reformatting code to avoid indentation inconsistencies

This commit is contained in:
Sebastian Wehling-Benatelli 2015-06-22 11:06:53 +02:00
parent 245a7455ff
commit 30bc8ccd82

View File

@ -13,6 +13,7 @@ import matplotlib.pyplot as plt
from obspy.core import Stream, UTCDateTime
import warnings
def earllatepicker(X, nfac, TSNR, Pick1, iplot=None):
'''
Function to derive earliest and latest possible pick after Diehl & Kissling (2009)
@ -48,13 +49,13 @@ def earllatepicker(X, nfac, TSNR, Pick1, iplot=None):
t = np.arange(0, X[0].stats.npts / X[0].stats.sampling_rate,
X[0].stats.delta)
# get latest possible pick
#get noise window
# get noise window
inoise = getnoisewin(t, Pick1, TSNR[0], TSNR[1])
#get signal window
# get signal window
isignal = getsignalwin(t, Pick1, TSNR[2])
#calculate noise level
# calculate noise level
nlevel = np.sqrt(np.mean(np.square(x[inoise]))) * nfac
#get time where signal exceeds nlevel
# get time where signal exceeds nlevel
ilup, = np.where(x[isignal] > nlevel)
ildown, = np.where(x[isignal] < -nlevel)
if not ilup.size and not ildown.size:
@ -63,17 +64,17 @@ def earllatepicker(X, nfac, TSNR, Pick1, iplot=None):
np.min(ildown) if ildown.size else float('inf'))
LPick = t[isignal][il]
#get earliest possible pick
# get earliest possible pick
#determine all zero crossings in signal window (demeaned)
# determine all zero crossings in signal window (demeaned)
zc = crossings_nonzero_all(x[isignal] - x[isignal].mean())
#calculate mean half period T0 of signal as the average of the
T0 = np.mean(np.diff(zc)) * X[0].stats.delta #this is half wave length!
#T0/4 is assumed as time difference between most likely and earliest possible pick!
# calculate mean half period T0 of signal as the average of the
T0 = np.mean(np.diff(zc)) * X[0].stats.delta # this is half wave length!
# T0/4 is assumed as time difference between most likely and earliest possible pick!
EPick = Pick1 - T0 / 2
#get symmetric pick error as mean from earliest and latest possible pick
#by weighting latest possible pick two times earliest possible pick
# get symmetric pick error as mean from earliest and latest possible pick
# by weighting latest possible pick two times earliest possible pick
diffti_tl = LPick - Pick1
diffti_te = Pick1 - EPick
PickError = (diffti_te + 2 * diffti_tl) / 3
@ -84,7 +85,8 @@ def earllatepicker(X, nfac, TSNR, Pick1, iplot=None):
p2, = plt.plot(t[inoise], x[inoise])
p3, = plt.plot(t[isignal], x[isignal], 'r')
p4, = plt.plot([t[0], t[int(len(t)) - 1]], [nlevel, nlevel], '--k')
p5, = plt.plot(t[isignal[0][zc]], np.zeros(len(zc)), '*g', markersize=14)
p5, = plt.plot(t[isignal[0][zc]], np.zeros(len(zc)), '*g',
markersize=14)
plt.legend([p1, p2, p3, p4, p5],
['Data', 'Noise Window', 'Signal Window', 'Noise Level',
'Zero Crossings'], \
@ -149,13 +151,13 @@ def fmpicker(Xraw, Xfilt, pickwin, Pick, iplot=None):
# get pick window
ipick = np.where(
(t <= min([Pick + pickwin, len(Xraw[0])])) & (t >= Pick))
#remove mean
# remove mean
xraw[ipick] = xraw[ipick] - np.mean(xraw[ipick])
xfilt[ipick] = xfilt[ipick] - np.mean(xfilt[ipick])
#get next zero crossing after most likely pick
#initial onset is assumed to be the first zero crossing
#first from unfiltered trace
# get next zero crossing after most likely pick
# initial onset is assumed to be the first zero crossing
# first from unfiltered trace
zc1 = []
zc1.append(Pick)
index1 = []
@ -171,9 +173,9 @@ def fmpicker(Xraw, Xfilt, pickwin, Pick, iplot=None):
if len(zc1) == 3:
break
#if time difference betweeen 1st and 2cnd zero crossing
#is too short, get time difference between 1st and 3rd
#to derive maximum
# if time difference betweeen 1st and 2cnd zero crossing
# is too short, get time difference between 1st and 3rd
# to derive maximum
if zc1[1] - zc1[0] <= Xraw[0].stats.delta:
li1 = index1[1]
else:
@ -184,13 +186,13 @@ def fmpicker(Xraw, Xfilt, pickwin, Pick, iplot=None):
else:
imax1 = np.argmax(abs(xraw[ipick[0][1]:ipick[0][li1]]))
islope1 = np.where((t >= Pick) & (t <= Pick + t[imax1]))
#calculate slope as polynomal fit of order 1
# calculate slope as polynomal fit of order 1
xslope1 = np.arange(0, len(xraw[islope1]), 1)
P1 = np.polyfit(xslope1, xraw[islope1], 1)
datafit1 = np.polyval(P1, xslope1)
#now using filterd trace
#next zero crossing after most likely pick
# now using filterd trace
# next zero crossing after most likely pick
zc2 = []
zc2.append(Pick)
index2 = []
@ -206,9 +208,9 @@ def fmpicker(Xraw, Xfilt, pickwin, Pick, iplot=None):
if len(zc2) == 3:
break
#if time difference betweeen 1st and 2cnd zero crossing
#is too short, get time difference between 1st and 3rd
#to derive maximum
# if time difference betweeen 1st and 2cnd zero crossing
# is too short, get time difference between 1st and 3rd
# to derive maximum
if zc2[1] - zc2[0] <= Xfilt[0].stats.delta:
li2 = index2[1]
else:
@ -219,12 +221,12 @@ def fmpicker(Xraw, Xfilt, pickwin, Pick, iplot=None):
else:
imax2 = np.argmax(abs(xfilt[ipick[0][1]:ipick[0][li2]]))
islope2 = np.where((t >= Pick) & (t <= Pick + t[imax2]))
#calculate slope as polynomal fit of order 1
# calculate slope as polynomal fit of order 1
xslope2 = np.arange(0, len(xfilt[islope2]), 1)
P2 = np.polyfit(xslope2, xfilt[islope2], 1)
datafit2 = np.polyval(P2, xslope2)
#compare results
# compare results
if P1 is not None and P2 is not None:
if P1[0] < 0 and P2[0] < 0:
FM = 'D'
@ -280,11 +282,13 @@ def fmpicker(Xraw, Xfilt, pickwin, Pick, iplot=None):
return FM
def crossings_nonzero_all(data):
pos = data > 0
npos = ~pos
return ((pos[:-1] & npos[1:]) | (npos[:-1] & pos[1:])).nonzero()[0]
def getSNR(X, TSNR, t1):
'''
Function to calculate SNR of certain part of seismogram relative to
@ -311,7 +315,7 @@ def getSNR(X, TSNR, t1):
# get noise window
inoise = getnoisewin(t, t1, TSNR[0], TSNR[1])
#get signal window
# get signal window
isignal = getsignalwin(t, t1, TSNR[2])
if np.size(inoise) < 1:
print 'getSNR: Empty array inoise, check noise window!'
@ -320,7 +324,7 @@ def getSNR(X, TSNR, t1):
print 'getSNR: Empty array isignal, check signal window!'
return
#calculate ratios
# calculate ratios
noiselevel = np.sqrt(np.mean(np.square(x[inoise])))
signallevel = np.sqrt(np.mean(np.square(x[isignal])))
SNR = signallevel / noiselevel
@ -382,6 +386,7 @@ def getsignalwin(t, t1, tsignal):
return isignal
def wadaticheck(pickdic, dttolerance, iplot):
'''
Function to calculate Wadati-diagram from given P and S onsets in order
@ -413,13 +418,18 @@ def wadaticheck(pickdic, dttolerance, iplot):
# add S-P time to dictionary
pickdic[key]['SPt'] = spt
# add P onsets and corresponding S-P times to list
UTCPpick = UTCDateTime(pickdic[key]['P']['mpp']) - UTCDateTime(1970,1,1,0,0,0)
UTCSpick = UTCDateTime(pickdic[key]['S']['mpp']) - UTCDateTime(1970,1,1,0,0,0)
UTCPpick = UTCDateTime(pickdic[key]['P']['mpp']) - UTCDateTime(1970,
1, 1,
0, 0,
0)
UTCSpick = UTCDateTime(pickdic[key]['S']['mpp']) - UTCDateTime(1970,
1, 1,
0, 0,
0)
Ppicks.append(UTCPpick)
Spicks.append(UTCSpick)
SPtimes.append(spt)
vpvs.append(UTCPpick/UTCSpick)
vpvs.append(UTCPpick / UTCSpick)
if len(SPtimes) >= 3:
# calculate slope
@ -450,14 +460,15 @@ def wadaticheck(pickdic, dttolerance, iplot):
else:
marker = 'goodWadatiCheck'
checkedPpick = UTCDateTime(pickdic[key]['P']['mpp']) - \
UTCDateTime(1970,1,1,0,0,0)
UTCDateTime(1970, 1, 1, 0, 0, 0)
checkedPpicks.append(checkedPpick)
checkedSpick = UTCDateTime(pickdic[key]['S']['mpp']) - \
UTCDateTime(1970,1,1,0,0,0)
UTCDateTime(1970, 1, 1, 0, 0, 0)
checkedSpicks.append(checkedSpick)
checkedSPtime = pickdic[key]['S']['mpp'] - pickdic[key]['P']['mpp']
checkedSPtime = pickdic[key]['S']['mpp'] - \
pickdic[key]['P']['mpp']
checkedSPtimes.append(checkedSPtime)
checkedvpvs.append(checkedPpick/checkedSpick)
checkedvpvs.append(checkedPpick / checkedSpick)
pickdic[key]['S']['marked'] = marker
@ -487,9 +498,11 @@ def wadaticheck(pickdic, dttolerance, iplot):
f4, = plt.plot(checkedPpicks, wdfit2, 'g')
plt.ylabel('S-P Times [s]')
plt.xlabel('P Times [s]')
plt.title('Wadati-Diagram, %d S-P Times, Vp/Vs(old)=%5.2f, Vp/Vs(checked)=%5.2f' \
plt.title(
'Wadati-Diagram, %d S-P Times, Vp/Vs(old)=%5.2f, Vp/Vs(checked)=%5.2f' \
% (len(SPtimes), vpvsr, cvpvsr))
plt.legend([f1, f2, f3, f4], ['Skipped S-Picks', 'Wadati 1', 'Reliable S-Picks', \
plt.legend([f1, f2, f3, f4],
['Skipped S-Picks', 'Wadati 1', 'Reliable S-Picks', \
'Wadati 2'], loc='best')
plt.show()
raw_input()