Simplified AIC-picking algorithm: Onset is definetly the minimum in front of maximum of AIC-CF! Smoothing of AIC-CF no more necessary.

This commit is contained in:
Ludger Küperkoch 2014-12-11 16:30:21 +01:00
parent 201c34a85b
commit 31273b384e

View File

@ -23,7 +23,7 @@ class AutoPicking(object):
Superclass of different, automated picking algorithms applied on a CF determined
using AIC, HOS, or AR prediction.
'''
def __init__(self, cf, Tslope, aerr, TSNR, PickWindow, peps, Tsmooth):
def __init__(self, cf, Tslope, aerr, TSNR, PickWindow, peps=None, Tsmooth=None):
'''
:param: cf, characteristic function, on which the picking algorithm is applied
:type: `~pylot.core.pick.CharFuns.CharacteristicFunction` object
@ -48,6 +48,9 @@ class AutoPicking(object):
:type: float
'''
#assert isinstance(cf, CharFuns), "%s is not a CharacteristicFunction object" % str(cf)
#wie kann man hier isinstance benutzen?
self.cf = cf.getCF()
self.Tcf = cf.getTimeArray()
self.dt = cf.getIncrement()
@ -127,45 +130,23 @@ class AICPicker(AutoPicking):
print 'Get onset (pick) from AIC-CF ...'
self.Pick = -1
#taper AIC-CF to get rid off side maxima
tap = np.hanning(len(self.cf))
aic = tap * self.cf + max(abs(self.cf))
#get maximum of CF as starting point
icfmax = np.argmax(aic)
#smooth CF
aicsmooth = np.zeros(len(aic))
ismooth = round(self.Tsmooth / self.dt)
if len(aic) < ismooth:
print 'AICPicker: Tsmooth larger than AIC function!'
self.Pick = -1
return self.Pick
else:
self.Pick = -1
for i in range(1, len(aic)):
if i > ismooth:
ii1 = i - ismooth
aicsmooth[i] = aicsmooth[i - 1] + (aic[i] - aic[ii1]) / ismooth
else:
aicsmooth[i] = np.mean(aic[0:i])
#find common, local minimum in front of maximum
#of smoothed and unsmoothed AIC-CF
#find minimum in front of maximum
lpickwindow = int(round(self.PickWindow / self.dt))
for i in range(icfmax - 1, max([icfmax - lpickwindow, 2]), -1):
if aic[i - 1] * (1 + self.peps) >= aic[i]:
if aicsmooth[i - 1] * (1 + self.peps) >= aicsmooth[i]:
self.Pick = self.Tcf[i]
break
#try again with larger peps if picking failed
if self.Pick < 0:
peps2 = self.peps + 0.01
for i in range(icfmax - 1, max([icfmax - lpickwindow, 2]), -1):
if aic[i - 1] * (1 + peps2) >= aic[i]:
if aicsmooth[i - 1] * (1 + peps2) >= aicsmooth[i]:
self.Pick = self.Tcf[i]
break
if aic[i - 1] >= aic[i]:
self.Pick = self.Tcf[i]
break
if self.Pick == -1:
print 'AICPicker: Could not find minimum, picking window too short?'
return self.Pick
class PragPicker(AutoPicking):
'''