New function to derive onset quality classes and to plot them if desired.

This commit is contained in:
Ludger Küperkoch 2017-07-31 12:04:03 +02:00
parent f86f33b22f
commit 4244c4209b
3 changed files with 153 additions and 3 deletions

View File

@ -80,8 +80,8 @@ ARH #algoS# %choose algorithm for S-onset
0.2 #fmpickwin# %pick window around P onset for calculating zero crossings 0.2 #fmpickwin# %pick window around P onset for calculating zero crossings
%quality assessment% %quality assessment%
#inital AIC onset# #inital AIC onset#
0.01 0.02 0.04 0.08 #timeerrorsP# %discrete time errors [s] corresponding to picking weights [0 1 2 3] for P 0.05 0.10 0.20 0.40 #timeerrorsP# %discrete time errors [s] corresponding to picking weights [0 1 2 3] for P
0.04 0.08 0.16 0.32 #timeerrorsS# %discrete time errors [s] corresponding to picking weights [0 1 2 3] for S 0.10 0.20 0.40 0.80 #timeerrorsS# %discrete time errors [s] corresponding to picking weights [0 1 2 3] for S
4 #minAICPslope# %below this slope [counts/s] the initial P pick is rejected 4 #minAICPslope# %below this slope [counts/s] the initial P pick is rejected
1.2 #minAICPSNR# %below this SNR the initial P pick is rejected 1.2 #minAICPSNR# %below this SNR the initial P pick is rejected
2 #minAICSslope# %below this slope [counts/s] the initial S pick is rejected 2 #minAICSslope# %below this slope [counts/s] the initial S pick is rejected

View File

@ -1 +1 @@
04d4-dirty f86f-dirty

View File

@ -3,8 +3,11 @@
import glob import glob
import obspy.core.event as ope import obspy.core.event as ope
from obspy.core.event import read_events
import os import os
import scipy.io as sio import scipy.io as sio
import matplotlib.pyplot as plt
import numpy as np
import warnings import warnings
from obspy.core import UTCDateTime from obspy.core import UTCDateTime
from obspy.core.util import AttribDict from obspy.core.util import AttribDict
@ -845,3 +848,150 @@ def merge_picks(event, picks):
p.time, p.time_errors, p.waveform_id.network_code, p.method_id = time, err, network, method p.time, p.time_errors, p.waveform_id.network_code, p.method_id = time, err, network, method
del time, err, phase, station, network, method del time, err, phase, station, network, method
return event return event
def getQualitiesfromxml(xmlnames, ErrorsP, ErrorsS, plotflag=1):
"""
Script to get onset uncertainties from Quakeml.xml files created by PyLoT.
Uncertainties are tranformed into quality classes and visualized via histogram if desired.
Ludger Küperkoch, BESTEC GmbH, 07/2017
"""
# read all onset weights
Pw0 = []
Pw1 = []
Pw2 = []
Pw3 = []
Pw4 = []
Sw0 = []
Sw1 = []
Sw2 = []
Sw3 = []
Sw4 = []
for names in xmlnames:
print("Getting onset weights from {}".format(names))
cat = read_events(names)
cat_copy = cat.copy()
arrivals = cat.events[0].picks
arrivals_copy = cat_copy.events[0].picks
# Prefere manual picks if qualities are sufficient!
for Pick in arrivals:
if Pick.method_id.id == 'manual':
mstation = Pick.waveform_id.station_code
mstation_ext = mstation + '_'
for mpick in arrivals_copy:
if mpick.phase_hint[0] == 'P':
if ((mpick.waveform_id.station_code == mstation) or \
(mpick.waveform_id.station_code == mstation_ext)) and \
(mpick.method_id == 'auto') and \
(mpick.time_errors['uncertainty'] <= ErrorsP[3]):
del mpick
break
elif mpick.phase_hint[0] == 'S':
if ((mpick.waveform_id.station_code == mstation) or \
(mpick.waveform_id.station_code == mstation_ext)) and \
(mpick.method_id == 'auto') and \
(mpick.time_errors['uncertainty'] <= ErrorsS[3]):
del mpick
break
lendiff = len(arrivals) - len(arrivals_copy)
if lendiff is not 0:
print("Found manual as well as automatic picks, prefered the {} manual ones!".format(lendiff))
for Pick in arrivals_copy:
if Pick.phase_hint[0] == 'P':
if Pick.time_errors.uncertainty <= ErrorsP[0]:
Pw0.append(Pick.time_errors.uncertainty)
elif (Pick.time_errors.uncertainty > ErrorsP[0]) and \
(Pick.time_errors.uncertainty <= ErrorsP[1]):
Pw1.append(Pick.time_errors.uncertainty)
elif (Pick.time_errors.uncertainty > ErrorsP[1]) and \
(Pick.time_errors.uncertainty <= ErrorsP[2]):
Pw2.append(Pick.time_errors.uncertainty)
elif (Pick.time_errors.uncertainty > ErrorsP[2]) and \
(Pick.time_errors.uncertainty <= ErrorsP[3]):
Pw3.append(Pick.time_errors.uncertainty)
elif Pick.time_errors.uncertainty > ErrorsP[3]:
Pw4.append(Pick.time_errors.uncertainty)
else:
pass
elif Pick.phase_hint[0] == 'S':
if Pick.time_errors.uncertainty <= ErrorsS[0]:
Sw0.append(Pick.time_errors.uncertainty)
elif (Pick.time_errors.uncertainty > ErrorsS[0]) and \
(Pick.time_errors.uncertainty <= ErrorsS[1]):
Sw1.append(Pick.time_errors.uncertainty)
elif (Pick.time_errors.uncertainty > ErrorsS[1]) and \
(Pick.time_errors.uncertainty <= ErrorsS[2]):
Sw2.append(Pick.time_errors.uncertainty)
elif (Pick.time_errors.uncertainty > ErrorsS[2]) and \
(Pick.time_errors.uncertainty <= ErrorsS[3]):
Sw3.append(Pick.time_errors.uncertainty)
elif Pick.time_errors.uncertainty > ErrorsS[3]:
Sw4.append(Pick.time_errors.uncertainty)
else:
pass
else:
print("Phase hint not defined for picking!")
pass
if plotflag == 0:
Punc = [Pw0, Pw1, Pw2, Pw3, Pw4]
Sunc = [Sw0, Sw1, Sw2, Sw3, Sw4]
return Puns, Sunc
else:
# get percentage of weights
numPweights = np.sum([len(Pw0), len(Pw1), len(Pw2), len(Pw3), len(Pw4)])
numSweights = np.sum([len(Sw0), len(Sw1), len(Sw2), len(Sw3), len(Sw4)])
try:
P0perc = 100 / numPweights * len(Pw0)
except:
P0perc = 0
try:
P1perc = 100 / numPweights * len(Pw1)
except:
P1perc = 0
try:
P2perc = 100 / numPweights * len(Pw2)
except:
P2perc = 0
try:
P3perc = 100 / numPweights * len(Pw3)
except:
P3perc = 0
try:
P4perc = 100 / numPweights * len(Pw4)
except:
P4perc = 0
try:
S0perc = 100 / numSweights * len(Sw0)
except:
Soperc = 0
try:
S1perc = 100 / numSweights * len(Sw1)
except:
S1perc = 0
try:
S2perc = 100 / numSweights * len(Sw2)
except:
S2perc = 0
try:
S3perc = 100 / numSweights * len(Sw3)
except:
S3perc = 0
try:
S4perc = 100 / numSweights * len(Sw4)
except:
S4perc = 0
weights = ('0', '1', '2', '3', '4')
y_pos = np.arange(len(weights))
width = 0.34
plt.bar(y_pos - width, [P0perc, P1perc, P2perc, P3perc, P4perc], width, color='black')
plt.bar(y_pos, [S0perc, S1perc, S2perc, S3perc, S4perc], width, color='red')
plt.ylabel('%')
plt.xticks(y_pos, weights)
plt.xlim([-0.5, 4.5])
plt.xlabel('Qualities')
plt.title('{0} P-Qualities, {1} S-Qualities'.format(numPweights, numSweights))
plt.show()