[refactor] major refactoring of Magnitude objects finished

now the changed usage of the Magnitude object has to be implemented into autoPyLoT and QtPyLoT (pending)
This commit is contained in:
Sebastian Wehling-Benatelli 2016-09-27 13:57:14 +02:00
parent d4481e4acd
commit 405402ffdc

View File

@ -39,39 +39,52 @@ class Magnitude(object):
self._stream = stream
self._magnitudes = dict()
def __str__(self):
print('number of stations used: {0}\n'.format(len(self.magnitudes.values())))
print('\tstation\tmagnitude')
for s, m in self.magnitudes.items(): print('\t{0}\t{1}'.format(s, m))
def __nonzero__(self):
return bool(self.magnitudes)
@property
def plot_flag(self):
return self._plot_flag
@plot_flag.setter
def plot_flag(self, value):
self._plot_flag = value
@property
def stream(self):
return self._stream
@stream.setter
def stream(self, value):
self._stream = value
@property
def event(self):
return self._event
@property
def arrivals(self):
return self._event.origins[0].arrivals
@property
def magnitudes(self):
return self._magnitudes
@magnitudes.setter
def magnitudes(self, value):
"""
@ -84,169 +97,22 @@ class Magnitude(object):
station, magnitude = value
self._magnitudes[station] = magnitude
def get(self):
return self.magnitudes
class Magnitude(object):
'''
Superclass for calculating Wood-Anderson peak-to-peak
amplitudes, local magnitudes, source spectra, seismic moments
and moment magnitudes.
'''
def __init__(self, wfstream, t0, pwin, iplot, NLLocfile=None, \
picks=None, rho=None, vp=None, Qp=None, invdir=None):
'''
:param: wfstream
:type: `~obspy.core.stream.Stream
:param: t0, onset time, P- or S phase
:type: float
:param: pwin, pick window [t0 t0+pwin] to get maximum
peak-to-peak amplitude (WApp) or to calculate
source spectrum (DCfc) around P onset
:type: float
:param: iplot, no. of figure window for plotting interims results
:type: integer
:param: NLLocfile, name and full path to NLLoc-location file
needed when calling class MoMw
:type: string
:param: picks, dictionary containing picking results
:type: dictionary
:param: rho [kg/], rock density, parameter from autoPyLoT.in
:type: integer
:param: vp [m/s], P-velocity
:param: integer
:param: invdir, name and path to inventory or dataless-SEED file
:type: string
'''
assert isinstance(wfstream, Stream), "%s is not a stream object" % str(wfstream)
self._stream = wfstream
self._invdir = invdir
self._t0 = t0
self._pwin = pwin
self._iplot = iplot
self.setNLLocfile(NLLocfile)
self.setrho(rho)
self.setpicks(picks)
self.setvp(vp)
self.setQp(Qp)
self.calcwapp()
self.calcsourcespec()
self.run_calcMoMw()
@property
def stream(self):
return self._stream
@stream.setter
def stream(self, wfstream):
self._stream = wfstream
@property
def t0(self):
return self._t0
@t0.setter
def t0(self, value):
self._t0 = value
@property
def invdir(self):
return self._invdir
@invdir.setter
def invdir(self, value):
self._invdir = value
@property
def pwin(self):
return self._pwin
@pwin.setter
def pwin(self, value):
self._pwin = value
@property
def plot_flag(self):
return self.iplot
@plot_flag.setter
def plot_flag(self, value):
self._iplot = value
def setNLLocfile(self, NLLocfile):
self.NLLocfile = NLLocfile
def getNLLocfile(self):
return self.NLLocfile
def setrho(self, rho):
self.rho = rho
def getrho(self):
return self.rho
def setvp(self, vp):
self.vp = vp
def getvp(self):
return self.vp
def setQp(self, Qp):
self.Qp = Qp
def getQp(self):
return self.Qp
def setpicks(self, picks):
self.picks = picks
def getpicks(self):
return self.picks
def getwapp(self):
return self.wapp
def getw0(self):
return self.w0
def getfc(self):
return self.fc
def get_metadata(self):
return read_metadata(self.invdir)
def plot(self):
pass
def getpicdic(self):
return self.picdic
def calcwapp(self):
self.wapp = None
def calcsourcespec(self):
self.sourcespek = None
def run_calcMoMw(self):
self.pickdic = None
def net_magnitude(self):
if self:
return np.median([M["mag"] for M in self.magnitudes.values()])
return None
class RichterMagnitude(Magnitude):
'''
"""
Method to derive peak-to-peak amplitude as seen on a Wood-Anderson-
seismograph. Has to be derived from instrument corrected traces!
'''
"""
# poles, zeros and sensitivity of WA seismograph
# (see Uhrhammer & Collins, 1990, BSSA, pp. 702-716)
@ -257,29 +123,23 @@ class RichterMagnitude(Magnitude):
'sensitivity': 1
}
def __init__(self, stream, event, t0, calc_win, verbosity=False):
def __init__(self, stream, event, calc_win, verbosity=False):
super(RichterMagnitude, self).__init__(stream, event, verbosity)
self._t0 = t0
self._calc_win = calc_win
@property
def t0(self):
return self._t0
@t0.setter
def t0(self, value):
self._t0 = value
@property
def calc_win(self):
return self._calc_win
@calc_win.setter
def calc_win(self, value):
self._calc_win = value
def peak_to_peak(self, st):
def peak_to_peak(self, st, t0):
# simulate Wood-Anderson response
st.simulate(paz_remove=None, paz_simulate=self._paz)
@ -303,7 +163,7 @@ class RichterMagnitude(Magnitude):
# get time array
th = np.arange(0, len(sqH) * dt, dt)
# get maximum peak within pick window
iwin = getsignalwin(th, self.t0 - stime, self.calc_win)
iwin = getsignalwin(th, t0 - stime, self.calc_win)
wapp = np.max(sqH[iwin])
if self._verbosity:
print("Determined Wood-Anderson peak-to-peak amplitude: {0} "
@ -315,7 +175,7 @@ class RichterMagnitude(Magnitude):
f = plt.figure(2)
plt.plot(th, sqH)
plt.plot(th[iwin], sqH[iwin], 'g')
plt.plot([self.t0, self.t0], [0, max(sqH)], 'r', linewidth=2)
plt.plot([t0, t0], [0, max(sqH)], 'r', linewidth=2)
plt.title('Station %s, RMS Horizontal Traces, WA-peak-to-peak=%4.1f mm' \
% (st[0].stats.station, wapp))
plt.xlabel('Time [s]')
@ -326,6 +186,7 @@ class RichterMagnitude(Magnitude):
return wapp
def get(self):
for a in self.arrivals:
if a.phase not in 'sS':
@ -334,18 +195,20 @@ class RichterMagnitude(Magnitude):
station = pick.waveform_id.station_code
wf = select_for_phase(self.stream.select(
station=station), a.phase)
if not wf:
print('WARNING: no waveform data found for station {0}'.format(
station))
continue
delta = degrees2kilometers(a.distance)
wapp = self.peak_to_peak(wf)
onset = pick.time
wapp = self.peak_to_peak(wf, onset)
# using standard Gutenberg-Richter relation
# TODO make the ML calculation more flexible by allowing
# use of custom relation functions
mag = np.log10(wapp) + richter_magnitude_scaling(delta)
mag = dict(mag=np.log10(wapp) + richter_magnitude_scaling(delta))
self.magnitudes = (station, mag)
return self.magnitudes
def net_magnitude(self):
return np.median([M for M in self.magnitudes.values()])
class MomentMagnitude(Magnitude):
'''
@ -357,6 +220,29 @@ class MomentMagnitude(Magnitude):
corresponding moment magntiude Mw.
'''
def __init__(self, stream, event, vp, Qp, density, verbosity=False):
super(MomentMagnitude, self).__init__(stream, event)
self._vp = vp
self._Qp = Qp
self._density = density
@property
def p_velocity(self):
return self._vp
@property
def p_attenuation(self):
return self._Qp
@property
def rock_density(self):
return self._density
def run_calcMoMw(self):
picks = self.getpicks()
@ -405,6 +291,32 @@ class MomentMagnitude(Magnitude):
self.picdic = picks
def get(self):
for a in self.arrivals:
if a.phase not in 'pP':
continue
pick = a.pick_id.get_referred_object()
station = pick.waveform_id.station_code
wf = select_for_phase(self.stream.select(
station=station), a.phase)
if not wf:
continue
onset = pick.time
distance = degrees2kilometers(a.distance)
azimuth = a.azimuth
incidence = a.takeoff_angle
w0, fc = calcsourcespec(wf, onset, self.p_velocity, distance, azimuth,
incidence, self.p_attenuation)
if w0 is None or fc is None:
print("WARNING: insufficient frequency information")
continue
wf = select_for_phase(wf, "P")
M0, Mw = calcMoMw(wf, w0, self.rock_density, self.p_velocity, distance)
mag = dict(w0=w0, fc=fc, M0=M0, mag=Mw)
self.magnitudes = (station, mag)
return self.magnitudes
def calc_woodanderson_pp(st, metadata, T0, win=10., verbosity=False):
if verbosity:
print ("Getting Wood-Anderson peak-to-peak amplitude ...")
@ -491,8 +403,8 @@ def calcMoMw(wfstream, w0, rho, vp, delta):
return Mo, Mw
def calcsourcespec(wfstream, onset, metadata, vp, delta, azimuth, incidence,
qp, iplot):
def calcsourcespec(wfstream, onset, vp, delta, azimuth, incidence,
qp, iplot=0):
'''
Subfunction to calculate the source spectrum and to derive from that the plateau
(usually called omega0) and the corner frequency assuming Aki's omega-square
@ -500,16 +412,12 @@ def calcsourcespec(wfstream, onset, metadata, vp, delta, azimuth, incidence,
thus restitution and integration necessary! Integrated traces are rotated
into ray-coordinate system ZNE => LQT using Obspy's rotate modul!
:param: wfstream
:param: wfstream (corrected for instrument)
:type: `~obspy.core.stream.Stream`
:param: onset, P-phase onset time
:type: float
:param: metadata, tuple or list containing type of inventory and either
list of files or inventory object
:type: tuple or list
:param: vp, Vp-wave velocity
:type: float
@ -533,163 +441,151 @@ def calcsourcespec(wfstream, onset, metadata, vp, delta, azimuth, incidence,
# get Q value
Q, A = qp
delta = delta * 1000 # hypocentral distance in [m]
dist = delta * 1000 # hypocentral distance in [m]
fc = None
w0 = None
wf_copy = wfstream.copy()
invtype, inventory = metadata
zdat = select_for_phase(wfstream, "P")
[cordat, restflag] = restitute_data(wf_copy, invtype, inventory)
if restflag is True:
zdat = cordat.select(component="Z")
if len(zdat) == 0:
zdat = cordat.select(component="3")
cordat_copy = cordat.copy()
# get equal time stamps and lengths of traces
# necessary for rotation of traces
trstart, trend = common_range(cordat_copy)
cordat_copy.trim(trstart, trend)
try:
# rotate into LQT (ray-coordindate-) system using Obspy's rotate
# L: P-wave direction
# Q: SV-wave direction
# T: SH-wave direction
LQT = cordat_copy.rotate('ZNE->LQT', azimuth, incidence)
ldat = LQT.select(component="L")
if len(ldat) == 0:
# if horizontal channels are 2 and 3
# no azimuth information is available and thus no
# rotation is possible!
print("calcsourcespec: Azimuth information is missing, "
"no rotation of components possible!")
ldat = LQT.select(component="Z")
dt = zdat[0].stats.delta
# integrate to displacement
# unrotated vertical component (for copmarison)
inttrz = signal.detrend(integrate.cumtrapz(zdat[0].data, None,
zdat[0].stats.delta))
# rotated component Z => L
Ldat = signal.detrend(integrate.cumtrapz(ldat[0].data, None,
ldat[0].stats.delta))
freq = zdat[0].stats.sampling_rate
# get window after P pulse for
# calculating source spectrum
tstart = UTCDateTime(zdat[0].stats.starttime)
tonset = onset.timestamp - tstart.timestamp
impickP = tonset * zdat[0].stats.sampling_rate
wfzc = Ldat[impickP: len(Ldat) - 1]
# get time array
t = np.arange(0, len(inttrz) * zdat[0].stats.delta, \
zdat[0].stats.delta)
# calculate spectrum using only first cycles of
# waveform after P onset!
zc = crossings_nonzero_all(wfzc)
if np.size(zc) == 0 or len(zc) <= 3:
print ("calcsourcespec: Something is wrong with the waveform, "
"no zero crossings derived!")
print ("No calculation of source spectrum possible!")
plotflag = 0
else:
plotflag = 1
index = min([3, len(zc) - 1])
calcwin = (zc[index] - zc[0]) * zdat[0].stats.delta
iwin = getsignalwin(t, tonset, calcwin)
xdat = Ldat[iwin]
# trim traces to common range (for rotation)
trstart, trend = common_range(wfstream)
wfstream.trim(trstart, trend)
# fft
fny = zdat[0].stats.sampling_rate / 2
l = len(xdat) / zdat[0].stats.sampling_rate
# number of fft bins after Bath
n = zdat[0].stats.sampling_rate * l
# find next power of 2 of data length
m = pow(2, np.ceil(np.log(len(xdat)) / np.log(2)))
N = int(np.power(m, 2))
y = zdat[0].stats.delta * np.fft.fft(xdat, N)
Y = abs(y[: N / 2])
L = (N - 1) / zdat[0].stats.sampling_rate
f = np.arange(0, fny, 1 / L)
# rotate into LQT (ray-coordindate-) system using Obspy's rotate
# L: P-wave direction
# Q: SV-wave direction
# T: SH-wave direction
LQT = wfstream.rotate('ZNE->LQT', azimuth, incidence)
ldat = LQT.select(component="L")
if len(ldat) == 0:
# if horizontal channels are 2 and 3
# no azimuth information is available and thus no
# rotation is possible!
print("calcsourcespec: Azimuth information is missing, "
"no rotation of components possible!")
ldat = LQT.select(component="Z")
# remove zero-frequency and frequencies above
# corner frequency of seismometer (assumed
# to be 100 Hz)
fi = np.where((f >= 1) & (f < 100))
F = f[fi]
YY = Y[fi]
# integrate to displacement
# unrotated vertical component (for comparison)
inttrz = signal.detrend(integrate.cumtrapz(zdat[0].data, None, dt))
# correction for attenuation
wa = 2 * np.pi * F # angular frequency
D = np.exp((wa * delta) / (2 * vp * Q * F ** A))
YYcor = YY.real * D
# rotated component Z => L
Ldat = signal.detrend(integrate.cumtrapz(ldat[0].data, None, dt))
# get plateau (DC value) and corner frequency
# initial guess of plateau
w0in = np.mean(YYcor[0:100])
# initial guess of corner frequency
# where spectral level reached 50% of flat level
iin = np.where(YYcor >= 0.5 * w0in)
Fcin = F[iin[0][np.size(iin) - 1]]
# get window after P pulse for
# calculating source spectrum
rel_onset = onset - trstart
impickP = int(rel_onset * freq)
wfzc = Ldat[impickP: len(Ldat) - 1]
# get time array
t = np.arange(0, len(inttrz) * dt, dt)
# calculate spectrum using only first cycles of
# waveform after P onset!
zc = crossings_nonzero_all(wfzc)
if np.size(zc) == 0 or len(zc) <= 3:
print ("calcsourcespec: Something is wrong with the waveform, "
"no zero crossings derived!")
print ("No calculation of source spectrum possible!")
plotflag = 0
else:
plotflag = 1
index = min([3, len(zc) - 1])
calcwin = (zc[index] - zc[0]) * dt
iwin = getsignalwin(t, rel_onset, calcwin)
xdat = Ldat[iwin]
# use of implicit scipy otimization function
fit = synthsourcespec(F, w0in, Fcin)
[optspecfit, _] = curve_fit(synthsourcespec, F, YYcor, [w0in,
Fcin])
w01 = optspecfit[0]
fc1 = optspecfit[1]
print ("calcsourcespec: Determined w0-value: %e m/Hz, \n"
"Determined corner frequency: %f Hz" % (w01, fc1))
# fft
fny = freq / 2
l = len(xdat) / freq
# number of fft bins after Bath
n = freq * l
# find next power of 2 of data length
m = pow(2, np.ceil(np.log(len(xdat)) / np.log(2)))
N = int(np.power(m, 2))
y = dt * np.fft.fft(xdat, N)
Y = abs(y[: N / 2])
L = (N - 1) / freq
f = np.arange(0, fny, 1 / L)
# use of conventional fitting
[w02, fc2] = fitSourceModel(F, YYcor, Fcin, iplot)
# remove zero-frequency and frequencies above
# corner frequency of seismometer (assumed
# to be 100 Hz)
fi = np.where((f >= 1) & (f < 100))
F = f[fi]
YY = Y[fi]
# get w0 and fc as median of both
# source spectrum fits
w0 = np.median([w01, w02])
fc = np.median([fc1, fc2])
print("calcsourcespec: Using w0-value = %e m/Hz and fc = %f Hz" % (w0, fc))
# correction for attenuation
wa = 2 * np.pi * F # angular frequency
D = np.exp((wa * dist) / (2 * vp * Q * F ** A))
YYcor = YY.real * D
except TypeError as er:
raise TypeError('''{0}'''.format(er))
# get plateau (DC value) and corner frequency
# initial guess of plateau
w0in = np.mean(YYcor[0:100])
# initial guess of corner frequency
# where spectral level reached 50% of flat level
iin = np.where(YYcor >= 0.5 * w0in)
Fcin = F[iin[0][np.size(iin) - 1]]
if iplot > 1:
f1 = plt.figure()
tLdat = np.arange(0, len(Ldat) * zdat[0].stats.delta, \
zdat[0].stats.delta)
plt.subplot(2, 1, 1)
# show displacement in mm
p1, = plt.plot(t, np.multiply(inttrz, 1000), 'k')
p2, = plt.plot(tLdat, np.multiply(Ldat, 1000))
plt.legend([p1, p2], ['Displacement', 'Rotated Displacement'])
if plotflag == 1:
plt.plot(t[iwin], np.multiply(xdat, 1000), 'g')
plt.title('Seismogram and P Pulse, Station %s-%s' \
% (zdat[0].stats.station, zdat[0].stats.channel))
else:
plt.title('Seismogram, Station %s-%s' \
% (zdat[0].stats.station, zdat[0].stats.channel))
plt.xlabel('Time since %s' % zdat[0].stats.starttime)
plt.ylabel('Displacement [mm]')
# use of implicit scipy otimization function
fit = synthsourcespec(F, w0in, Fcin)
[optspecfit, _] = curve_fit(synthsourcespec, F, YYcor, [w0in, Fcin])
w01 = optspecfit[0]
fc1 = optspecfit[1]
print ("calcsourcespec: Determined w0-value: %e m/Hz, \n"
"Determined corner frequency: %f Hz" % (w01, fc1))
if plotflag == 1:
plt.subplot(2, 1, 2)
p1, = plt.loglog(f, Y.real, 'k')
p2, = plt.loglog(F, YY.real)
p3, = plt.loglog(F, YYcor, 'r')
p4, = plt.loglog(F, fit, 'g')
plt.loglog([fc, fc], [w0 / 100, w0], 'g')
plt.legend([p1, p2, p3, p4], ['Raw Spectrum', \
'Used Raw Spectrum', \
'Q-Corrected Spectrum', \
'Fit to Spectrum'])
plt.title('Source Spectrum from P Pulse, w0=%e m/Hz, fc=%6.2f Hz' \
% (w0, fc))
plt.xlabel('Frequency [Hz]')
plt.ylabel('Amplitude [m/Hz]')
plt.grid()
plt.show()
raw_input()
plt.close(f1)
# use of conventional fitting
[w02, fc2] = fitSourceModel(F, YYcor, Fcin, iplot)
# get w0 and fc as median of both
# source spectrum fits
w0 = np.median([w01, w02])
fc = np.median([fc1, fc2])
print("calcsourcespec: Using w0-value = %e m/Hz and fc = %f Hz" % (w0, fc))
if iplot > 1:
f1 = plt.figure()
tLdat = np.arange(0, len(Ldat) * dt, dt)
plt.subplot(2, 1, 1)
# show displacement in mm
p1, = plt.plot(t, np.multiply(inttrz, 1000), 'k')
p2, = plt.plot(tLdat, np.multiply(Ldat, 1000))
plt.legend([p1, p2], ['Displacement', 'Rotated Displacement'])
if plotflag == 1:
plt.plot(t[iwin], np.multiply(xdat, 1000), 'g')
plt.title('Seismogram and P Pulse, Station %s-%s' \
% (zdat[0].stats.station, zdat[0].stats.channel))
else:
plt.title('Seismogram, Station %s-%s' \
% (zdat[0].stats.station, zdat[0].stats.channel))
plt.xlabel('Time since %s' % zdat[0].stats.starttime)
plt.ylabel('Displacement [mm]')
if plotflag == 1:
plt.subplot(2, 1, 2)
p1, = plt.loglog(f, Y.real, 'k')
p2, = plt.loglog(F, YY.real)
p3, = plt.loglog(F, YYcor, 'r')
p4, = plt.loglog(F, fit, 'g')
plt.loglog([fc, fc], [w0 / 100, w0], 'g')
plt.legend([p1, p2, p3, p4], ['Raw Spectrum', \
'Used Raw Spectrum', \
'Q-Corrected Spectrum', \
'Fit to Spectrum'])
plt.title('Source Spectrum from P Pulse, w0=%e m/Hz, fc=%6.2f Hz' \
% (w0, fc))
plt.xlabel('Frequency [Hz]')
plt.ylabel('Amplitude [m/Hz]')
plt.grid()
plt.show()
raw_input()
plt.close(f1)
return w0, fc
@ -847,9 +743,17 @@ def calc_moment_magnitude(e, wf, metadata, vp, Qp, rho):
continue
onset = pick.time
dist = degrees2kilometers(a.distance)
w0, fc = calcsourcespec(wf, onset, metadata, vp, dist, a.azimuth, a.takeoff_angle, Qp, 0)
invtype, inventory = metadata
[corr_wf, rest_flag] = restitute_data(wf, invtype, inventory)
if not rest_flag:
print("WARNING: data for {0} could not be corrected".format(
station))
continue
w0, fc = calcsourcespec(corr_wf, onset, vp, dist, a.azimuth,
a.takeoff_angle, Qp, 0)
if w0 is None or fc is None:
continue
wf = select_for_phase(corr_wf, "P")
station_mag = calcMoMw(wf, w0, rho, vp, dist)
mags[station] = station_mag
mag = np.median([M[1] for M in mags.values()])