New function to derive onset quality classes and to plot them if desired.

This commit is contained in:
Ludger Küperkoch 2017-07-31 12:04:03 +02:00
parent f86f33b22f
commit 4244c4209b
3 changed files with 153 additions and 3 deletions

View File

@ -80,8 +80,8 @@ ARH #algoS# %choose algorithm for S-onset
0.2 #fmpickwin# %pick window around P onset for calculating zero crossings
%quality assessment%
#inital AIC onset#
0.01 0.02 0.04 0.08 #timeerrorsP# %discrete time errors [s] corresponding to picking weights [0 1 2 3] for P
0.04 0.08 0.16 0.32 #timeerrorsS# %discrete time errors [s] corresponding to picking weights [0 1 2 3] for S
0.05 0.10 0.20 0.40 #timeerrorsP# %discrete time errors [s] corresponding to picking weights [0 1 2 3] for P
0.10 0.20 0.40 0.80 #timeerrorsS# %discrete time errors [s] corresponding to picking weights [0 1 2 3] for S
4 #minAICPslope# %below this slope [counts/s] the initial P pick is rejected
1.2 #minAICPSNR# %below this SNR the initial P pick is rejected
2 #minAICSslope# %below this slope [counts/s] the initial S pick is rejected

View File

@ -1 +1 @@
04d4-dirty
f86f-dirty

View File

@ -3,8 +3,11 @@
import glob
import obspy.core.event as ope
from obspy.core.event import read_events
import os
import scipy.io as sio
import matplotlib.pyplot as plt
import numpy as np
import warnings
from obspy.core import UTCDateTime
from obspy.core.util import AttribDict
@ -845,3 +848,150 @@ def merge_picks(event, picks):
p.time, p.time_errors, p.waveform_id.network_code, p.method_id = time, err, network, method
del time, err, phase, station, network, method
return event
def getQualitiesfromxml(xmlnames, ErrorsP, ErrorsS, plotflag=1):
"""
Script to get onset uncertainties from Quakeml.xml files created by PyLoT.
Uncertainties are tranformed into quality classes and visualized via histogram if desired.
Ludger Küperkoch, BESTEC GmbH, 07/2017
"""
# read all onset weights
Pw0 = []
Pw1 = []
Pw2 = []
Pw3 = []
Pw4 = []
Sw0 = []
Sw1 = []
Sw2 = []
Sw3 = []
Sw4 = []
for names in xmlnames:
print("Getting onset weights from {}".format(names))
cat = read_events(names)
cat_copy = cat.copy()
arrivals = cat.events[0].picks
arrivals_copy = cat_copy.events[0].picks
# Prefere manual picks if qualities are sufficient!
for Pick in arrivals:
if Pick.method_id.id == 'manual':
mstation = Pick.waveform_id.station_code
mstation_ext = mstation + '_'
for mpick in arrivals_copy:
if mpick.phase_hint[0] == 'P':
if ((mpick.waveform_id.station_code == mstation) or \
(mpick.waveform_id.station_code == mstation_ext)) and \
(mpick.method_id == 'auto') and \
(mpick.time_errors['uncertainty'] <= ErrorsP[3]):
del mpick
break
elif mpick.phase_hint[0] == 'S':
if ((mpick.waveform_id.station_code == mstation) or \
(mpick.waveform_id.station_code == mstation_ext)) and \
(mpick.method_id == 'auto') and \
(mpick.time_errors['uncertainty'] <= ErrorsS[3]):
del mpick
break
lendiff = len(arrivals) - len(arrivals_copy)
if lendiff is not 0:
print("Found manual as well as automatic picks, prefered the {} manual ones!".format(lendiff))
for Pick in arrivals_copy:
if Pick.phase_hint[0] == 'P':
if Pick.time_errors.uncertainty <= ErrorsP[0]:
Pw0.append(Pick.time_errors.uncertainty)
elif (Pick.time_errors.uncertainty > ErrorsP[0]) and \
(Pick.time_errors.uncertainty <= ErrorsP[1]):
Pw1.append(Pick.time_errors.uncertainty)
elif (Pick.time_errors.uncertainty > ErrorsP[1]) and \
(Pick.time_errors.uncertainty <= ErrorsP[2]):
Pw2.append(Pick.time_errors.uncertainty)
elif (Pick.time_errors.uncertainty > ErrorsP[2]) and \
(Pick.time_errors.uncertainty <= ErrorsP[3]):
Pw3.append(Pick.time_errors.uncertainty)
elif Pick.time_errors.uncertainty > ErrorsP[3]:
Pw4.append(Pick.time_errors.uncertainty)
else:
pass
elif Pick.phase_hint[0] == 'S':
if Pick.time_errors.uncertainty <= ErrorsS[0]:
Sw0.append(Pick.time_errors.uncertainty)
elif (Pick.time_errors.uncertainty > ErrorsS[0]) and \
(Pick.time_errors.uncertainty <= ErrorsS[1]):
Sw1.append(Pick.time_errors.uncertainty)
elif (Pick.time_errors.uncertainty > ErrorsS[1]) and \
(Pick.time_errors.uncertainty <= ErrorsS[2]):
Sw2.append(Pick.time_errors.uncertainty)
elif (Pick.time_errors.uncertainty > ErrorsS[2]) and \
(Pick.time_errors.uncertainty <= ErrorsS[3]):
Sw3.append(Pick.time_errors.uncertainty)
elif Pick.time_errors.uncertainty > ErrorsS[3]:
Sw4.append(Pick.time_errors.uncertainty)
else:
pass
else:
print("Phase hint not defined for picking!")
pass
if plotflag == 0:
Punc = [Pw0, Pw1, Pw2, Pw3, Pw4]
Sunc = [Sw0, Sw1, Sw2, Sw3, Sw4]
return Puns, Sunc
else:
# get percentage of weights
numPweights = np.sum([len(Pw0), len(Pw1), len(Pw2), len(Pw3), len(Pw4)])
numSweights = np.sum([len(Sw0), len(Sw1), len(Sw2), len(Sw3), len(Sw4)])
try:
P0perc = 100 / numPweights * len(Pw0)
except:
P0perc = 0
try:
P1perc = 100 / numPweights * len(Pw1)
except:
P1perc = 0
try:
P2perc = 100 / numPweights * len(Pw2)
except:
P2perc = 0
try:
P3perc = 100 / numPweights * len(Pw3)
except:
P3perc = 0
try:
P4perc = 100 / numPweights * len(Pw4)
except:
P4perc = 0
try:
S0perc = 100 / numSweights * len(Sw0)
except:
Soperc = 0
try:
S1perc = 100 / numSweights * len(Sw1)
except:
S1perc = 0
try:
S2perc = 100 / numSweights * len(Sw2)
except:
S2perc = 0
try:
S3perc = 100 / numSweights * len(Sw3)
except:
S3perc = 0
try:
S4perc = 100 / numSweights * len(Sw4)
except:
S4perc = 0
weights = ('0', '1', '2', '3', '4')
y_pos = np.arange(len(weights))
width = 0.34
plt.bar(y_pos - width, [P0perc, P1perc, P2perc, P3perc, P4perc], width, color='black')
plt.bar(y_pos, [S0perc, S1perc, S2perc, S3perc, S4perc], width, color='red')
plt.ylabel('%')
plt.xticks(y_pos, weights)
plt.xlim([-0.5, 4.5])
plt.xlabel('Qualities')
plt.title('{0} P-Qualities, {1} S-Qualities'.format(numPweights, numSweights))
plt.show()