Merge branch 'develop' of 134.147.164.251:/data/git/pylot into develop

This commit is contained in:
Sebastian Wehling-Benatelli 2015-06-24 14:24:20 +02:00
commit 4548f361e4
5 changed files with 137 additions and 27 deletions

View File

@ -13,6 +13,7 @@ from pylot.core.read import Data, AutoPickParameter
from pylot.core.pick.run_autopicking import run_autopicking from pylot.core.pick.run_autopicking import run_autopicking
from pylot.core.util.structure import DATASTRUCTURE from pylot.core.util.structure import DATASTRUCTURE
from pylot.core.pick.utils import wadaticheck from pylot.core.pick.utils import wadaticheck
import pdb
__version__ = _getVersionString() __version__ = _getVersionString()
@ -30,6 +31,18 @@ def autoPyLoT(inputfile):
.. rubric:: Example .. rubric:: Example
''' '''
print '************************************'
print '*********autoPyLoT starting*********'
print 'The Python picking and Location Tool'
print ' Version ', _getVersionString(), '2015'
print '**Authors:'
print '**S. Wehling-Benatelli'
print '** Ruhr-University Bochum'
print '**L. Kueperkoch'
print '** BESTEC GmbH'
print '**K. Olbert'
print '** Christian-Albrechts University Kiel'
print '************************************'
# reading parameter file # reading parameter file
@ -115,7 +128,6 @@ def autoPyLoT(inputfile):
station = wfdat[0].stats.station station = wfdat[0].stats.station
allonsets = {station: picks} allonsets = {station: picks}
for i in range(len(wfdat)): for i in range(len(wfdat)):
#for i in range(0,5):
stationID = wfdat[i].stats.station stationID = wfdat[i].stats.station
#check if station has already been processed #check if station has already been processed
if stationID not in procstats: if stationID not in procstats:
@ -139,6 +151,10 @@ def autoPyLoT(inputfile):
print '-------Finished event %s!-------' % parameter.getParam('eventID') print '-------Finished event %s!-------' % parameter.getParam('eventID')
print '------------------------------------------' print '------------------------------------------'
print '************************************'
print '*********autoPyLoT terminates*******'
print 'The Python picking and Location Tool'
print '************************************'
if __name__ == "__main__": if __name__ == "__main__":
# parse arguments # parse arguments

View File

@ -1,6 +1,7 @@
%This is a parameter input file for autoPyLoT. %This is a parameter input file for autoPyLoT.
%All main and special settings regarding data handling %All main and special settings regarding data handling
%and picking are to be set here! %and picking are to be set here!
%Parameters are optimized for local data sets!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#main settings# #main settings#

View File

@ -1,13 +1,14 @@
%This is a parameter input file for autoPyLoT. %This is a parameter input file for autoPyLoT.
%All main and special settings regarding data handling %All main and special settings regarding data handling
%and picking are to be set here! %and picking are to be set here!
%Parameters are optimized for regional data sets!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#main settings# #main settings#
/DATA/Egelados #rootpath# %project path /DATA/Egelados #rootpath# %project path
EVENT_DATA/LOCAL #datapath# %data path EVENT_DATA/LOCAL #datapath# %data path
2006.02_Nisyros #database# %name of data base 2006.01_Nisyros #database# %name of data base
e0032.033.06 #eventID# %event ID for single event processing e1412.008.06 #eventID# %event ID for single event processing
PILOT #datastructure# %choose data structure PILOT #datastructure# %choose data structure
2 #iplot# %flag for plotting: 0 none, 1, partly, >1 everything 2 #iplot# %flag for plotting: 0 none, 1, partly, >1 everything
AUTOPHASES_AIC_HOS4_ARH #phasefile# %name of autoPILOT output phase file AUTOPHASES_AIC_HOS4_ARH #phasefile# %name of autoPILOT output phase file
@ -30,8 +31,8 @@ HYPOSAT #locrt# %location routine used ("HYPO
#common settings picker# #common settings picker#
20 #pstart# %start time [s] for calculating CF for P-picking 20 #pstart# %start time [s] for calculating CF for P-picking
160 #pstop# %end time [s] for calculating CF for P-picking 160 #pstop# %end time [s] for calculating CF for P-picking
1.0 #sstart# %start time [s] after or before(-) P-onset for calculating CF for S-picking 3.0 #sstart# %start time [s] after or before(-) P-onset for calculating CF for S-picking
50 #sstop# %end time [s] after P-onset for calculating CF for S-picking 100 #sstop# %end time [s] after P-onset for calculating CF for S-picking
3 10 #bpz1# %lower/upper corner freq. of first band pass filter Z-comp. [Hz] 3 10 #bpz1# %lower/upper corner freq. of first band pass filter Z-comp. [Hz]
3 12 #bpz2# %lower/upper corner freq. of second band pass filter Z-comp. [Hz] 3 12 #bpz2# %lower/upper corner freq. of second band pass filter Z-comp. [Hz]
3 8 #bph1# %lower/upper corner freq. of first band pass filter H-comp. [Hz] 3 8 #bph1# %lower/upper corner freq. of first band pass filter H-comp. [Hz]
@ -48,13 +49,12 @@ HOS #algoP# %choose algorithm for P-onset
0.6 #tdet2z# %for AR-picker, length of AR determination window [s] for Z-component, 2nd pick 0.6 #tdet2z# %for AR-picker, length of AR determination window [s] for Z-component, 2nd pick
0.2 #tpred2z# %for AR-picker, length of AR prediction window [s] for Z-component, 2nd pick 0.2 #tpred2z# %for AR-picker, length of AR prediction window [s] for Z-component, 2nd pick
0.001 #addnoise# %add noise to seismogram for stable AR prediction 0.001 #addnoise# %add noise to seismogram for stable AR prediction
4 0.1 1.0 0.5 #tsnrz# %for HOS/AR, window lengths for SNR-and slope estimation [tnoise,tsafetey,tsignal,tslope] [s] 4 0.2 2.0 1.5 #tsnrz# %for HOS/AR, window lengths for SNR-and slope estimation [tnoise,tsafetey,tsignal,tslope] [s]
4 #pickwinP# %for initial AIC pick, length of P-pick window [s] 4 #pickwinP# %for initial AIC and refined pick, length of P-pick window [s]
8 #Precalcwin# %for HOS/AR, window length [s] for recalculation of CF (relative to 1st pick) 8 #Precalcwin# %for HOS/AR, window length [s] for recalculation of CF (relative to 1st pick)
0 #peps4aic# %for HOS/AR, artificial uplift of samples of AIC-function (P) 3.0 #aictsmooth# %for HOS/AR, take average of samples for smoothing of AIC-function [s]
0.2 #aictsmooth# %for HOS/AR, take average of samples for smoothing of AIC-function [s] 0.3 #tsmoothP# %for HOS/AR, take average of samples for smoothing CF [s]
0.1 #tsmoothP# %for HOS/AR, take average of samples for smoothing CF [s] 0.3 #ausP# %for HOS/AR, artificial uplift of samples (aus) of CF (P)
0.001 #ausP# %for HOS/AR, artificial uplift of samples (aus) of CF (P)
1.3 #nfacP# %for HOS/AR, noise factor for noise level determination (P) 1.3 #nfacP# %for HOS/AR, noise factor for noise level determination (P)
#H-components# #H-components#
ARH #algoS# %choose algorithm for S-onset determination (ARH or AR3) ARH #algoS# %choose algorithm for S-onset determination (ARH or AR3)
@ -63,18 +63,17 @@ ARH #algoS# %choose algorithm for S-onset
0.6 #tdet2h# %for HOS/AR, length of AR-determinaton window [s], H-components, 2nd pick 0.6 #tdet2h# %for HOS/AR, length of AR-determinaton window [s], H-components, 2nd pick
0.3 #tpred2h# %for HOS/AR, length of AR-prediction window [s], H-components, 2nd pick 0.3 #tpred2h# %for HOS/AR, length of AR-prediction window [s], H-components, 2nd pick
4 #Sarorder# %for AR-picker, order of AR process of H-components 4 #Sarorder# %for AR-picker, order of AR process of H-components
20 #Srecalcwin# %for AR-picker, window length [s] for recalculation of CF (2nd pick) (H) 10 #Srecalcwin# %for AR-picker, window length [s] for recalculation of CF (2nd pick) (H)
5 #pickwinS# %for initial AIC pick, length of S-pick window [s] 6 #pickwinS# %for initial AIC and refined pick, length of S-pick window [s]
6 0.2 2.0 1.5 #tsnrh# %for ARH/AR3, window lengths for SNR-and slope estimation [tnoise,tsafetey,tsignal,tslope] [s] 5 0.2 3.0 3.0 #tsnrh# %for ARH/AR3, window lengths for SNR-and slope estimation [tnoise,tsafetey,tsignal,tslope] [s]
0.05 #aictsmoothS# %for AIC-picker, take average of samples for smoothing of AIC-function [s] 3.0 #aictsmoothS# %for AIC-picker, take average of samples for smoothing of AIC-function [s]
0.02 #tsmoothS# %for AR-picker, take average of samples for smoothing CF [s] (S) 1.0 #tsmoothS# %for AR-picker, take average of samples for smoothing CF [s] (S)
0.2 #pepsS# %for AR-picker, artificial uplift of samples of CF (S)
0.4 #ausS# %for HOS/AR, artificial uplift of samples (aus) of CF (S) 0.4 #ausS# %for HOS/AR, artificial uplift of samples (aus) of CF (S)
1.5 #nfacS# %for AR-picker, noise factor for noise level determination (S) 1.5 #nfacS# %for AR-picker, noise factor for noise level determination (S)
%first-motion picker% %first-motion picker%
1 #minfmweight# %minimum required p weight for first-motion determination 1 #minfmweight# %minimum required p weight for first-motion determination
2 #minFMSNR# %miniumum required SNR for first-motion determination 2 #minFMSNR# %miniumum required SNR for first-motion determination
5.0 #fmpickwin# %pick window around P onset for calculating zero crossings 6.0 #fmpickwin# %pick window around P onset for calculating zero crossings
%quality assessment% %quality assessment%
#inital AIC onset# #inital AIC onset#
0.04 0.08 0.16 0.32 #timeerrorsP# %discrete time errors [s] corresponding to picking weights [0 1 2 3] for P 0.04 0.08 0.16 0.32 #timeerrorsP# %discrete time errors [s] corresponding to picking weights [0 1 2 3] for P

View File

@ -74,6 +74,10 @@ def run_autopicking(wfstream, pickparam):
minFMSNR = pickparam.getParam('minFMSNR') minFMSNR = pickparam.getParam('minFMSNR')
fmpickwin = pickparam.getParam('fmpickwin') fmpickwin = pickparam.getParam('fmpickwin')
minfmweight = pickparam.getParam('minfmweight') minfmweight = pickparam.getParam('minfmweight')
# parameters for checking signal length
minsiglength = pickparam.getParam('minsiglength')
minpercent = pickparam.getParam('minpercent')
nfacsl = pickparam.getParam('noisefactor')
# initialize output # initialize output
Pweight = 4 # weight for P onset Pweight = 4 # weight for P onset
@ -94,6 +98,7 @@ def run_autopicking(wfstream, pickparam):
aicSflag = 0 aicSflag = 0
aicPflag = 0 aicPflag = 0
Pflag = 0
Sflag = 0 Sflag = 0
# split components # split components
@ -152,9 +157,15 @@ def run_autopicking(wfstream, pickparam):
# of class AutoPicking # of class AutoPicking
aicpick = AICPicker(aiccf, tsnrz, pickwinP, iplot, None, tsmoothP) aicpick = AICPicker(aiccf, tsnrz, pickwinP, iplot, None, tsmoothP)
############################################################## ##############################################################
# check signal length to detect spuriously picked noise peaks
z_copy[0].data = tr_filt.data
Pflag = checksignallength(z_copy, aicpick.getpick(), tsnrz, minsiglength, \
nfacsl, minpercent, iplot)
##############################################################
# go on with processing if AIC onset passes quality control # go on with processing if AIC onset passes quality control
if (aicpick.getSlope() >= minAICPslope and if (aicpick.getSlope() >= minAICPslope and
aicpick.getSNR() >= minAICPSNR): aicpick.getSNR() >= minAICPSNR and
Pflag == 1):
aicPflag = 1 aicPflag = 1
print 'AIC P-pick passes quality control: Slope: %f, SNR: %f' % \ print 'AIC P-pick passes quality control: Slope: %f, SNR: %f' % \
(aicpick.getSlope(), aicpick.getSNR()) (aicpick.getSlope(), aicpick.getSNR())
@ -190,7 +201,7 @@ def run_autopicking(wfstream, pickparam):
mpickP = refPpick.getpick() mpickP = refPpick.getpick()
############################################################# #############################################################
if mpickP is not None: if mpickP is not None:
# quality assessment # quality assessment
# get earliest and latest possible pick and symmetrized uncertainty # get earliest and latest possible pick and symmetrized uncertainty
[lpickP, epickP, Perror] = earllatepicker(z_copy, nfacP, tsnrz, mpickP, iplot) [lpickP, epickP, Perror] = earllatepicker(z_copy, nfacP, tsnrz, mpickP, iplot)
@ -227,8 +238,8 @@ def run_autopicking(wfstream, pickparam):
Sflag = 0 Sflag = 0
else: else:
print 'run_autopicking: No vertical component data available, ' \ print 'run_autopicking: No vertical component data availabler!, ' \
'skipping station!' 'Skip station!'
if edat is not None and ndat is not None and len(edat) > 0 and len( if edat is not None and ndat is not None and len(edat) > 0 and len(
ndat) > 0 and Pweight < 4: ndat) > 0 and Pweight < 4:

View File

@ -9,6 +9,7 @@
""" """
import numpy as np import numpy as np
import scipy as sc
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
from obspy.core import Stream, UTCDateTime from obspy.core import Stream, UTCDateTime
import warnings import warnings
@ -47,14 +48,11 @@ def earllatepicker(X, nfac, TSNR, Pick1, iplot=None):
x = X[0].data x = X[0].data
t = np.arange(0, X[0].stats.npts / X[0].stats.sampling_rate, t = np.arange(0, X[0].stats.npts / X[0].stats.sampling_rate,
X[0].stats.delta) X[0].stats.delta)
# get latest possible pick
# get noise window
inoise = getnoisewin(t, Pick1, TSNR[0], TSNR[1]) inoise = getnoisewin(t, Pick1, TSNR[0], TSNR[1])
# get signal window # get signal window
isignal = getsignalwin(t, Pick1, TSNR[2]) isignal = getsignalwin(t, Pick1, TSNR[2])
# remove mean # remove mean
meanwin = np.hstack((inoise, isignal)) x = x - np.mean(x[inoise])
x = x - np.mean(x[meanwin])
# calculate noise level # calculate noise level
nlevel = np.sqrt(np.mean(np.square(x[inoise]))) * nfac nlevel = np.sqrt(np.mean(np.square(x[inoise]))) * nfac
# get time where signal exceeds nlevel # get time where signal exceeds nlevel
@ -337,7 +335,7 @@ def getSNR(X, TSNR, t1):
return return
# demean over entire snr window # demean over entire snr window
x -= x[inoise[0]:isignal[-1]].mean() x = x - np.mean(x[np.hstack([inoise, isignal])])
# calculate ratios # calculate ratios
noiselevel = np.sqrt(np.mean(np.square(x[inoise]))) noiselevel = np.sqrt(np.mean(np.square(x[inoise])))
@ -514,3 +512,88 @@ def wadaticheck(pickdic, dttolerance, iplot):
plt.close(iplot) plt.close(iplot)
return checkedonsets return checkedonsets
def checksignallength(X, pick, TSNR, minsiglength, nfac, minpercent, iplot):
'''
Function to detect spuriously picked noise peaks.
Uses envelope to determine, how many samples [per cent] after
P onset are below certain threshold, calculated from noise
level times noise factor.
: param: X, time series (seismogram)
: type: `~obspy.core.stream.Stream`
: param: pick, initial (AIC) P onset time
: type: float
: param: TSNR, length of time windows around initial pick [s]
: type: tuple (T_noise, T_gap, T_signal)
: param: minsiglength, minium required signal length [s] to
declare pick as P onset
: type: float
: param: nfac, noise factor (nfac * noise level = threshold)
: type: float
: param: minpercent, minimum required percentage of samples
above calculated threshold
: type: float
: param: iplot, if iplot > 1, results are shown in figure
: type: int
'''
assert isinstance(X, Stream), "%s is not a stream object" % str(X)
print 'Checking signal length ...'
x = X[0].data
t = np.arange(0, X[0].stats.npts / X[0].stats.sampling_rate,
X[0].stats.delta)
# generate envelope function from Hilbert transform
y = np.imag(sc.signal.hilbert(x))
e = np.sqrt(np.power(x, 2) + np.power(y, 2))
# get noise window
inoise = getnoisewin(t, pick, TSNR[0], TSNR[1])
# get signal window
isignal = getsignalwin(t, pick, TSNR[2])
# calculate minimum adjusted signal level
minsiglevel = max(e[inoise]) * nfac
# minimum adjusted number of samples over minimum signal level
minnum = len(isignal) * minpercent/100
# get number of samples above minimum adjusted signal level
numoverthr = len(np.where(e[isignal] >= minsiglevel)[0])
if numoverthr >= minnum:
print 'checksignallength: Signal reached required length.'
returnflag = 1
else:
print 'checksignallength: Signal shorter than required minimum signal length!'
print 'Presumably picked picked noise peak, pick is rejected!'
returnflag = 0
if iplot == 2:
plt.figure(iplot)
p1, = plt.plot(t,x, 'k')
p2, = plt.plot(t[inoise], e[inoise])
p3, = plt.plot(t[isignal],e[isignal], 'r')
p4, = plt.plot([t[isignal[0]], t[isignal[len(isignal)-1]]], \
[minsiglevel, minsiglevel], 'g')
p5, = plt.plot([pick, pick], [min(x), max(x)], 'c')
plt.legend([p1, p2, p3, p4, p5], ['Data', 'Envelope Noise Window', \
'Envelope Signal Window', 'Minimum Signal Level', \
'Onset'], loc='best')
plt.xlabel('Time [s] since %s' % X[0].stats.starttime)
plt.ylabel('Counts')
plt.title('Check for Signal Length, Station %s' % X[0].stats.station)
plt.yticks([])
plt.show()
raw_input()
plt.close(iplot)
return returnflag