reformatting code to avoid indentation inconsistencies
This commit is contained in:
parent
245a7455ff
commit
30bc8ccd82
@ -13,6 +13,7 @@ import matplotlib.pyplot as plt
|
||||
from obspy.core import Stream, UTCDateTime
|
||||
import warnings
|
||||
|
||||
|
||||
def earllatepicker(X, nfac, TSNR, Pick1, iplot=None):
|
||||
'''
|
||||
Function to derive earliest and latest possible pick after Diehl & Kissling (2009)
|
||||
@ -48,13 +49,13 @@ def earllatepicker(X, nfac, TSNR, Pick1, iplot=None):
|
||||
t = np.arange(0, X[0].stats.npts / X[0].stats.sampling_rate,
|
||||
X[0].stats.delta)
|
||||
# get latest possible pick
|
||||
#get noise window
|
||||
# get noise window
|
||||
inoise = getnoisewin(t, Pick1, TSNR[0], TSNR[1])
|
||||
#get signal window
|
||||
# get signal window
|
||||
isignal = getsignalwin(t, Pick1, TSNR[2])
|
||||
#calculate noise level
|
||||
# calculate noise level
|
||||
nlevel = np.sqrt(np.mean(np.square(x[inoise]))) * nfac
|
||||
#get time where signal exceeds nlevel
|
||||
# get time where signal exceeds nlevel
|
||||
ilup, = np.where(x[isignal] > nlevel)
|
||||
ildown, = np.where(x[isignal] < -nlevel)
|
||||
if not ilup.size and not ildown.size:
|
||||
@ -63,17 +64,17 @@ def earllatepicker(X, nfac, TSNR, Pick1, iplot=None):
|
||||
np.min(ildown) if ildown.size else float('inf'))
|
||||
LPick = t[isignal][il]
|
||||
|
||||
#get earliest possible pick
|
||||
# get earliest possible pick
|
||||
|
||||
#determine all zero crossings in signal window (demeaned)
|
||||
# determine all zero crossings in signal window (demeaned)
|
||||
zc = crossings_nonzero_all(x[isignal] - x[isignal].mean())
|
||||
#calculate mean half period T0 of signal as the average of the
|
||||
T0 = np.mean(np.diff(zc)) * X[0].stats.delta #this is half wave length!
|
||||
#T0/4 is assumed as time difference between most likely and earliest possible pick!
|
||||
# calculate mean half period T0 of signal as the average of the
|
||||
T0 = np.mean(np.diff(zc)) * X[0].stats.delta # this is half wave length!
|
||||
# T0/4 is assumed as time difference between most likely and earliest possible pick!
|
||||
EPick = Pick1 - T0 / 2
|
||||
|
||||
#get symmetric pick error as mean from earliest and latest possible pick
|
||||
#by weighting latest possible pick two times earliest possible pick
|
||||
# get symmetric pick error as mean from earliest and latest possible pick
|
||||
# by weighting latest possible pick two times earliest possible pick
|
||||
diffti_tl = LPick - Pick1
|
||||
diffti_te = Pick1 - EPick
|
||||
PickError = (diffti_te + 2 * diffti_tl) / 3
|
||||
@ -84,7 +85,8 @@ def earllatepicker(X, nfac, TSNR, Pick1, iplot=None):
|
||||
p2, = plt.plot(t[inoise], x[inoise])
|
||||
p3, = plt.plot(t[isignal], x[isignal], 'r')
|
||||
p4, = plt.plot([t[0], t[int(len(t)) - 1]], [nlevel, nlevel], '--k')
|
||||
p5, = plt.plot(t[isignal[0][zc]], np.zeros(len(zc)), '*g', markersize=14)
|
||||
p5, = plt.plot(t[isignal[0][zc]], np.zeros(len(zc)), '*g',
|
||||
markersize=14)
|
||||
plt.legend([p1, p2, p3, p4, p5],
|
||||
['Data', 'Noise Window', 'Signal Window', 'Noise Level',
|
||||
'Zero Crossings'], \
|
||||
@ -149,13 +151,13 @@ def fmpicker(Xraw, Xfilt, pickwin, Pick, iplot=None):
|
||||
# get pick window
|
||||
ipick = np.where(
|
||||
(t <= min([Pick + pickwin, len(Xraw[0])])) & (t >= Pick))
|
||||
#remove mean
|
||||
# remove mean
|
||||
xraw[ipick] = xraw[ipick] - np.mean(xraw[ipick])
|
||||
xfilt[ipick] = xfilt[ipick] - np.mean(xfilt[ipick])
|
||||
|
||||
#get next zero crossing after most likely pick
|
||||
#initial onset is assumed to be the first zero crossing
|
||||
#first from unfiltered trace
|
||||
# get next zero crossing after most likely pick
|
||||
# initial onset is assumed to be the first zero crossing
|
||||
# first from unfiltered trace
|
||||
zc1 = []
|
||||
zc1.append(Pick)
|
||||
index1 = []
|
||||
@ -171,9 +173,9 @@ def fmpicker(Xraw, Xfilt, pickwin, Pick, iplot=None):
|
||||
if len(zc1) == 3:
|
||||
break
|
||||
|
||||
#if time difference betweeen 1st and 2cnd zero crossing
|
||||
#is too short, get time difference between 1st and 3rd
|
||||
#to derive maximum
|
||||
# if time difference betweeen 1st and 2cnd zero crossing
|
||||
# is too short, get time difference between 1st and 3rd
|
||||
# to derive maximum
|
||||
if zc1[1] - zc1[0] <= Xraw[0].stats.delta:
|
||||
li1 = index1[1]
|
||||
else:
|
||||
@ -184,13 +186,13 @@ def fmpicker(Xraw, Xfilt, pickwin, Pick, iplot=None):
|
||||
else:
|
||||
imax1 = np.argmax(abs(xraw[ipick[0][1]:ipick[0][li1]]))
|
||||
islope1 = np.where((t >= Pick) & (t <= Pick + t[imax1]))
|
||||
#calculate slope as polynomal fit of order 1
|
||||
# calculate slope as polynomal fit of order 1
|
||||
xslope1 = np.arange(0, len(xraw[islope1]), 1)
|
||||
P1 = np.polyfit(xslope1, xraw[islope1], 1)
|
||||
datafit1 = np.polyval(P1, xslope1)
|
||||
|
||||
#now using filterd trace
|
||||
#next zero crossing after most likely pick
|
||||
# now using filterd trace
|
||||
# next zero crossing after most likely pick
|
||||
zc2 = []
|
||||
zc2.append(Pick)
|
||||
index2 = []
|
||||
@ -206,9 +208,9 @@ def fmpicker(Xraw, Xfilt, pickwin, Pick, iplot=None):
|
||||
if len(zc2) == 3:
|
||||
break
|
||||
|
||||
#if time difference betweeen 1st and 2cnd zero crossing
|
||||
#is too short, get time difference between 1st and 3rd
|
||||
#to derive maximum
|
||||
# if time difference betweeen 1st and 2cnd zero crossing
|
||||
# is too short, get time difference between 1st and 3rd
|
||||
# to derive maximum
|
||||
if zc2[1] - zc2[0] <= Xfilt[0].stats.delta:
|
||||
li2 = index2[1]
|
||||
else:
|
||||
@ -219,12 +221,12 @@ def fmpicker(Xraw, Xfilt, pickwin, Pick, iplot=None):
|
||||
else:
|
||||
imax2 = np.argmax(abs(xfilt[ipick[0][1]:ipick[0][li2]]))
|
||||
islope2 = np.where((t >= Pick) & (t <= Pick + t[imax2]))
|
||||
#calculate slope as polynomal fit of order 1
|
||||
# calculate slope as polynomal fit of order 1
|
||||
xslope2 = np.arange(0, len(xfilt[islope2]), 1)
|
||||
P2 = np.polyfit(xslope2, xfilt[islope2], 1)
|
||||
datafit2 = np.polyval(P2, xslope2)
|
||||
|
||||
#compare results
|
||||
# compare results
|
||||
if P1 is not None and P2 is not None:
|
||||
if P1[0] < 0 and P2[0] < 0:
|
||||
FM = 'D'
|
||||
@ -280,11 +282,13 @@ def fmpicker(Xraw, Xfilt, pickwin, Pick, iplot=None):
|
||||
|
||||
return FM
|
||||
|
||||
|
||||
def crossings_nonzero_all(data):
|
||||
pos = data > 0
|
||||
npos = ~pos
|
||||
return ((pos[:-1] & npos[1:]) | (npos[:-1] & pos[1:])).nonzero()[0]
|
||||
|
||||
|
||||
def getSNR(X, TSNR, t1):
|
||||
'''
|
||||
Function to calculate SNR of certain part of seismogram relative to
|
||||
@ -311,7 +315,7 @@ def getSNR(X, TSNR, t1):
|
||||
# get noise window
|
||||
inoise = getnoisewin(t, t1, TSNR[0], TSNR[1])
|
||||
|
||||
#get signal window
|
||||
# get signal window
|
||||
isignal = getsignalwin(t, t1, TSNR[2])
|
||||
if np.size(inoise) < 1:
|
||||
print 'getSNR: Empty array inoise, check noise window!'
|
||||
@ -320,7 +324,7 @@ def getSNR(X, TSNR, t1):
|
||||
print 'getSNR: Empty array isignal, check signal window!'
|
||||
return
|
||||
|
||||
#calculate ratios
|
||||
# calculate ratios
|
||||
noiselevel = np.sqrt(np.mean(np.square(x[inoise])))
|
||||
signallevel = np.sqrt(np.mean(np.square(x[isignal])))
|
||||
SNR = signallevel / noiselevel
|
||||
@ -382,6 +386,7 @@ def getsignalwin(t, t1, tsignal):
|
||||
|
||||
return isignal
|
||||
|
||||
|
||||
def wadaticheck(pickdic, dttolerance, iplot):
|
||||
'''
|
||||
Function to calculate Wadati-diagram from given P and S onsets in order
|
||||
@ -408,23 +413,28 @@ def wadaticheck(pickdic, dttolerance, iplot):
|
||||
vpvs = []
|
||||
for key in pickdic:
|
||||
if pickdic[key]['P']['weight'] < 4 and pickdic[key]['S']['weight'] < 4:
|
||||
# calculate S-P time
|
||||
spt = pickdic[key]['S']['mpp'] - pickdic[key]['P']['mpp']
|
||||
# add S-P time to dictionary
|
||||
pickdic[key]['SPt'] = spt
|
||||
# add P onsets and corresponding S-P times to list
|
||||
UTCPpick = UTCDateTime(pickdic[key]['P']['mpp']) - UTCDateTime(1970,1,1,0,0,0)
|
||||
UTCSpick = UTCDateTime(pickdic[key]['S']['mpp']) - UTCDateTime(1970,1,1,0,0,0)
|
||||
Ppicks.append(UTCPpick)
|
||||
Spicks.append(UTCSpick)
|
||||
SPtimes.append(spt)
|
||||
vpvs.append(UTCPpick/UTCSpick)
|
||||
|
||||
# calculate S-P time
|
||||
spt = pickdic[key]['S']['mpp'] - pickdic[key]['P']['mpp']
|
||||
# add S-P time to dictionary
|
||||
pickdic[key]['SPt'] = spt
|
||||
# add P onsets and corresponding S-P times to list
|
||||
UTCPpick = UTCDateTime(pickdic[key]['P']['mpp']) - UTCDateTime(1970,
|
||||
1, 1,
|
||||
0, 0,
|
||||
0)
|
||||
UTCSpick = UTCDateTime(pickdic[key]['S']['mpp']) - UTCDateTime(1970,
|
||||
1, 1,
|
||||
0, 0,
|
||||
0)
|
||||
Ppicks.append(UTCPpick)
|
||||
Spicks.append(UTCSpick)
|
||||
SPtimes.append(spt)
|
||||
vpvs.append(UTCPpick / UTCSpick)
|
||||
|
||||
if len(SPtimes) >= 3:
|
||||
# calculate slope
|
||||
p1 = np.polyfit(Ppicks, SPtimes, 1)
|
||||
wdfit = np.polyval(p1, Ppicks)
|
||||
# calculate slope
|
||||
p1 = np.polyfit(Ppicks, SPtimes, 1)
|
||||
wdfit = np.polyval(p1, Ppicks)
|
||||
wfitflag = 0
|
||||
|
||||
# calculate average vp/vs ratio before check
|
||||
@ -439,7 +449,7 @@ def wadaticheck(pickdic, dttolerance, iplot):
|
||||
for key in pickdic:
|
||||
if pickdic[key].has_key('SPt'):
|
||||
ii = 0
|
||||
wddiff = abs(pickdic[key]['SPt'] - wdfit[ii])
|
||||
wddiff = abs(pickdic[key]['SPt'] - wdfit[ii])
|
||||
ii += 1
|
||||
# check, if deviation is larger than adjusted
|
||||
if wddiff >= dttolerance:
|
||||
@ -449,22 +459,23 @@ def wadaticheck(pickdic, dttolerance, iplot):
|
||||
pickdic[key]['S']['weight'] = 9
|
||||
else:
|
||||
marker = 'goodWadatiCheck'
|
||||
checkedPpick = UTCDateTime(pickdic[key]['P']['mpp']) - \
|
||||
UTCDateTime(1970,1,1,0,0,0)
|
||||
checkedPpick = UTCDateTime(pickdic[key]['P']['mpp']) - \
|
||||
UTCDateTime(1970, 1, 1, 0, 0, 0)
|
||||
checkedPpicks.append(checkedPpick)
|
||||
checkedSpick = UTCDateTime(pickdic[key]['S']['mpp']) - \
|
||||
UTCDateTime(1970,1,1,0,0,0)
|
||||
UTCDateTime(1970, 1, 1, 0, 0, 0)
|
||||
checkedSpicks.append(checkedSpick)
|
||||
checkedSPtime = pickdic[key]['S']['mpp'] - pickdic[key]['P']['mpp']
|
||||
checkedSPtime = pickdic[key]['S']['mpp'] - \
|
||||
pickdic[key]['P']['mpp']
|
||||
checkedSPtimes.append(checkedSPtime)
|
||||
checkedvpvs.append(checkedPpick/checkedSpick)
|
||||
checkedvpvs.append(checkedPpick / checkedSpick)
|
||||
|
||||
pickdic[key]['S']['marked'] = marker
|
||||
|
||||
|
||||
# calculate new slope
|
||||
p2 = np.polyfit(checkedPpicks, checkedSPtimes, 1)
|
||||
wdfit2 = np.polyval(p2, checkedPpicks)
|
||||
# calculate new slope
|
||||
p2 = np.polyfit(checkedPpicks, checkedSPtimes, 1)
|
||||
wdfit2 = np.polyval(p2, checkedPpicks)
|
||||
|
||||
# calculate average vp/vs ratio after check
|
||||
cvpvsr = p2[0] + 1
|
||||
@ -473,24 +484,26 @@ def wadaticheck(pickdic, dttolerance, iplot):
|
||||
checkedonsets = pickdic
|
||||
|
||||
else:
|
||||
print 'wadaticheck: Not enough S-P times available for reliable regression!'
|
||||
print 'wadaticheck: Not enough S-P times available for reliable regression!'
|
||||
print 'Skip wadati check!'
|
||||
wfitflag = 1
|
||||
|
||||
# plot results
|
||||
if iplot > 1:
|
||||
plt.figure(iplot)
|
||||
f1, = plt.plot(Ppicks, SPtimes, 'ro')
|
||||
plt.figure(iplot)
|
||||
f1, = plt.plot(Ppicks, SPtimes, 'ro')
|
||||
if wfitflag == 0:
|
||||
f2, = plt.plot(Ppicks, wdfit, 'k')
|
||||
f3, = plt.plot(checkedPpicks, checkedSPtimes, 'ko')
|
||||
f4, = plt.plot(checkedPpicks, wdfit2, 'g')
|
||||
f2, = plt.plot(Ppicks, wdfit, 'k')
|
||||
f3, = plt.plot(checkedPpicks, checkedSPtimes, 'ko')
|
||||
f4, = plt.plot(checkedPpicks, wdfit2, 'g')
|
||||
plt.ylabel('S-P Times [s]')
|
||||
plt.xlabel('P Times [s]')
|
||||
plt.title('Wadati-Diagram, %d S-P Times, Vp/Vs(old)=%5.2f, Vp/Vs(checked)=%5.2f' \
|
||||
% (len(SPtimes), vpvsr, cvpvsr))
|
||||
plt.legend([f1, f2, f3, f4], ['Skipped S-Picks', 'Wadati 1', 'Reliable S-Picks', \
|
||||
'Wadati 2'], loc='best')
|
||||
plt.title(
|
||||
'Wadati-Diagram, %d S-P Times, Vp/Vs(old)=%5.2f, Vp/Vs(checked)=%5.2f' \
|
||||
% (len(SPtimes), vpvsr, cvpvsr))
|
||||
plt.legend([f1, f2, f3, f4],
|
||||
['Skipped S-Picks', 'Wadati 1', 'Reliable S-Picks', \
|
||||
'Wadati 2'], loc='best')
|
||||
plt.show()
|
||||
raw_input()
|
||||
plt.close(iplot)
|
||||
|
Loading…
Reference in New Issue
Block a user