New function to derive onset quality classes and to plot them if desired.
This commit is contained in:
parent
f86f33b22f
commit
4244c4209b
@ -80,8 +80,8 @@ ARH #algoS# %choose algorithm for S-onset
|
||||
0.2 #fmpickwin# %pick window around P onset for calculating zero crossings
|
||||
%quality assessment%
|
||||
#inital AIC onset#
|
||||
0.01 0.02 0.04 0.08 #timeerrorsP# %discrete time errors [s] corresponding to picking weights [0 1 2 3] for P
|
||||
0.04 0.08 0.16 0.32 #timeerrorsS# %discrete time errors [s] corresponding to picking weights [0 1 2 3] for S
|
||||
0.05 0.10 0.20 0.40 #timeerrorsP# %discrete time errors [s] corresponding to picking weights [0 1 2 3] for P
|
||||
0.10 0.20 0.40 0.80 #timeerrorsS# %discrete time errors [s] corresponding to picking weights [0 1 2 3] for S
|
||||
4 #minAICPslope# %below this slope [counts/s] the initial P pick is rejected
|
||||
1.2 #minAICPSNR# %below this SNR the initial P pick is rejected
|
||||
2 #minAICSslope# %below this slope [counts/s] the initial S pick is rejected
|
||||
|
@ -1 +1 @@
|
||||
04d4-dirty
|
||||
f86f-dirty
|
||||
|
@ -3,8 +3,11 @@
|
||||
|
||||
import glob
|
||||
import obspy.core.event as ope
|
||||
from obspy.core.event import read_events
|
||||
import os
|
||||
import scipy.io as sio
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
import warnings
|
||||
from obspy.core import UTCDateTime
|
||||
from obspy.core.util import AttribDict
|
||||
@ -845,3 +848,150 @@ def merge_picks(event, picks):
|
||||
p.time, p.time_errors, p.waveform_id.network_code, p.method_id = time, err, network, method
|
||||
del time, err, phase, station, network, method
|
||||
return event
|
||||
|
||||
def getQualitiesfromxml(xmlnames, ErrorsP, ErrorsS, plotflag=1):
|
||||
"""
|
||||
Script to get onset uncertainties from Quakeml.xml files created by PyLoT.
|
||||
Uncertainties are tranformed into quality classes and visualized via histogram if desired.
|
||||
Ludger Küperkoch, BESTEC GmbH, 07/2017
|
||||
"""
|
||||
|
||||
# read all onset weights
|
||||
Pw0 = []
|
||||
Pw1 = []
|
||||
Pw2 = []
|
||||
Pw3 = []
|
||||
Pw4 = []
|
||||
Sw0 = []
|
||||
Sw1 = []
|
||||
Sw2 = []
|
||||
Sw3 = []
|
||||
Sw4 = []
|
||||
for names in xmlnames:
|
||||
print("Getting onset weights from {}".format(names))
|
||||
cat = read_events(names)
|
||||
cat_copy = cat.copy()
|
||||
arrivals = cat.events[0].picks
|
||||
arrivals_copy = cat_copy.events[0].picks
|
||||
# Prefere manual picks if qualities are sufficient!
|
||||
for Pick in arrivals:
|
||||
if Pick.method_id.id == 'manual':
|
||||
mstation = Pick.waveform_id.station_code
|
||||
mstation_ext = mstation + '_'
|
||||
for mpick in arrivals_copy:
|
||||
if mpick.phase_hint[0] == 'P':
|
||||
if ((mpick.waveform_id.station_code == mstation) or \
|
||||
(mpick.waveform_id.station_code == mstation_ext)) and \
|
||||
(mpick.method_id == 'auto') and \
|
||||
(mpick.time_errors['uncertainty'] <= ErrorsP[3]):
|
||||
del mpick
|
||||
break
|
||||
elif mpick.phase_hint[0] == 'S':
|
||||
if ((mpick.waveform_id.station_code == mstation) or \
|
||||
(mpick.waveform_id.station_code == mstation_ext)) and \
|
||||
(mpick.method_id == 'auto') and \
|
||||
(mpick.time_errors['uncertainty'] <= ErrorsS[3]):
|
||||
del mpick
|
||||
break
|
||||
lendiff = len(arrivals) - len(arrivals_copy)
|
||||
if lendiff is not 0:
|
||||
print("Found manual as well as automatic picks, prefered the {} manual ones!".format(lendiff))
|
||||
|
||||
for Pick in arrivals_copy:
|
||||
if Pick.phase_hint[0] == 'P':
|
||||
if Pick.time_errors.uncertainty <= ErrorsP[0]:
|
||||
Pw0.append(Pick.time_errors.uncertainty)
|
||||
elif (Pick.time_errors.uncertainty > ErrorsP[0]) and \
|
||||
(Pick.time_errors.uncertainty <= ErrorsP[1]):
|
||||
Pw1.append(Pick.time_errors.uncertainty)
|
||||
elif (Pick.time_errors.uncertainty > ErrorsP[1]) and \
|
||||
(Pick.time_errors.uncertainty <= ErrorsP[2]):
|
||||
Pw2.append(Pick.time_errors.uncertainty)
|
||||
elif (Pick.time_errors.uncertainty > ErrorsP[2]) and \
|
||||
(Pick.time_errors.uncertainty <= ErrorsP[3]):
|
||||
Pw3.append(Pick.time_errors.uncertainty)
|
||||
elif Pick.time_errors.uncertainty > ErrorsP[3]:
|
||||
Pw4.append(Pick.time_errors.uncertainty)
|
||||
else:
|
||||
pass
|
||||
elif Pick.phase_hint[0] == 'S':
|
||||
if Pick.time_errors.uncertainty <= ErrorsS[0]:
|
||||
Sw0.append(Pick.time_errors.uncertainty)
|
||||
elif (Pick.time_errors.uncertainty > ErrorsS[0]) and \
|
||||
(Pick.time_errors.uncertainty <= ErrorsS[1]):
|
||||
Sw1.append(Pick.time_errors.uncertainty)
|
||||
elif (Pick.time_errors.uncertainty > ErrorsS[1]) and \
|
||||
(Pick.time_errors.uncertainty <= ErrorsS[2]):
|
||||
Sw2.append(Pick.time_errors.uncertainty)
|
||||
elif (Pick.time_errors.uncertainty > ErrorsS[2]) and \
|
||||
(Pick.time_errors.uncertainty <= ErrorsS[3]):
|
||||
Sw3.append(Pick.time_errors.uncertainty)
|
||||
elif Pick.time_errors.uncertainty > ErrorsS[3]:
|
||||
Sw4.append(Pick.time_errors.uncertainty)
|
||||
else:
|
||||
pass
|
||||
else:
|
||||
print("Phase hint not defined for picking!")
|
||||
pass
|
||||
|
||||
if plotflag == 0:
|
||||
Punc = [Pw0, Pw1, Pw2, Pw3, Pw4]
|
||||
Sunc = [Sw0, Sw1, Sw2, Sw3, Sw4]
|
||||
return Puns, Sunc
|
||||
else:
|
||||
# get percentage of weights
|
||||
numPweights = np.sum([len(Pw0), len(Pw1), len(Pw2), len(Pw3), len(Pw4)])
|
||||
numSweights = np.sum([len(Sw0), len(Sw1), len(Sw2), len(Sw3), len(Sw4)])
|
||||
try:
|
||||
P0perc = 100 / numPweights * len(Pw0)
|
||||
except:
|
||||
P0perc = 0
|
||||
try:
|
||||
P1perc = 100 / numPweights * len(Pw1)
|
||||
except:
|
||||
P1perc = 0
|
||||
try:
|
||||
P2perc = 100 / numPweights * len(Pw2)
|
||||
except:
|
||||
P2perc = 0
|
||||
try:
|
||||
P3perc = 100 / numPweights * len(Pw3)
|
||||
except:
|
||||
P3perc = 0
|
||||
try:
|
||||
P4perc = 100 / numPweights * len(Pw4)
|
||||
except:
|
||||
P4perc = 0
|
||||
try:
|
||||
S0perc = 100 / numSweights * len(Sw0)
|
||||
except:
|
||||
Soperc = 0
|
||||
try:
|
||||
S1perc = 100 / numSweights * len(Sw1)
|
||||
except:
|
||||
S1perc = 0
|
||||
try:
|
||||
S2perc = 100 / numSweights * len(Sw2)
|
||||
except:
|
||||
S2perc = 0
|
||||
try:
|
||||
S3perc = 100 / numSweights * len(Sw3)
|
||||
except:
|
||||
S3perc = 0
|
||||
try:
|
||||
S4perc = 100 / numSweights * len(Sw4)
|
||||
except:
|
||||
S4perc = 0
|
||||
|
||||
weights = ('0', '1', '2', '3', '4')
|
||||
y_pos = np.arange(len(weights))
|
||||
width = 0.34
|
||||
plt.bar(y_pos - width, [P0perc, P1perc, P2perc, P3perc, P4perc], width, color='black')
|
||||
plt.bar(y_pos, [S0perc, S1perc, S2perc, S3perc, S4perc], width, color='red')
|
||||
plt.ylabel('%')
|
||||
plt.xticks(y_pos, weights)
|
||||
plt.xlim([-0.5, 4.5])
|
||||
plt.xlabel('Qualities')
|
||||
plt.title('{0} P-Qualities, {1} S-Qualities'.format(numPweights, numSweights))
|
||||
plt.show()
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user