From 3e81adfec644eee4febda70edf057b241ad902d3 Mon Sep 17 00:00:00 2001 From: =?UTF-8?q?Ludger=20K=C3=BCperkoch?= Date: Wed, 1 Jul 2015 15:31:50 +0200 Subject: [PATCH] Marginal changes. --- pylot/core/pick/utils.py | 399 +++++++++++++++++++++++---------------- 1 file changed, 237 insertions(+), 162 deletions(-) diff --git a/pylot/core/pick/utils.py b/pylot/core/pick/utils.py index 9f2b4fb0..4e1c9ca3 100644 --- a/pylot/core/pick/utils.py +++ b/pylot/core/pick/utils.py @@ -13,8 +13,6 @@ import scipy as sc import matplotlib.pyplot as plt from obspy.core import Stream, UTCDateTime import warnings -import pdb - def earllatepicker(X, nfac, TSNR, Pick1, iplot=None): ''' @@ -61,7 +59,7 @@ def earllatepicker(X, nfac, TSNR, Pick1, iplot=None): ilup, = np.where(x[isignal] > nlevel) ildown, = np.where(x[isignal] < -nlevel) if not ilup.size and not ildown.size: - print 'earllatepicker: Signal lower than noise level!' + print 'earllatepicker: Signal lower than noise level!' print 'Skip this trace!' return LPick, EPick, PickError il = min(np.min(ilup) if ilup.size else float('inf'), @@ -188,11 +186,11 @@ def fmpicker(Xraw, Xfilt, pickwin, Pick, iplot=None): else: imax1 = np.argmax(abs(xraw[ipick[0][1]:ipick[0][li1]])) if imax1 == 0: - imax1 = np.argmax(abs(xraw[ipick[0][1]:ipick[0][index1[1]]])) + imax1 = np.argmax(abs(xraw[ipick[0][1]:ipick[0][index1[1]]])) if imax1 == 0: - print 'fmpicker: Zero crossings too close!' - print 'Skip first motion determination!' - return FM + print 'fmpicker: Zero crossings too close!' + print 'Skip first motion determination!' + return FM islope1 = np.where((t >= Pick) & (t <= Pick + t[imax1])) # calculate slope as polynomal fit of order 1 @@ -230,11 +228,11 @@ def fmpicker(Xraw, Xfilt, pickwin, Pick, iplot=None): else: imax2 = np.argmax(abs(xfilt[ipick[0][1]:ipick[0][li2]])) if imax2 == 0: - imax2 = np.argmax(abs(xfilt[ipick[0][1]:ipick[0][index2[1]]])) + imax2 = np.argmax(abs(xfilt[ipick[0][1]:ipick[0][index2[1]]])) if imax1 == 0: - print 'fmpicker: Zero crossings too close!' - print 'Skip first motion determination!' - return FM + print 'fmpicker: Zero crossings too close!' + print 'Skip first motion determination!' + return FM islope2 = np.where((t >= Pick) & (t <= Pick + t[imax2])) # calculate slope as polynomal fit of order 1 @@ -256,6 +254,8 @@ def fmpicker(Xraw, Xfilt, pickwin, Pick, iplot=None): FM = '+' elif P1[0] > 0 and P2[0] <= 0: FM = '+' + + print 'fmpicker: Found polarity %s' % FM if iplot > 1: plt.figure(iplot) @@ -301,71 +301,48 @@ def crossings_nonzero_all(data): return ((pos[:-1] & npos[1:]) | (npos[:-1] & pos[1:])).nonzero()[0] -def getSNR(st, TSNR, t0): - """ - returns the maximum signal to noise ratio SNR (also in dB) and the - corresponding noise level for a given data stream ST ,initial time T0 and - time window parameter tuple TSNR +def getSNR(X, TSNR, t1): + ''' + Function to calculate SNR of certain part of seismogram relative to + given time (onset) out of given noise and signal windows. A safety gap + between noise and signal part can be set. Returns SNR and SNR [dB] and + noiselevel. - :param: st, time series (seismogram) + :param: X, time series (seismogram) :type: `~obspy.core.stream.Stream` - :param: TSNR, length of time windows [s] around t0 (onset) used to determine - SNR + + :param: TSNR, length of time windows [s] around t1 (onset) used to determine SNR :type: tuple (T_noise, T_gap, T_signal) - :param: t0, initial time (onset) from which noise and signal windows are calculated + + :param: t1, initial time (onset) from which noise and signal windows are calculated :type: float - :return: SNR, SNRdB, noiselevel + ''' - ..examples: + assert isinstance(X, Stream), "%s is not a stream object" % str(X) - >>> from obspy.core import read - >>> st = read() - >>> result = getSNR(st, (6., .3, 3.), 4.67) - >>> print result - (5.1267717641040758, 7.0984398375666435, 132.89370192191919) - >>> result = getSNR(st, (8., .2, 5.), 4.67) - >>> print result - (4.645441835797703, 6.6702702677384131, 133.03562794665109) - """ + x = X[0].data + t = np.arange(0, X[0].stats.npts / X[0].stats.sampling_rate, + X[0].stats.delta) - assert isinstance(st, Stream), "%s is not a stream object" % str(st) + # get noise window + inoise = getnoisewin(t, t1, TSNR[0], TSNR[1]) - SNR = None - noiselevel = None + # get signal window + isignal = getsignalwin(t, t1, TSNR[2]) + if np.size(inoise) < 1: + print 'getSNR: Empty array inoise, check noise window!' + return + elif np.size(isignal) < 1: + print 'getSNR: Empty array isignal, check signal window!' + return - for tr in st: - x = tr.data - t = np.arange(0, tr.stats.npts / tr.stats.sampling_rate, - tr.stats.delta) - - # get noise window - inoise = getnoisewin(t, t0, TSNR[0], TSNR[1]) - - # get signal window - isignal = getsignalwin(t, t0, TSNR[2]) - if np.size(inoise) < 1: - print 'getSNR: Empty array inoise, check noise window!' - return - elif np.size(isignal) < 1: - print 'getSNR: Empty array isignal, check signal window!' - return - - # demean over entire waveform - x = x - np.mean(x[inoise]) - - # calculate ratios - new_noiselevel = np.sqrt(np.mean(np.square(x[inoise]))) - signallevel = np.sqrt(np.mean(np.square(x[isignal]))) - newSNR = signallevel / new_noiselevel - if not SNR or newSNR > SNR: - SNR = newSNR - noiselevel = new_noiselevel - - if not SNR or not noiselevel: - raise ValueError('signal to noise ratio could not be calculated:\n' - 'noiselevel: {0}\n' - 'SNR: {1}'.format(noiselevel, SNR)) + # demean over entire waveform + x = x - np.mean(x[inoise]) + # calculate ratios + noiselevel = np.sqrt(np.mean(np.square(x[inoise]))) + signallevel = np.sqrt(np.mean(np.square(x[isignal]))) + SNR = signallevel / noiselevel SNRdB = 10 * np.log10(SNR) return SNR, SNRdB, noiselevel @@ -392,7 +369,7 @@ def getnoisewin(t, t1, tnoise, tgap): # get noise window inoise, = np.where((t <= max([t1 - tgap, 0])) \ - & (t >= max([t1 - tnoise - tgap, 0]))) + & (t >= max([t1 - tnoise - tgap, 0]))) if np.size(inoise) < 1: print 'getnoisewin: Empty array inoise, check noise window!' @@ -416,7 +393,7 @@ def getsignalwin(t, t1, tsignal): # get signal window isignal, = np.where((t <= min([t1 + tsignal, len(t)])) \ - & (t >= t1)) + & (t >= t1)) if np.size(isignal) < 1: print 'getsignalwin: Empty array isignal, check signal window!' @@ -457,7 +434,7 @@ def getResolutionWindow(snr): else: time_resolution = res_wins['HRW'] - return time_resolution / 2 + return time_resolution/2 def wadaticheck(pickdic, dttolerance, iplot): @@ -485,21 +462,22 @@ def wadaticheck(pickdic, dttolerance, iplot): SPtimes = [] for key in pickdic: if pickdic[key]['P']['weight'] < 4 and pickdic[key]['S']['weight'] < 4: - # calculate S-P time - spt = pickdic[key]['S']['mpp'] - pickdic[key]['P']['mpp'] - # add S-P time to dictionary - pickdic[key]['SPt'] = spt - # add P onsets and corresponding S-P times to list - UTCPpick = UTCDateTime(pickdic[key]['P']['mpp']) - UTCSpick = UTCDateTime(pickdic[key]['S']['mpp']) - Ppicks.append(UTCPpick.timestamp) - Spicks.append(UTCSpick.timestamp) - SPtimes.append(spt) + # calculate S-P time + spt = pickdic[key]['S']['mpp'] - pickdic[key]['P']['mpp'] + # add S-P time to dictionary + pickdic[key]['SPt'] = spt + # add P onsets and corresponding S-P times to list + UTCPpick = UTCDateTime(pickdic[key]['P']['mpp']) + UTCSpick = UTCDateTime(pickdic[key]['S']['mpp']) + Ppicks.append(UTCPpick.timestamp) + Spicks.append(UTCSpick.timestamp) + SPtimes.append(spt) + if len(SPtimes) >= 3: - # calculate slope - p1 = np.polyfit(Ppicks, SPtimes, 1) - wdfit = np.polyval(p1, Ppicks) + # calculate slope + p1 = np.polyfit(Ppicks, SPtimes, 1) + wdfit = np.polyval(p1, Ppicks) wfitflag = 0 # calculate vp/vs ratio before check @@ -523,50 +501,48 @@ def wadaticheck(pickdic, dttolerance, iplot): pickdic[key]['S']['weight'] = 9 else: marker = 'goodWadatiCheck' - checkedPpick = UTCDateTime(pickdic[key]['P']['mpp']) + checkedPpick = UTCDateTime(pickdic[key]['P']['mpp']) checkedPpicks.append(checkedPpick.timestamp) checkedSpick = UTCDateTime(pickdic[key]['S']['mpp']) checkedSpicks.append(checkedSpick.timestamp) - checkedSPtime = pickdic[key]['S']['mpp'] - \ - pickdic[key]['P']['mpp'] + checkedSPtime = pickdic[key]['S']['mpp'] - pickdic[key]['P']['mpp'] checkedSPtimes.append(checkedSPtime) pickdic[key]['S']['marked'] = marker if len(checkedPpicks) >= 3: - # calculate new slope - p2 = np.polyfit(checkedPpicks, checkedSPtimes, 1) - wdfit2 = np.polyval(p2, checkedPpicks) + # calculate new slope + p2 = np.polyfit(checkedPpicks, checkedSPtimes, 1) + wdfit2 = np.polyval(p2, checkedPpicks) - # calculate vp/vs ratio after check - cvpvsr = p2[0] + 1 - print 'wadaticheck: Average Vp/Vs ratio after check:', cvpvsr + # calculate vp/vs ratio after check + cvpvsr = p2[0] + 1 + print 'wadaticheck: Average Vp/Vs ratio after check:', cvpvsr else: - print 'wadatacheck: Not enough checked S-P times available!' - print 'Skip Wadati check!' + print 'wadatacheck: Not enough checked S-P times available!' + print 'Skip Wadati check!' checkedonsets = pickdic else: - print 'wadaticheck: Not enough S-P times available for reliable regression!' + print 'wadaticheck: Not enough S-P times available for reliable regression!' print 'Skip wadati check!' wfitflag = 1 - iplot = 2 + iplot=2 # plot results if iplot > 1: - plt.figure(iplot) - f1, = plt.plot(Ppicks, SPtimes, 'ro') + plt.figure(iplot) + f1, = plt.plot(Ppicks, SPtimes, 'ro') if wfitflag == 0: - f2, = plt.plot(Ppicks, wdfit, 'k') - f3, = plt.plot(checkedPpicks, checkedSPtimes, 'ko') - f4, = plt.plot(checkedPpicks, wdfit2, 'g') - plt.title('Wadati-Diagram, %d S-P Times, Vp/Vs(raw)=%5.2f,' \ - 'Vp/Vs(checked)=%5.2f' % (len(SPtimes), vpvsr, cvpvsr)) - plt.legend([f1, f2, f3, f4], ['Skipped S-Picks', 'Wadati 1', \ - 'Reliable S-Picks', 'Wadati 2'], - loc='best') + f2, = plt.plot(Ppicks, wdfit, 'k') + f3, = plt.plot(checkedPpicks, checkedSPtimes, 'ko') + f4, = plt.plot(checkedPpicks, wdfit2, 'g') + plt.title('Wadati-Diagram, %d S-P Times, Vp/Vs(raw)=%5.2f,' \ + 'Vp/Vs(checked)=%5.2f' % (len(SPtimes), vpvsr, cvpvsr)) + plt.legend([f1, f2, f3, f4], ['Skipped S-Picks', 'Wadati 1', \ + 'Reliable S-Picks', 'Wadati 2'], loc='best') else: - plt.title('Wadati-Diagram, %d S-P Times' % len(SPtimes)) + plt.title('Wadati-Diagram, %d S-P Times' % len(SPtimes)) plt.ylabel('S-P Times [s]') plt.xlabel('P Times [s]') @@ -626,12 +602,12 @@ def checksignallength(X, pick, TSNR, minsiglength, nfac, minpercent, iplot): # calculate minimum adjusted signal level minsiglevel = max(e[inoise]) * nfac # minimum adjusted number of samples over minimum signal level - minnum = len(isignal) * minpercent / 100 + minnum = len(isignal) * minpercent/100 # get number of samples above minimum adjusted signal level numoverthr = len(np.where(e[isignal] >= minsiglevel)[0]) if numoverthr >= minnum: - print 'checksignallength: Signal reached required length.' + print 'checksignallength: Signal reached required length.' returnflag = 1 else: print 'checksignallength: Signal shorter than required minimum signal length!' @@ -640,18 +616,17 @@ def checksignallength(X, pick, TSNR, minsiglength, nfac, minpercent, iplot): if iplot == 2: plt.figure(iplot) - p1, = plt.plot(t, x, 'k') + p1, = plt.plot(t,x, 'k') p2, = plt.plot(t[inoise], e[inoise], 'c') - p3, = plt.plot(t[isignal], e[isignal], 'r') + p3, = plt.plot(t[isignal],e[isignal], 'r') p2, = plt.plot(t[inoise], e[inoise]) - p3, = plt.plot(t[isignal], e[isignal], 'r') - p4, = plt.plot([t[isignal[0]], t[isignal[len(isignal) - 1]]], \ - [minsiglevel, minsiglevel], 'g') + p3, = plt.plot(t[isignal],e[isignal], 'r') + p4, = plt.plot([t[isignal[0]], t[isignal[len(isignal)-1]]], \ + [minsiglevel, minsiglevel], 'g') p5, = plt.plot([pick, pick], [min(x), max(x)], 'b', linewidth=2) plt.legend([p1, p2, p3, p4, p5], ['Data', 'Envelope Noise Window', \ - 'Envelope Signal Window', - 'Minimum Signal Level', \ - 'Onset'], loc='best') + 'Envelope Signal Window', 'Minimum Signal Level', \ + 'Onset'], loc='best') plt.xlabel('Time [s] since %s' % X[0].stats.starttime) plt.ylabel('Counts') plt.title('Check for Signal Length, Station %s' % X[0].stats.station) @@ -665,7 +640,7 @@ def checksignallength(X, pick, TSNR, minsiglength, nfac, minpercent, iplot): def checkPonsets(pickdic, dttolerance, iplot): ''' - Function to check statistics of P-onset times: Control deviation from + Function to check statistics of P-onset times: Control deviation from median (maximum adjusted deviation = dttolerance) and apply pseudo- bootstrapping jackknife. @@ -687,14 +662,14 @@ def checkPonsets(pickdic, dttolerance, iplot): stations = [] for key in pickdic: if pickdic[key]['P']['weight'] < 4: - # add P onsets to list - UTCPpick = UTCDateTime(pickdic[key]['P']['mpp']) - Ppicks.append(UTCPpick.timestamp) - stations.append(key) + # add P onsets to list + UTCPpick = UTCDateTime(pickdic[key]['P']['mpp']) + Ppicks.append(UTCPpick.timestamp) + stations.append(key) # apply jackknife bootstrapping on variance of P onsets print 'checkPonsets: Apply jackknife bootstrapping on P-onset times ...' - [xjack, PHI_pseudo, PHI_sub] = jackknife(Ppicks, 'VAR', 1) + [xjack,PHI_pseudo,PHI_sub] = jackknife(Ppicks, 'VAR', 1) # get pseudo variances smaller than average variances # these picks passed jackknife test ij = np.where(PHI_pseudo <= xjack) @@ -713,41 +688,40 @@ def checkPonsets(pickdic, dttolerance, iplot): badstations = np.array(stations)[ibad] print 'checkPonset: Skipped %d P onsets out of %d' % (len(badstations) \ - + len(badjkstations), - len(stations)) + + len(badjkstations), len(stations)) goodmarker = 'goodPonsetcheck' badmarker = 'badPonsetcheck' badjkmarker = 'badjkcheck' for i in range(0, len(goodstations)): # mark P onset as checked and keep P weight - pickdic[goodstations[i]]['P']['marked'] = goodmarker + pickdic[goodstations[i]]['P']['marked'] = goodmarker for i in range(0, len(badstations)): - # mark P onset and downgrade P weight to 9 - # (not used anymore) - pickdic[badstations[i]]['P']['marked'] = badmarker - pickdic[badstations[i]]['P']['weight'] = 9 + # mark P onset and downgrade P weight to 9 + # (not used anymore) + pickdic[badstations[i]]['P']['marked'] = badmarker + pickdic[badstations[i]]['P']['weight'] = 9 for i in range(0, len(badjkstations)): - # mark P onset and downgrade P weight to 9 - # (not used anymore) - pickdic[badjkstations[i]]['P']['marked'] = badjkmarker - pickdic[badjkstations[i]]['P']['weight'] = 9 + # mark P onset and downgrade P weight to 9 + # (not used anymore) + pickdic[badjkstations[i]]['P']['marked'] = badjkmarker + pickdic[badjkstations[i]]['P']['weight'] = 9 checkedonsets = pickdic iplot = 2 if iplot > 1: - p1, = plt.plot(np.arange(0, len(Ppicks)), Ppicks, 'r+', markersize=14) + p1, = plt.plot(np.arange(0, len(Ppicks)), Ppicks, 'r+', markersize=14) p2, = plt.plot(igood, np.array(Ppicks)[igood], 'g*', markersize=14) p3, = plt.plot([0, len(Ppicks) - 1], [pmedian, pmedian], 'g', \ - linewidth=2) + linewidth=2) for i in range(0, len(Ppicks)): - plt.text(i, Ppicks[i] + 0.2, stations[i]) + plt.text(i, Ppicks[i] + 0.2, stations[i]) - plt.xlabel('Number of P Picks') + plt.xlabel('Number of P Picks') plt.ylabel('Onset Time [s] from 1.1.1970') plt.legend([p1, p2, p3], ['Skipped P Picks', 'Good P Picks', 'Median'], \ - loc='best') + loc='best') plt.title('Check P Onsets') plt.show() raw_input() @@ -773,7 +747,7 @@ def jackknife(X, phi, h): : param: h, size of subgroups, optinal, default = 1 : type: integer ''' - + PHI_jack = None PHI_pseudo = None PHI_sub = None @@ -782,44 +756,145 @@ def jackknife(X, phi, h): g = len(X) / h if type(g) is not int: - print 'jackknife: Cannot divide quantity X in equal sized subgroups!' + print 'jackknife: Cannot divide quantity X in equal sized subgroups!' print 'Choose another size for subgroups!' return PHI_jack, PHI_pseudo, PHI_sub else: - # estimator of undisturbed spot check - if phi == 'MEA': - phi_sc = np.mean(X) + # estimator of undisturbed spot check + if phi == 'MEA': + phi_sc = np.mean(X) elif phi == 'VAR': - phi_sc = np.var(X) + phi_sc = np.var(X) elif phi == 'MED': - phi_sc = np.median(X) + phi_sc = np.median(X) - # estimators of subgroups + # estimators of subgroups PHI_pseudo = [] PHI_sub = [] for i in range(0, g - 1): - # subgroup i, remove i-th sample - xx = X[:] - del xx[i] - # calculate estimators of disturbed spot check - if phi == 'MEA': - phi_sub = np.mean(xx) - elif phi == 'VAR': - phi_sub = np.var(xx) - elif phi == 'MED': - phi_sub = np.median(xx) - - PHI_sub.append(phi_sub) - # pseudo values - phi_pseudo = g * phi_sc - ((g - 1) * phi_sub) - PHI_pseudo.append(phi_pseudo) + # subgroup i, remove i-th sample + xx = X[:] + del xx[i] + # calculate estimators of disturbed spot check + if phi == 'MEA': + phi_sub = np.mean(xx) + elif phi == 'VAR': + phi_sub = np.var(xx) + elif phi == 'MED': + phi_sub = np.median(xx) + + PHI_sub.append(phi_sub) + # pseudo values + phi_pseudo = g * phi_sc - ((g - 1) * phi_sub) + PHI_pseudo.append(phi_pseudo) # jackknife estimator PHI_jack = np.mean(PHI_pseudo) return PHI_jack, PHI_pseudo, PHI_sub +def checkZ4S(X, pick, zfac, checkwin, iplot): + ''' + Function to compare energy content of vertical trace with + energy content of horizontal traces to detect spuriously + picked S onsets instead of P onsets. Usually, P coda shows + larger longitudal energy on vertical trace than on horizontal + traces, where the transversal energy is larger within S coda. + Be careful: there are special circumstances, where this is not + the case! + + : param: X, fitered(!) time series, three traces + : type: `~obspy.core.stream.Stream` + + : param: pick, initial (AIC) P onset time + : type: float + + : param: zfac, factor for threshold determination, + vertical energy must exceed coda level times zfac + to declare a pick as P onset + : type: float + + : param: checkwin, window length [s] for calculating P-coda + energy content + : type: float + + : param: iplot, if iplot > 1, energy content and threshold + are shown + : type: int + ''' + + assert isinstance(X, Stream), "%s is not a stream object" % str(X) + + print 'Check for spuriously picked S onset instead of P onset ...' + + returnflag = 0 + + # split components + zdat = X.select(component="Z") + edat = X.select(component="E") + if len(edat) == 0: # check for other components + edat = X.select(component="2") + ndat = X.select(component="N") + if len(ndat) == 0: # check for other components + ndat = X.select(component="1") + + + z = zdat[0].data + tz = np.arange(0, zdat[0].stats.npts / zdat[0].stats.sampling_rate, + zdat[0].stats.delta) + + # calculate RMS trace from vertical component + absz = np.sqrt(np.power(z, 2)) + # calculate RMS trace from both horizontal traces + # make sure, both traces have equal lengths + lene = len(edat[0].data) + lenn = len(ndat[0].data) + minlen = min([lene, lenn]) + absen = np.sqrt(np.power(edat[0].data[0:minlen - 1], 2) \ + + np.power(ndat[0].data[0:minlen - 1], 2)) + + # get signal window + isignal = getsignalwin(tz, pick, checkwin) + + # calculate energy levels + zcodalevel = max(absz[isignal]) + encodalevel = max(absen[isignal]) + + # calculate threshold + minsiglevel = encodalevel * zfac + + # vertical P-coda level must exceed horizontal P-coda level + # zfac times encodalevel + if zcodalevel < minsiglevel: + print 'checkZ4S: Maybe S onset? Skip this P pick!' + else: + print 'checkZ4S: P onset passed checkZ4S test!' + returnflag = 1 + + if iplot > 1: + te = np.arange(0, edat[0].stats.npts / edat[0].stats.sampling_rate, + edat[0].stats.delta) + tn = np.arange(0, ndat[0].stats.npts / ndat[0].stats.sampling_rate, + ndat[0].stats.delta) + plt.plot(tz, z / max(z), 'k') + plt.plot(tz[isignal], z[isignal] / max(z), 'r') + plt.plot(te, edat[0].data / max(edat[0].data) + 1, 'k') + plt.plot(te[isignal], edat[0].data[isignal] / max(edat[0].data) + 1, 'r') + plt.plot(tn, ndat[0].data / max(ndat[0].data) + 2, 'k') + plt.plot(tn[isignal], ndat[0].data[isignal] / max(ndat[0].data) + 2, 'r') + plt.plot([tz[isignal[0]], tz[isignal[len(isignal) - 1]]], \ + [minsiglevel / max(z), minsiglevel / max(z)], 'g', \ + linewidth=2) + plt.xlabel('Time [s] since %s' % zdat[0].stats.starttime) + plt.ylabel('Normalized Counts') + plt.yticks([0, 1, 2], [zdat[0].stats.channel, edat[0].stats.channel, \ + ndat[0].stats.channel]) + plt.title('CheckZ4S, Station %s' % zdat[0].stats.station) + plt.show() + raw_input() + + return returnflag + if __name__ == '__main__': import doctest - doctest.testmod()