Merge branch 'develop' of 134.147.164.251:/data/git/pylot into develop
This commit is contained in:
@@ -74,6 +74,10 @@ def run_autopicking(wfstream, pickparam):
|
||||
minFMSNR = pickparam.getParam('minFMSNR')
|
||||
fmpickwin = pickparam.getParam('fmpickwin')
|
||||
minfmweight = pickparam.getParam('minfmweight')
|
||||
# parameters for checking signal length
|
||||
minsiglength = pickparam.getParam('minsiglength')
|
||||
minpercent = pickparam.getParam('minpercent')
|
||||
nfacsl = pickparam.getParam('noisefactor')
|
||||
|
||||
# initialize output
|
||||
Pweight = 4 # weight for P onset
|
||||
@@ -94,6 +98,7 @@ def run_autopicking(wfstream, pickparam):
|
||||
|
||||
aicSflag = 0
|
||||
aicPflag = 0
|
||||
Pflag = 0
|
||||
Sflag = 0
|
||||
|
||||
# split components
|
||||
@@ -152,9 +157,15 @@ def run_autopicking(wfstream, pickparam):
|
||||
# of class AutoPicking
|
||||
aicpick = AICPicker(aiccf, tsnrz, pickwinP, iplot, None, tsmoothP)
|
||||
##############################################################
|
||||
# check signal length to detect spuriously picked noise peaks
|
||||
z_copy[0].data = tr_filt.data
|
||||
Pflag = checksignallength(z_copy, aicpick.getpick(), tsnrz, minsiglength, \
|
||||
nfacsl, minpercent, iplot)
|
||||
##############################################################
|
||||
# go on with processing if AIC onset passes quality control
|
||||
if (aicpick.getSlope() >= minAICPslope and
|
||||
aicpick.getSNR() >= minAICPSNR):
|
||||
aicpick.getSNR() >= minAICPSNR and
|
||||
Pflag == 1):
|
||||
aicPflag = 1
|
||||
print 'AIC P-pick passes quality control: Slope: %f, SNR: %f' % \
|
||||
(aicpick.getSlope(), aicpick.getSNR())
|
||||
@@ -190,7 +201,7 @@ def run_autopicking(wfstream, pickparam):
|
||||
mpickP = refPpick.getpick()
|
||||
#############################################################
|
||||
if mpickP is not None:
|
||||
# quality assessment
|
||||
# quality assessment
|
||||
# get earliest and latest possible pick and symmetrized uncertainty
|
||||
[lpickP, epickP, Perror] = earllatepicker(z_copy, nfacP, tsnrz, mpickP, iplot)
|
||||
|
||||
@@ -227,8 +238,8 @@ def run_autopicking(wfstream, pickparam):
|
||||
Sflag = 0
|
||||
|
||||
else:
|
||||
print 'run_autopicking: No vertical component data available, ' \
|
||||
'skipping station!'
|
||||
print 'run_autopicking: No vertical component data availabler!, ' \
|
||||
'Skip station!'
|
||||
|
||||
if edat is not None and ndat is not None and len(edat) > 0 and len(
|
||||
ndat) > 0 and Pweight < 4:
|
||||
|
||||
@@ -9,6 +9,7 @@
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
import scipy as sc
|
||||
import matplotlib.pyplot as plt
|
||||
from obspy.core import Stream, UTCDateTime
|
||||
import warnings
|
||||
@@ -47,14 +48,11 @@ def earllatepicker(X, nfac, TSNR, Pick1, iplot=None):
|
||||
x = X[0].data
|
||||
t = np.arange(0, X[0].stats.npts / X[0].stats.sampling_rate,
|
||||
X[0].stats.delta)
|
||||
# get latest possible pick
|
||||
# get noise window
|
||||
inoise = getnoisewin(t, Pick1, TSNR[0], TSNR[1])
|
||||
# get signal window
|
||||
isignal = getsignalwin(t, Pick1, TSNR[2])
|
||||
# remove mean
|
||||
meanwin = np.hstack((inoise, isignal))
|
||||
x = x - np.mean(x[meanwin])
|
||||
x = x - np.mean(x[inoise])
|
||||
# calculate noise level
|
||||
nlevel = np.sqrt(np.mean(np.square(x[inoise]))) * nfac
|
||||
# get time where signal exceeds nlevel
|
||||
@@ -337,7 +335,7 @@ def getSNR(X, TSNR, t1):
|
||||
return
|
||||
|
||||
# demean over entire snr window
|
||||
x -= x[inoise[0]:isignal[-1]].mean()
|
||||
x = x - np.mean(x[np.hstack([inoise, isignal])])
|
||||
|
||||
# calculate ratios
|
||||
noiselevel = np.sqrt(np.mean(np.square(x[inoise])))
|
||||
@@ -514,3 +512,88 @@ def wadaticheck(pickdic, dttolerance, iplot):
|
||||
plt.close(iplot)
|
||||
|
||||
return checkedonsets
|
||||
|
||||
|
||||
def checksignallength(X, pick, TSNR, minsiglength, nfac, minpercent, iplot):
|
||||
'''
|
||||
Function to detect spuriously picked noise peaks.
|
||||
Uses envelope to determine, how many samples [per cent] after
|
||||
P onset are below certain threshold, calculated from noise
|
||||
level times noise factor.
|
||||
|
||||
: param: X, time series (seismogram)
|
||||
: type: `~obspy.core.stream.Stream`
|
||||
|
||||
: param: pick, initial (AIC) P onset time
|
||||
: type: float
|
||||
|
||||
: param: TSNR, length of time windows around initial pick [s]
|
||||
: type: tuple (T_noise, T_gap, T_signal)
|
||||
|
||||
: param: minsiglength, minium required signal length [s] to
|
||||
declare pick as P onset
|
||||
: type: float
|
||||
|
||||
: param: nfac, noise factor (nfac * noise level = threshold)
|
||||
: type: float
|
||||
|
||||
: param: minpercent, minimum required percentage of samples
|
||||
above calculated threshold
|
||||
: type: float
|
||||
|
||||
: param: iplot, if iplot > 1, results are shown in figure
|
||||
: type: int
|
||||
'''
|
||||
|
||||
assert isinstance(X, Stream), "%s is not a stream object" % str(X)
|
||||
|
||||
print 'Checking signal length ...'
|
||||
|
||||
x = X[0].data
|
||||
t = np.arange(0, X[0].stats.npts / X[0].stats.sampling_rate,
|
||||
X[0].stats.delta)
|
||||
|
||||
# generate envelope function from Hilbert transform
|
||||
y = np.imag(sc.signal.hilbert(x))
|
||||
e = np.sqrt(np.power(x, 2) + np.power(y, 2))
|
||||
# get noise window
|
||||
inoise = getnoisewin(t, pick, TSNR[0], TSNR[1])
|
||||
# get signal window
|
||||
isignal = getsignalwin(t, pick, TSNR[2])
|
||||
# calculate minimum adjusted signal level
|
||||
minsiglevel = max(e[inoise]) * nfac
|
||||
# minimum adjusted number of samples over minimum signal level
|
||||
minnum = len(isignal) * minpercent/100
|
||||
# get number of samples above minimum adjusted signal level
|
||||
numoverthr = len(np.where(e[isignal] >= minsiglevel)[0])
|
||||
|
||||
if numoverthr >= minnum:
|
||||
print 'checksignallength: Signal reached required length.'
|
||||
returnflag = 1
|
||||
else:
|
||||
print 'checksignallength: Signal shorter than required minimum signal length!'
|
||||
print 'Presumably picked picked noise peak, pick is rejected!'
|
||||
returnflag = 0
|
||||
|
||||
if iplot == 2:
|
||||
plt.figure(iplot)
|
||||
p1, = plt.plot(t,x, 'k')
|
||||
p2, = plt.plot(t[inoise], e[inoise])
|
||||
p3, = plt.plot(t[isignal],e[isignal], 'r')
|
||||
p4, = plt.plot([t[isignal[0]], t[isignal[len(isignal)-1]]], \
|
||||
[minsiglevel, minsiglevel], 'g')
|
||||
p5, = plt.plot([pick, pick], [min(x), max(x)], 'c')
|
||||
plt.legend([p1, p2, p3, p4, p5], ['Data', 'Envelope Noise Window', \
|
||||
'Envelope Signal Window', 'Minimum Signal Level', \
|
||||
'Onset'], loc='best')
|
||||
plt.xlabel('Time [s] since %s' % X[0].stats.starttime)
|
||||
plt.ylabel('Counts')
|
||||
plt.title('Check for Signal Length, Station %s' % X[0].stats.station)
|
||||
plt.yticks([])
|
||||
plt.show()
|
||||
raw_input()
|
||||
plt.close(iplot)
|
||||
|
||||
return returnflag
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user