcespec(f, omega0, fcorner):
'''
Calculates synthetic source spectrum from given plateau and corner
frequency assuming Akis omega-square model.
:param: f, frequencies
:type: array
:param: omega0, DC-value (plateau) of source spectrum
:type: float
:param: fcorner, corner frequency of source spectrum
:type: float
'''
#ssp = omega0 / (pow(2, (1 + f / fcorner)))
ssp = omega0 / (1 + pow(2, (f / fcorner)))
return ssp

View File

@ -313,7 +313,6 @@ def autopickstation(wfstream, pickparam):
############################################################## ##############################################################
# get DC value (w0) and corner frequency (fc) of source spectrum # get DC value (w0) and corner frequency (fc) of source spectrum
# from P pulse # from P pulse
# restitute streams
# initialize Data object # initialize Data object
data = Data() data = Data()
[corzdat, restflag] = data.restituteWFData(invdir, zdat) [corzdat, restflag] = data.restituteWFData(invdir, zdat)
@ -323,33 +322,45 @@ def autopickstation(wfstream, pickparam):
# class needs stream object => build it # class needs stream object => build it
z_copy = zdat.copy() z_copy = zdat.copy()
z_copy[0].data = corintzdat z_copy[0].data = corintzdat
# calculate source spectrum and get w0 and fc # largest detectable period == window length
calcwin = 1 / bpz2[0] # largest detectable period == window length # after P pulse for calculating source spectrum
# around P pulse for calculating source spectrum winzc = (1 / bpz2[0]) * z_copy[0].stats.sampling_rate
specpara = DCfc(z_copy, mpickP, calcwin, iplot) impickP = mpickP * z_copy[0].stats.sampling_rate
w0 = specpara.getw0() wfzc = z_copy[0].data[impickP : impickP + winzc]
fc = specpara.getfc() # calculate spectrum using only first cycles of
# waveform after P onset!
zc = crossings_nonzero_all(wfzc)
if np.size(zc) == 0:
print ("Something is wrong with the waveform, " \
"no zero crossings derived!")
print ("Cannot calculate source spectrum!")
else:
calcwin = (zc[3] - zc[0]) * z_copy[0].stats.delta
# calculate source spectrum and get w0 and fc
specpara = DCfc(z_copy, mpickP, calcwin, iplot)
w0 = specpara.getw0()
fc = specpara.getfc()
print 'autopickstation: P-weight: %d, SNR: %f, SNR[dB]: %f, ' \ print ("autopickstation: P-weight: %d, SNR: %f, SNR[dB]: %f, " \
'Polarity: %s' % (Pweight, SNRP, SNRPdB, FM) "Polarity: %s" % (Pweight, SNRP, SNRPdB, FM))
Sflag = 1 Sflag = 1
else: else:
print 'Bad initial (AIC) P-pick, skipping this onset!' print ("Bad initial (AIC) P-pick, skipping this onset!")
print 'AIC-SNR=', aicpick.getSNR(), 'AIC-Slope=', aicpick.getSlope(), 'counts/s' print 'AIC-SNR=', aicpick.getSNR(), 'AIC-Slope=', aicpick.getSlope(), 'counts/s'
print '(min. AIC-SNR=', minAICPSNR, ', min. AIC-Slope=', minAICPslope, 'counts/s)' print '(min. AIC-SNR=', minAICPSNR, ', min. AIC-Slope=', minAICPslope, 'counts/s)'
Sflag = 0 Sflag = 0
else: else:
print 'autopickstation: No vertical component data available!, ' \ print ("autopickstation: No vertical component data available!, " \
'Skipping station!' "Skipping station!")
if edat is not None and ndat is not None and len(edat) > 0 and len( if edat is not None and ndat is not None and len(edat) > 0 and len(
ndat) > 0 and Pweight < 4: ndat) > 0 and Pweight < 4:
print 'Go on picking S onset ...' print ("Go on picking S onset ...")
print '##################################################' print ("##################################################")
print 'Working on S onset of station %s' % edat[0].stats.station print ("Working on S onset of station %s" % edat[0].stats.station)
print 'Filtering horizontal traces ...' print ("Filtering horizontal traces ...")
# determine time window for calculating CF after P onset # determine time window for calculating CF after P onset
cuttimesh = [round(max([mpickP + sstart, 0])), cuttimesh = [round(max([mpickP + sstart, 0])),