Merge branch 'refs/heads/develop' into correlation_picker
This commit is contained in:
commit
28f75cedcb
1
.gitignore
vendored
1
.gitignore
vendored
@ -2,3 +2,4 @@
|
||||
*~
|
||||
.idea
|
||||
pylot/RELEASE-VERSION
|
||||
/tests/test_autopicker/dmt_database_test/
|
||||
|
@ -41,6 +41,7 @@ global #extent# %extent of a
|
||||
1150.0 #sstop# %end time [s] after P-onset for calculating CF for S-picking
|
||||
True #use_taup# %use estimated traveltimes from TauPy for calculating windows for CF
|
||||
iasp91 #taup_model# %define TauPy model for traveltime estimation. Possible values: 1066a, 1066b, ak135, ak135f, herrin, iasp91, jb, prem, pwdk, sp6
|
||||
P,Pdiff #taup_phases# %Specify possible phases for TauPy (comma separated). See Obspy TauPy documentation for possible values.
|
||||
0.05 0.5 #bpz1# %lower/upper corner freq. of first band pass filter Z-comp. [Hz]
|
||||
0.001 0.5 #bpz2# %lower/upper corner freq. of second band pass filter Z-comp. [Hz]
|
||||
0.05 0.5 #bph1# %lower/upper corner freq. of first band pass filter H-comp. [Hz]
|
||||
|
@ -41,6 +41,7 @@ local #extent# %extent of a
|
||||
10.0 #sstop# %end time [s] after P-onset for calculating CF for S-picking
|
||||
False #use_taup# %use estimated traveltimes from TauPy for calculating windows for CF
|
||||
iasp91 #taup_model# %define TauPy model for traveltime estimation
|
||||
P #taup_phases# %Specify possible phases for TauPy (comma separated). See Obspy TauPy documentation for possible values.
|
||||
2.0 20.0 #bpz1# %lower/upper corner freq. of first band pass filter Z-comp. [Hz]
|
||||
2.0 30.0 #bpz2# %lower/upper corner freq. of second band pass filter Z-comp. [Hz]
|
||||
2.0 10.0 #bph1# %lower/upper corner freq. of first band pass filter H-comp. [Hz]
|
||||
|
@ -41,6 +41,7 @@ local #extent# %extent of a
|
||||
10.0 #sstop# %end time [s] after P-onset for calculating CF for S-picking
|
||||
True #use_taup# %use estimated traveltimes from TauPy for calculating windows for CF
|
||||
iasp91 #taup_model# %define TauPy model for traveltime estimation
|
||||
P #taup_phases# %Specify possible phases for TauPy (comma separated). See Obspy TauPy documentation for possible values.
|
||||
2.0 10.0 #bpz1# %lower/upper corner freq. of first band pass filter Z-comp. [Hz]
|
||||
2.0 12.0 #bpz2# %lower/upper corner freq. of second band pass filter Z-comp. [Hz]
|
||||
2.0 8.0 #bph1# %lower/upper corner freq. of first band pass filter H-comp. [Hz]
|
||||
|
@ -262,6 +262,10 @@ class AutopickStation(object):
|
||||
self.metadata = metadata
|
||||
self.origin = origin
|
||||
|
||||
# initialize TauPy pick estimates
|
||||
self.estFirstP = None
|
||||
self.estFirstS = None
|
||||
|
||||
# initialize picking results
|
||||
self.p_results = PickingResults()
|
||||
self.s_results = PickingResults()
|
||||
@ -443,15 +447,15 @@ class AutopickStation(object):
|
||||
for arr in arrivals:
|
||||
phases[identifyPhaseID(arr.phase.name)].append(arr)
|
||||
# get first P and S onsets from arrivals list
|
||||
estFirstP = 0
|
||||
estFirstS = 0
|
||||
arrival_time_p = 0
|
||||
arrival_time_s = 0
|
||||
if len(phases['P']) > 0:
|
||||
arrP, estFirstP = min([(arr, arr.time) for arr in phases['P']], key=lambda t: t[1])
|
||||
arrP, arrival_time_p = min([(arr, arr.time) for arr in phases['P']], key=lambda t: t[1])
|
||||
if len(phases['S']) > 0:
|
||||
arrS, estFirstS = min([(arr, arr.time) for arr in phases['S']], key=lambda t: t[1])
|
||||
arrS, arrival_time_s = min([(arr, arr.time) for arr in phases['S']], key=lambda t: t[1])
|
||||
print('autopick: estimated first arrivals for P: {} s, S:{} s after event'
|
||||
' origin time using TauPy'.format(estFirstP, estFirstS))
|
||||
return estFirstP, estFirstS
|
||||
' origin time using TauPy'.format(arrival_time_p, arrival_time_s))
|
||||
return arrival_time_p, arrival_time_s
|
||||
|
||||
def exit_taupy():
|
||||
"""If taupy failed to calculate theoretical starttimes, picking continues.
|
||||
@ -477,10 +481,13 @@ class AutopickStation(object):
|
||||
raise AttributeError('No source origins given!')
|
||||
|
||||
arrivals = create_arrivals(self.metadata, self.origin, self.pickparams["taup_model"])
|
||||
estFirstP, estFirstS = first_PS_onsets(arrivals)
|
||||
arrival_P, arrival_S = first_PS_onsets(arrivals)
|
||||
|
||||
self.estFirstP = (self.origin[0].time + arrival_P) - self.ztrace.stats.starttime
|
||||
|
||||
# modifiy pstart and pstop relative to estimated first P arrival (relative to station time axis)
|
||||
self.pickparams["pstart"] += (self.origin[0].time + estFirstP) - self.ztrace.stats.starttime
|
||||
self.pickparams["pstop"] += (self.origin[0].time + estFirstP) - self.ztrace.stats.starttime
|
||||
self.pickparams["pstart"] += self.estFirstP
|
||||
self.pickparams["pstop"] += self.estFirstP
|
||||
print('autopick: CF calculation times respectively:'
|
||||
' pstart: {} s, pstop: {} s'.format(self.pickparams["pstart"], self.pickparams["pstop"]))
|
||||
# make sure pstart and pstop are inside the starttime/endtime of vertical trace
|
||||
@ -491,9 +498,10 @@ class AutopickStation(object):
|
||||
# for the two horizontal components take earliest and latest time to make sure that the s onset is not clipped
|
||||
# if start and endtime of horizontal traces differ, the s windowsize will automatically increase
|
||||
trace_s_start = min([self.etrace.stats.starttime, self.ntrace.stats.starttime])
|
||||
self.estFirstS = (self.origin[0].time + arrival_S) - trace_s_start
|
||||
# modifiy sstart and sstop relative to estimated first S arrival (relative to station time axis)
|
||||
self.pickparams["sstart"] += (self.origin[0].time + estFirstS) - trace_s_start
|
||||
self.pickparams["sstop"] += (self.origin[0].time + estFirstS) - trace_s_start
|
||||
self.pickparams["sstart"] += self.estFirstS
|
||||
self.pickparams["sstop"] += self.estFirstS
|
||||
print('autopick: CF calculation times respectively:'
|
||||
' sstart: {} s, sstop: {} s'.format(self.pickparams["sstart"], self.pickparams["sstop"]))
|
||||
# make sure pstart and pstop are inside the starttime/endtime of horizontal traces
|
||||
@ -609,6 +617,12 @@ class AutopickStation(object):
|
||||
# plot tapered trace filtered with bpz2 filter settings
|
||||
ax1.plot(tdata, self.tr_filt_z_bpz2.data / max(self.tr_filt_z_bpz2.data), color=linecolor, linewidth=0.7,
|
||||
label='Data')
|
||||
# plot pickwindows for P
|
||||
pstart, pstop = self.pickparams['pstart'], self.pickparams['pstop']
|
||||
if pstart is not None and pstop is not None:
|
||||
ax1.axvspan(pstart, pstop, color='r', alpha=0.1, zorder=0, label='P window')
|
||||
if self.estFirstP is not None:
|
||||
ax1.axvline(self.estFirstP, ls='dashed', color='r', alpha=0.4, label='TauPy estimate')
|
||||
if self.p_results.weight < 4:
|
||||
# plot CF of initial onset (HOScf or ARZcf)
|
||||
ax1.plot(self.cf1.getTimeArray(), self.cf1.getCF() / max(self.cf1.getCF()), 'b', label='CF1')
|
||||
@ -713,6 +727,15 @@ class AutopickStation(object):
|
||||
ax3.plot([refSpick.getpick() - 0.5, refSpick.getpick() + 0.5], [-1.3, -1.3], 'g', linewidth=2)
|
||||
ax3.plot([self.s_results.lpp, self.s_results.lpp], [-1.1, 1.1], 'g--', label='lpp')
|
||||
ax3.plot([self.s_results.epp, self.s_results.epp], [-1.1, 1.1], 'g--', label='epp')
|
||||
|
||||
# plot pickwindows for S
|
||||
sstart, sstop = self.pickparams['sstart'], self.pickparams['sstop']
|
||||
if sstart is not None and sstop is not None:
|
||||
for axis in [ax2, ax3]:
|
||||
axis.axvspan(sstart, sstop, color='b', alpha=0.1, zorder=0, label='S window')
|
||||
if self.estFirstS is not None:
|
||||
axis.axvline(self.estFirstS, ls='dashed', color='b', alpha=0.4, label='TauPy estimate')
|
||||
|
||||
ax3.legend(loc=1)
|
||||
ax3.set_yticks([])
|
||||
ax3.set_ylim([-1.5, 1.5])
|
||||
@ -835,14 +858,21 @@ class AutopickStation(object):
|
||||
self.cf1 = None
|
||||
assert isinstance(self.cf1, CharacteristicFunction), 'cf1 is not set correctly: maybe the algorithm name ({})' \
|
||||
' is corrupted'.format(self.pickparams["algoP"])
|
||||
# get the original waveform stream from first CF class cut to identical length as CF for plotting
|
||||
cut_ogstream = self.cf1.getDataArray(self.cf1.getCut())
|
||||
|
||||
# MP: Rename to cf_stream for further use of z_copy and to prevent chaos when z_copy suddenly becomes a cf
|
||||
# stream and later again a waveform stream
|
||||
cf_stream = z_copy.copy()
|
||||
cf_stream[0].data = self.cf1.getCF()
|
||||
|
||||
# calculate AIC cf from first cf (either HOS or ARZ)
|
||||
z_copy[0].data = self.cf1.getCF()
|
||||
aiccf = AICcf(z_copy, cuttimes)
|
||||
aiccf = AICcf(cf_stream, cuttimes)
|
||||
# get preliminary onset time from AIC-CF
|
||||
self.set_current_figure('aicFig')
|
||||
aicpick = AICPicker(aiccf, self.pickparams["tsnrz"], self.pickparams["pickwinP"], self.iplot,
|
||||
Tsmooth=self.pickparams["aictsmooth"], fig=self.current_figure,
|
||||
linecolor=self.current_linecolor)
|
||||
linecolor=self.current_linecolor, ogstream=cut_ogstream)
|
||||
# save aicpick for plotting later
|
||||
self.p_data.aicpick = aicpick
|
||||
# add pstart and pstop to aic plot
|
||||
@ -855,7 +885,7 @@ class AutopickStation(object):
|
||||
label='P stop')
|
||||
ax.legend(loc=1)
|
||||
|
||||
Pflag = self._pick_p_quality_control(aicpick, z_copy, tr_filt)
|
||||
Pflag = self._pick_p_quality_control(aicpick, cf_stream, tr_filt)
|
||||
# go on with processing if AIC onset passes quality control
|
||||
slope = aicpick.getSlope()
|
||||
if not slope: slope = 0
|
||||
@ -894,7 +924,7 @@ class AutopickStation(object):
|
||||
refPpick = PragPicker(self.cf2, self.pickparams["tsnrz"], self.pickparams["pickwinP"], self.iplot,
|
||||
self.pickparams["ausP"],
|
||||
self.pickparams["tsmoothP"], aicpick.getpick(), self.current_figure,
|
||||
self.current_linecolor)
|
||||
self.current_linecolor, ogstream=cut_ogstream)
|
||||
# save PragPicker result for plotting
|
||||
self.p_data.refPpick = refPpick
|
||||
self.p_results.mpp = refPpick.getpick()
|
||||
@ -1146,11 +1176,14 @@ class AutopickStation(object):
|
||||
# calculate AIC cf
|
||||
haiccf = self._calculate_aic_cf_s_pick(cuttimesh)
|
||||
|
||||
# get the original waveform stream cut to identical length as CF for plotting
|
||||
ogstream = haiccf.getDataArray(haiccf.getCut())
|
||||
|
||||
# get preliminary onset time from AIC cf
|
||||
self.set_current_figure('aicARHfig')
|
||||
aicarhpick = AICPicker(haiccf, self.pickparams["tsnrh"], self.pickparams["pickwinS"], self.iplot,
|
||||
Tsmooth=self.pickparams["aictsmoothS"], fig=self.current_figure,
|
||||
linecolor=self.current_linecolor)
|
||||
linecolor=self.current_linecolor, ogstream=ogstream)
|
||||
# save pick for later plotting
|
||||
self.aicarhpick = aicarhpick
|
||||
|
||||
|
@ -60,7 +60,7 @@ class CharacteristicFunction(object):
|
||||
self.setOrder(order)
|
||||
self.setFnoise(fnoise)
|
||||
self.setARdetStep(t2)
|
||||
self.calcCF(self.getDataArray())
|
||||
self.calcCF()
|
||||
self.arpara = np.array([])
|
||||
self.xpred = np.array([])
|
||||
|
||||
@ -212,17 +212,15 @@ class CharacteristicFunction(object):
|
||||
data = self.orig_data.copy()
|
||||
return data
|
||||
|
||||
def calcCF(self, data=None):
|
||||
self.cf = data
|
||||
def calcCF(self):
|
||||
pass
|
||||
|
||||
|
||||
class AICcf(CharacteristicFunction):
|
||||
|
||||
def calcCF(self, data):
|
||||
def calcCF(self):
|
||||
"""
|
||||
Function to calculate the Akaike Information Criterion (AIC) after Maeda (1985).
|
||||
:param data: data, time series (whether seismogram or CF)
|
||||
:type data: tuple
|
||||
:return: AIC function
|
||||
:rtype:
|
||||
"""
|
||||
@ -260,13 +258,11 @@ class HOScf(CharacteristicFunction):
|
||||
"""
|
||||
super(HOScf, self).__init__(data, cut, pickparams["tlta"], pickparams["hosorder"])
|
||||
|
||||
def calcCF(self, data):
|
||||
def calcCF(self):
|
||||
"""
|
||||
Function to calculate skewness (statistics of order 3) or kurtosis
|
||||
(statistics of order 4), using one long moving window, as published
|
||||
in Kueperkoch et al. (2010), or order 2, i.e. STA/LTA.
|
||||
:param data: data, time series (whether seismogram or CF)
|
||||
:type data: tuple
|
||||
:return: HOS cf
|
||||
:rtype:
|
||||
"""
|
||||
@ -281,47 +277,28 @@ class HOScf(CharacteristicFunction):
|
||||
elif self.getOrder() == 4: # this is kurtosis
|
||||
y = np.power(xnp, 4)
|
||||
y1 = np.power(xnp, 2)
|
||||
elif self.getOrder() == 2: # this is variance, used for STA/LTA processing
|
||||
y = np.power(xnp, 2)
|
||||
y1 = np.power(xnp, 2)
|
||||
|
||||
# Initialisation
|
||||
# t2: long term moving window
|
||||
ilta = int(round(self.getTime2() / self.getIncrement()))
|
||||
ista = int(round((self.getTime2() / 10) / self.getIncrement())) # TODO: still hard coded!!
|
||||
lta = y[0]
|
||||
lta1 = y1[0]
|
||||
sta = y[0]
|
||||
# moving windows
|
||||
LTA = np.zeros(len(xnp))
|
||||
STA = np.zeros(len(xnp))
|
||||
for j in range(0, len(xnp)):
|
||||
if j < 4:
|
||||
LTA[j] = 0
|
||||
STA[j] = 0
|
||||
elif j <= ista and self.getOrder() == 2:
|
||||
lta = (y[j] + lta * (j - 1)) / j
|
||||
if self.getOrder() == 2:
|
||||
sta = (y[j] + sta * (j - 1)) / j
|
||||
# elif j < 4:
|
||||
elif j <= ilta:
|
||||
lta = (y[j] + lta * (j - 1)) / j
|
||||
lta1 = (y1[j] + lta1 * (j - 1)) / j
|
||||
if self.getOrder() == 2:
|
||||
sta = (y[j] - y[j - ista]) / ista + sta
|
||||
else:
|
||||
lta = (y[j] - y[j - ilta]) / ilta + lta
|
||||
lta1 = (y1[j] - y1[j - ilta]) / ilta + lta1
|
||||
if self.getOrder() == 2:
|
||||
sta = (y[j] - y[j - ista]) / ista + sta
|
||||
# define LTA
|
||||
if self.getOrder() == 3:
|
||||
LTA[j] = lta / np.power(lta1, 1.5)
|
||||
elif self.getOrder() == 4:
|
||||
LTA[j] = lta / np.power(lta1, 2)
|
||||
else:
|
||||
LTA[j] = lta
|
||||
STA[j] = sta
|
||||
|
||||
# remove NaN's with first not-NaN-value,
|
||||
# so autopicker doesnt pick discontinuity at start of the trace
|
||||
@ -330,10 +307,7 @@ class HOScf(CharacteristicFunction):
|
||||
first = ind[0]
|
||||
LTA[:first] = LTA[first]
|
||||
|
||||
if self.getOrder() > 2:
|
||||
self.cf = LTA
|
||||
else: # order 2 means STA/LTA!
|
||||
self.cf = STA / LTA
|
||||
self.xcf = x
|
||||
|
||||
|
||||
@ -343,12 +317,10 @@ class ARZcf(CharacteristicFunction):
|
||||
super(ARZcf, self).__init__(data, cut, t1=t1, t2=t2, order=pickparams["Parorder"],
|
||||
fnoise=pickparams["addnoise"])
|
||||
|
||||
def calcCF(self, data):
|
||||
def calcCF(self):
|
||||
"""
|
||||
function used to calculate the AR prediction error from a single vertical trace. Can be used to pick
|
||||
P onsets.
|
||||
:param data:
|
||||
:type data: ~obspy.core.stream.Stream
|
||||
:return: ARZ cf
|
||||
:rtype:
|
||||
"""
|
||||
@ -479,14 +451,12 @@ class ARHcf(CharacteristicFunction):
|
||||
super(ARHcf, self).__init__(data, cut, t1=t1, t2=t2, order=pickparams["Sarorder"],
|
||||
fnoise=pickparams["addnoise"])
|
||||
|
||||
def calcCF(self, data):
|
||||
def calcCF(self):
|
||||
"""
|
||||
Function to calculate a characteristic function using autoregressive modelling of the waveform of
|
||||
both horizontal traces.
|
||||
The waveform is predicted in a moving time window using the calculated AR parameters. The difference
|
||||
between the predicted and the actual waveform servers as a characteristic function.
|
||||
:param data: wavefor stream
|
||||
:type data: ~obspy.core.stream.Stream
|
||||
:return: ARH cf
|
||||
:rtype:
|
||||
"""
|
||||
@ -635,14 +605,12 @@ class AR3Ccf(CharacteristicFunction):
|
||||
super(AR3Ccf, self).__init__(data, cut, t1=t1, t2=t2, order=pickparams["Sarorder"],
|
||||
fnoise=pickparams["addnoise"])
|
||||
|
||||
def calcCF(self, data):
|
||||
def calcCF(self):
|
||||
"""
|
||||
Function to calculate a characteristic function using autoregressive modelling of the waveform of
|
||||
all three traces.
|
||||
The waveform is predicted in a moving time window using the calculated AR parameters. The difference
|
||||
between the predicted and the actual waveform servers as a characteristic function
|
||||
:param data: stream holding all three traces
|
||||
:type data: ~obspy.core.stream.Stream
|
||||
:return: AR3C cf
|
||||
:rtype:
|
||||
"""
|
||||
|
@ -37,7 +37,8 @@ class AutoPicker(object):
|
||||
|
||||
warnings.simplefilter('ignore')
|
||||
|
||||
def __init__(self, cf, TSNR, PickWindow, iplot=0, aus=None, Tsmooth=None, Pick1=None, fig=None, linecolor='k'):
|
||||
def __init__(self, cf, TSNR, PickWindow, iplot=0, aus=None, Tsmooth=None, Pick1=None,
|
||||
fig=None, linecolor='k', ogstream=None):
|
||||
"""
|
||||
Create AutoPicker object
|
||||
:param cf: characteristic function, on which the picking algorithm is applied
|
||||
@ -59,12 +60,15 @@ class AutoPicker(object):
|
||||
:type fig: `~matplotlib.figure.Figure`
|
||||
:param linecolor: matplotlib line color string
|
||||
:type linecolor: str
|
||||
:param ogstream: original stream (waveform), e.g. for plotting purposes
|
||||
:type ogstream: `~obspy.core.stream.Stream`
|
||||
"""
|
||||
|
||||
assert isinstance(cf, CharacteristicFunction), "%s is not a CharacteristicFunction object" % str(cf)
|
||||
self._linecolor = linecolor
|
||||
self._pickcolor_p = 'b'
|
||||
self.cf = cf.getCF()
|
||||
self.ogstream = ogstream
|
||||
self.Tcf = cf.getTimeArray()
|
||||
self.Data = cf.getXCF()
|
||||
self.dt = cf.getIncrement()
|
||||
@ -173,7 +177,7 @@ class AICPicker(AutoPicker):
|
||||
nn = np.isnan(self.cf)
|
||||
if len(nn) > 1:
|
||||
self.cf[nn] = 0
|
||||
# taper AIC-CF to get rid off side maxima
|
||||
# taper AIC-CF to get rid of side maxima
|
||||
tap = np.hanning(len(self.cf))
|
||||
aic = tap * self.cf + max(abs(self.cf))
|
||||
# smooth AIC-CF
|
||||
@ -316,16 +320,7 @@ class AICPicker(AutoPicker):
|
||||
plt.close(fig)
|
||||
return
|
||||
iislope = islope[0][0:imax + 1]
|
||||
# MP MP change slope calculation
|
||||
# get all maxima of aicsmooth
|
||||
iaicmaxima = argrelmax(aicsmooth)[0]
|
||||
# get first index of maximum after pickindex (indices saved in iaicmaxima)
|
||||
aicmax = iaicmaxima[np.where(iaicmaxima > pickindex)[0]]
|
||||
if len(aicmax) > 0:
|
||||
iaicmax = aicmax[0]
|
||||
else:
|
||||
iaicmax = -1
|
||||
dataslope = aicsmooth[pickindex: iaicmax]
|
||||
dataslope = self.Data[0].data[iislope]
|
||||
# calculate slope as polynomal fit of order 1
|
||||
xslope = np.arange(0, len(dataslope), 1)
|
||||
try:
|
||||
@ -336,7 +331,7 @@ class AICPicker(AutoPicker):
|
||||
else:
|
||||
self.slope = 1 / (len(dataslope) * self.Data[0].stats.delta) * (datafit[-1] - datafit[0])
|
||||
# normalize slope to maximum of cf to make it unit independent
|
||||
self.slope /= aicsmooth[iaicmax]
|
||||
self.slope /= self.Data[0].data[icfmax]
|
||||
except Exception as e:
|
||||
print("AICPicker: Problems with data fitting! {}".format(e))
|
||||
|
||||
@ -356,6 +351,12 @@ class AICPicker(AutoPicker):
|
||||
self.Tcf = self.Tcf[0:len(self.Tcf) - 1]
|
||||
ax1.plot(self.Tcf, cf / max(cf), color=self._linecolor, linewidth=0.7, label='(HOS-/AR-) Data')
|
||||
ax1.plot(self.Tcf, aicsmooth / max(aicsmooth), 'r', label='Smoothed AIC-CF')
|
||||
# plot the original waveform also for evaluation of the CF and pick
|
||||
if self.ogstream:
|
||||
data = self.ogstream[0].data
|
||||
if len(data) == len(self.Tcf):
|
||||
ax1.plot(self.Tcf, 0.5 * data / max(data), 'k', label='Seismogram', alpha=0.3, zorder=0,
|
||||
lw=0.5)
|
||||
if self.Pick is not None:
|
||||
ax1.plot([self.Pick, self.Pick], [-0.1, 0.5], 'b', linewidth=2, label='AIC-Pick')
|
||||
ax1.set_xlabel('Time [s] since %s' % self.Data[0].stats.starttime)
|
||||
@ -376,7 +377,7 @@ class AICPicker(AutoPicker):
|
||||
label='Signal Window')
|
||||
ax2.axvspan(self.Tcf[iislope[0]], self.Tcf[iislope[-1]], color='g', alpha=0.2, lw=0,
|
||||
label='Slope Window')
|
||||
ax2.plot(self.Tcf[pickindex: iaicmax], datafit, 'g', linewidth=2,
|
||||
ax2.plot(self.Tcf[iislope], datafit, 'g', linewidth=2,
|
||||
label='Slope') # MP MP changed temporarily!
|
||||
|
||||
if self.slope is not None:
|
||||
|
@ -15,7 +15,7 @@ import numpy as np
|
||||
from obspy.core import Stream, UTCDateTime
|
||||
from scipy.signal import argrelmax
|
||||
|
||||
from pylot.core.util.utils import get_bool, get_none, SetChannelComponents
|
||||
from pylot.core.util.utils import get_bool, get_none, SetChannelComponents, common_range
|
||||
|
||||
|
||||
def earllatepicker(X, nfac, TSNR, Pick1, iplot=0, verbosity=1, fig=None, linecolor='k'):
|
||||
@ -828,14 +828,22 @@ def checksignallength(X, pick, minsiglength, pickparams, iplot=0, fig=None, line
|
||||
if len(X) > 1:
|
||||
# all three components available
|
||||
# make sure, all components have equal lengths
|
||||
ilen = min([len(X[0].data), len(X[1].data), len(X[2].data)])
|
||||
x1 = X[0][0:ilen]
|
||||
x2 = X[1][0:ilen]
|
||||
x3 = X[2][0:ilen]
|
||||
earliest_starttime = min(tr.stats.starttime for tr in X)
|
||||
cuttimes = common_range(X)
|
||||
X = X.slice(cuttimes[0], cuttimes[1])
|
||||
x1, x2, x3 = X[:3]
|
||||
|
||||
if not (len(x1) == len(x2) == len(x3)):
|
||||
raise PickingFailedException('checksignallength: unequal lengths of components!')
|
||||
|
||||
# get RMS trace
|
||||
rms = np.sqrt((np.power(x1, 2) + np.power(x2, 2) + np.power(x3, 2)) / 3)
|
||||
ilen = len(rms)
|
||||
dt = earliest_starttime - X[0].stats.starttime
|
||||
pick -= dt
|
||||
else:
|
||||
x1 = X[0].data
|
||||
x2 = x3 = None
|
||||
ilen = len(x1)
|
||||
rms = abs(x1)
|
||||
|
||||
@ -874,6 +882,10 @@ def checksignallength(X, pick, minsiglength, pickparams, iplot=0, fig=None, line
|
||||
fig._tight = True
|
||||
ax = fig.add_subplot(111)
|
||||
ax.plot(t, rms, color=linecolor, linewidth=0.7, label='RMS Data')
|
||||
ax.plot(t, x1, 'k', alpha=0.3, lw=0.3, zorder=0)
|
||||
if x2 is not None and x3 is not None:
|
||||
ax.plot(t, x2, 'r', alpha=0.3, lw=0.3, zorder=0)
|
||||
ax.plot(t, x3, 'g', alpha=0.3, lw=0.3, zorder=0)
|
||||
ax.axvspan(t[inoise[0]], t[inoise[-1]], color='y', alpha=0.2, lw=0, label='Noise Window')
|
||||
ax.axvspan(t[isignal[0]], t[isignal[-1]], color='b', alpha=0.2, lw=0, label='Signal Window')
|
||||
ax.plot([t[isignal[0]], t[isignal[len(isignal) - 1]]],
|
||||
@ -883,6 +895,7 @@ def checksignallength(X, pick, minsiglength, pickparams, iplot=0, fig=None, line
|
||||
ax.set_xlabel('Time [s] since %s' % X[0].stats.starttime)
|
||||
ax.set_ylabel('Counts')
|
||||
ax.set_title('Check for Signal Length, Station %s' % X[0].stats.station)
|
||||
ax.set_xlim(pickparams["pstart"], pickparams["pstop"])
|
||||
ax.set_yticks([])
|
||||
if plt_flag == 1:
|
||||
fig.show()
|
||||
|
@ -1076,7 +1076,7 @@ def check4rotated(data, metadata=None, verbosity=1):
|
||||
return wfs_in
|
||||
|
||||
# check metadata quality
|
||||
t_start = full_range(wfs_in)
|
||||
t_start = full_range(wfs_in)[0]
|
||||
try:
|
||||
azimuths = []
|
||||
dips = []
|
||||
|
@ -41,6 +41,7 @@ global #extent# %extent of a
|
||||
875.0 #sstop# %end time [s] after P-onset for calculating CF for S-picking
|
||||
False #use_taup# %use estimated traveltimes from TauPy for calculating windows for CF
|
||||
IASP91 #taup_model# %define TauPy model for traveltime estimation. Possible values: 1066a, 1066b, ak135, ak135f, herrin, iasp91, jb, prem, pwdk, sp6
|
||||
P,Pdiff,S,Sdiff #taup_phases# %Specify possible phases for TauPy (comma separated). See Obspy TauPy documentation for possible values.
|
||||
0.01 0.1 #bpz1# %lower/upper corner freq. of first band pass filter Z-comp. [Hz]
|
||||
0.001 0.5 #bpz2# %lower/upper corner freq. of second band pass filter Z-comp. [Hz]
|
||||
0.01 0.5 #bph1# %lower/upper corner freq. of first band pass filter H-comp. [Hz]
|
||||
|
@ -41,6 +41,7 @@ global #extent# %extent of a
|
||||
875.0 #sstop# %end time [s] after P-onset for calculating CF for S-picking
|
||||
True #use_taup# %use estimated traveltimes from TauPy for calculating windows for CF
|
||||
IASP91 #taup_model# %define TauPy model for traveltime estimation. Possible values: 1066a, 1066b, ak135, ak135f, herrin, iasp91, jb, prem, pwdk, sp6
|
||||
P,Pdiff,S,Sdiff #taup_phases# %Specify possible phases for TauPy (comma separated). See Obspy TauPy documentation for possible values.
|
||||
0.01 0.1 #bpz1# %lower/upper corner freq. of first band pass filter Z-comp. [Hz]
|
||||
0.001 0.5 #bpz2# %lower/upper corner freq. of second band pass filter Z-comp. [Hz]
|
||||
0.01 0.5 #bph1# %lower/upper corner freq. of first band pass filter H-comp. [Hz]
|
||||
|
@ -1,6 +1,7 @@
|
||||
import os
|
||||
import sys
|
||||
import unittest
|
||||
import pytest
|
||||
|
||||
import obspy
|
||||
from obspy import UTCDateTime
|
||||
@ -105,7 +106,6 @@ class TestAutopickStation(unittest.TestCase):
|
||||
# show complete diff when difference in results dictionaries are found
|
||||
self.maxDiff = None
|
||||
|
||||
# @skip("Works")
|
||||
def test_autopickstation_taupy_disabled_gra1(self):
|
||||
expected = {
|
||||
'P': {'picker': 'auto', 'snrdb': 15.405649120980094, 'weight': 0, 'Mo': None, 'marked': [], 'Mw': None,
|
||||
@ -121,8 +121,8 @@ class TestAutopickStation(unittest.TestCase):
|
||||
with HidePrints():
|
||||
result, station = autopickstation(wfstream=self.gra1, pickparam=self.pickparam_taupy_disabled,
|
||||
metadata=(None, None))
|
||||
self.assertDictContainsSubset(expected=expected['P'], actual=result['P'])
|
||||
self.assertDictContainsSubset(expected=expected['S'], actual=result['S'])
|
||||
compare_dicts(expected=expected['P'], result=result['P'], hint='P-')
|
||||
compare_dicts(expected=expected['S'], result=result['S'], hint='S-')
|
||||
self.assertEqual('GRA1', station)
|
||||
|
||||
def test_autopickstation_taupy_enabled_gra1(self):
|
||||
@ -140,8 +140,8 @@ class TestAutopickStation(unittest.TestCase):
|
||||
with HidePrints():
|
||||
result, station = autopickstation(wfstream=self.gra1, pickparam=self.pickparam_taupy_enabled,
|
||||
metadata=self.metadata, origin=self.origin)
|
||||
self.assertDictContainsSubset(expected=expected['P'], actual=result['P'])
|
||||
self.assertDictContainsSubset(expected=expected['S'], actual=result['S'])
|
||||
compare_dicts(expected=expected['P'], result=result['P'], hint='P-')
|
||||
compare_dicts(expected=expected['S'], result=result['S'], hint='S-')
|
||||
self.assertEqual('GRA1', station)
|
||||
|
||||
def test_autopickstation_taupy_disabled_gra2(self):
|
||||
@ -157,8 +157,8 @@ class TestAutopickStation(unittest.TestCase):
|
||||
with HidePrints():
|
||||
result, station = autopickstation(wfstream=self.gra2, pickparam=self.pickparam_taupy_disabled,
|
||||
metadata=(None, None))
|
||||
self.assertDictContainsSubset(expected=expected['P'], actual=result['P'])
|
||||
self.assertDictContainsSubset(expected=expected['S'], actual=result['S'])
|
||||
compare_dicts(expected=expected['P'], result=result['P'], hint='P-')
|
||||
compare_dicts(expected=expected['S'], result=result['S'], hint='S-')
|
||||
self.assertEqual('GRA2', station)
|
||||
|
||||
def test_autopickstation_taupy_enabled_gra2(self):
|
||||
@ -175,8 +175,8 @@ class TestAutopickStation(unittest.TestCase):
|
||||
with HidePrints():
|
||||
result, station = autopickstation(wfstream=self.gra2, pickparam=self.pickparam_taupy_enabled,
|
||||
metadata=self.metadata, origin=self.origin)
|
||||
self.assertDictContainsSubset(expected=expected['P'], actual=result['P'])
|
||||
self.assertDictContainsSubset(expected=expected['S'], actual=result['S'])
|
||||
compare_dicts(expected=expected['P'], result=result['P'], hint='P-')
|
||||
compare_dicts(expected=expected['S'], result=result['S'], hint='S-')
|
||||
self.assertEqual('GRA2', station)
|
||||
|
||||
def test_autopickstation_taupy_disabled_ech(self):
|
||||
@ -190,8 +190,8 @@ class TestAutopickStation(unittest.TestCase):
|
||||
'fm': None, 'spe': None, 'channel': u'LHE'}}
|
||||
with HidePrints():
|
||||
result, station = autopickstation(wfstream=self.ech, pickparam=self.pickparam_taupy_disabled)
|
||||
self.assertDictContainsSubset(expected=expected['P'], actual=result['P'])
|
||||
self.assertDictContainsSubset(expected=expected['S'], actual=result['S'])
|
||||
compare_dicts(expected=expected['P'], result=result['P'], hint='P-')
|
||||
compare_dicts(expected=expected['S'], result=result['S'], hint='S-')
|
||||
self.assertEqual('ECH', station)
|
||||
|
||||
def test_autopickstation_taupy_enabled_ech(self):
|
||||
@ -208,8 +208,8 @@ class TestAutopickStation(unittest.TestCase):
|
||||
with HidePrints():
|
||||
result, station = autopickstation(wfstream=self.ech, pickparam=self.pickparam_taupy_enabled,
|
||||
metadata=self.metadata, origin=self.origin)
|
||||
self.assertDictContainsSubset(expected=expected['P'], actual=result['P'])
|
||||
self.assertDictContainsSubset(expected=expected['S'], actual=result['S'])
|
||||
compare_dicts(expected=expected['P'], result=result['P'], hint='P-')
|
||||
compare_dicts(expected=expected['S'], result=result['S'], hint='S-')
|
||||
self.assertEqual('ECH', station)
|
||||
|
||||
def test_autopickstation_taupy_disabled_fiesa(self):
|
||||
@ -224,8 +224,8 @@ class TestAutopickStation(unittest.TestCase):
|
||||
'fm': None, 'spe': None, 'channel': u'LHE'}}
|
||||
with HidePrints():
|
||||
result, station = autopickstation(wfstream=self.fiesa, pickparam=self.pickparam_taupy_disabled)
|
||||
self.assertDictContainsSubset(expected=expected['P'], actual=result['P'])
|
||||
self.assertDictContainsSubset(expected=expected['S'], actual=result['S'])
|
||||
compare_dicts(expected=expected['P'], result=result['P'], hint='P-')
|
||||
compare_dicts(expected=expected['S'], result=result['S'], hint='S-')
|
||||
self.assertEqual('FIESA', station)
|
||||
|
||||
def test_autopickstation_taupy_enabled_fiesa(self):
|
||||
@ -242,8 +242,8 @@ class TestAutopickStation(unittest.TestCase):
|
||||
with HidePrints():
|
||||
result, station = autopickstation(wfstream=self.fiesa, pickparam=self.pickparam_taupy_enabled,
|
||||
metadata=self.metadata, origin=self.origin)
|
||||
self.assertDictContainsSubset(expected=expected['P'], actual=result['P'])
|
||||
self.assertDictContainsSubset(expected=expected['S'], actual=result['S'])
|
||||
compare_dicts(expected=expected['P'], result=result['P'], hint='P-')
|
||||
compare_dicts(expected=expected['S'], result=result['S'], hint='S-')
|
||||
self.assertEqual('FIESA', station)
|
||||
|
||||
def test_autopickstation_gra1_z_comp_missing(self):
|
||||
@ -272,7 +272,8 @@ class TestAutopickStation(unittest.TestCase):
|
||||
with HidePrints():
|
||||
result, station = autopickstation(wfstream=wfstream, pickparam=self.pickparam_taupy_disabled,
|
||||
metadata=(None, None))
|
||||
self.assertEqual(expected, result)
|
||||
compare_dicts(expected=expected['P'], result=result['P'], hint='P-')
|
||||
compare_dicts(expected=expected['S'], result=result['S'], hint='S-')
|
||||
self.assertEqual('GRA1', station)
|
||||
|
||||
def test_autopickstation_a106_taupy_enabled(self):
|
||||
@ -290,7 +291,9 @@ class TestAutopickStation(unittest.TestCase):
|
||||
with HidePrints():
|
||||
result, station = autopickstation(wfstream=self.a106, pickparam=self.pickparam_taupy_enabled,
|
||||
metadata=self.metadata, origin=self.origin)
|
||||
self.assertEqual(expected, result)
|
||||
compare_dicts(expected=expected['P'], result=result['P'], hint='P-')
|
||||
compare_dicts(expected=expected['S'], result=result['S'], hint='S-')
|
||||
|
||||
|
||||
def test_autopickstation_station_missing_in_metadata(self):
|
||||
"""This station is not in the metadata, but Taupy is enabled. Taupy should exit cleanly and modify the starttime
|
||||
@ -311,8 +314,37 @@ class TestAutopickStation(unittest.TestCase):
|
||||
with HidePrints():
|
||||
result, station = autopickstation(wfstream=self.a005a, pickparam=self.pickparam_taupy_enabled,
|
||||
metadata=self.metadata, origin=self.origin)
|
||||
self.assertEqual(expected, result)
|
||||
compare_dicts(expected=expected['P'], result=result['P'], hint='P-')
|
||||
compare_dicts(expected=expected['S'], result=result['S'], hint='S-')
|
||||
|
||||
|
||||
def run_dict_comparison(result, expected):
|
||||
for key, expected_value in expected.items():
|
||||
if isinstance(expected_value, dict):
|
||||
run_dict_comparison(result[key], expected[key])
|
||||
else:
|
||||
res = result[key]
|
||||
if isinstance(res, UTCDateTime) and isinstance(expected_value, UTCDateTime):
|
||||
res = res.timestamp
|
||||
expected_value = expected_value.timestamp
|
||||
assert expected_value == pytest.approx(res), f'{key}: {expected_value} != {res}'
|
||||
|
||||
|
||||
def compare_dicts(result, expected, hint=''):
|
||||
try:
|
||||
run_dict_comparison(result, expected)
|
||||
except AssertionError:
|
||||
raise AssertionError(f'{hint}Dictionaries not equal.'
|
||||
f'\n\n<<Expected>>\n{pretty_print_dict(expected)}'
|
||||
f'\n\n<<Result>>\n{pretty_print_dict(result)}')
|
||||
|
||||
|
||||
def pretty_print_dict(dct):
|
||||
retstr = ''
|
||||
for key, value in sorted(dct.items(), key=lambda x: x[0]):
|
||||
retstr += f"{key} : {value}\n"
|
||||
|
||||
return retstr
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
||||
|
Loading…
Reference in New Issue
Block a user