Merge branch 'develop' of 134.147.164.251:/data/git/pylot into develop
This commit is contained in:
commit
4548f361e4
18
autoPyLoT.py
18
autoPyLoT.py
@ -13,6 +13,7 @@ from pylot.core.read import Data, AutoPickParameter
|
||||
from pylot.core.pick.run_autopicking import run_autopicking
|
||||
from pylot.core.util.structure import DATASTRUCTURE
|
||||
from pylot.core.pick.utils import wadaticheck
|
||||
import pdb
|
||||
__version__ = _getVersionString()
|
||||
|
||||
|
||||
@ -30,6 +31,18 @@ def autoPyLoT(inputfile):
|
||||
.. rubric:: Example
|
||||
|
||||
'''
|
||||
print '************************************'
|
||||
print '*********autoPyLoT starting*********'
|
||||
print 'The Python picking and Location Tool'
|
||||
print ' Version ', _getVersionString(), '2015'
|
||||
print '**Authors:'
|
||||
print '**S. Wehling-Benatelli'
|
||||
print '** Ruhr-University Bochum'
|
||||
print '**L. Kueperkoch'
|
||||
print '** BESTEC GmbH'
|
||||
print '**K. Olbert'
|
||||
print '** Christian-Albrechts University Kiel'
|
||||
print '************************************'
|
||||
|
||||
# reading parameter file
|
||||
|
||||
@ -115,7 +128,6 @@ def autoPyLoT(inputfile):
|
||||
station = wfdat[0].stats.station
|
||||
allonsets = {station: picks}
|
||||
for i in range(len(wfdat)):
|
||||
#for i in range(0,5):
|
||||
stationID = wfdat[i].stats.station
|
||||
#check if station has already been processed
|
||||
if stationID not in procstats:
|
||||
@ -139,6 +151,10 @@ def autoPyLoT(inputfile):
|
||||
print '-------Finished event %s!-------' % parameter.getParam('eventID')
|
||||
print '------------------------------------------'
|
||||
|
||||
print '************************************'
|
||||
print '*********autoPyLoT terminates*******'
|
||||
print 'The Python picking and Location Tool'
|
||||
print '************************************'
|
||||
|
||||
if __name__ == "__main__":
|
||||
# parse arguments
|
||||
|
@ -1,6 +1,7 @@
|
||||
%This is a parameter input file for autoPyLoT.
|
||||
%All main and special settings regarding data handling
|
||||
%and picking are to be set here!
|
||||
%Parameters are optimized for local data sets!
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
#main settings#
|
||||
|
@ -1,13 +1,14 @@
|
||||
%This is a parameter input file for autoPyLoT.
|
||||
%All main and special settings regarding data handling
|
||||
%and picking are to be set here!
|
||||
%Parameters are optimized for regional data sets!
|
||||
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
|
||||
|
||||
#main settings#
|
||||
/DATA/Egelados #rootpath# %project path
|
||||
EVENT_DATA/LOCAL #datapath# %data path
|
||||
2006.02_Nisyros #database# %name of data base
|
||||
e0032.033.06 #eventID# %event ID for single event processing
|
||||
2006.01_Nisyros #database# %name of data base
|
||||
e1412.008.06 #eventID# %event ID for single event processing
|
||||
PILOT #datastructure# %choose data structure
|
||||
2 #iplot# %flag for plotting: 0 none, 1, partly, >1 everything
|
||||
AUTOPHASES_AIC_HOS4_ARH #phasefile# %name of autoPILOT output phase file
|
||||
@ -30,8 +31,8 @@ HYPOSAT #locrt# %location routine used ("HYPO
|
||||
#common settings picker#
|
||||
20 #pstart# %start time [s] for calculating CF for P-picking
|
||||
160 #pstop# %end time [s] for calculating CF for P-picking
|
||||
1.0 #sstart# %start time [s] after or before(-) P-onset for calculating CF for S-picking
|
||||
50 #sstop# %end time [s] after P-onset for calculating CF for S-picking
|
||||
3.0 #sstart# %start time [s] after or before(-) P-onset for calculating CF for S-picking
|
||||
100 #sstop# %end time [s] after P-onset for calculating CF for S-picking
|
||||
3 10 #bpz1# %lower/upper corner freq. of first band pass filter Z-comp. [Hz]
|
||||
3 12 #bpz2# %lower/upper corner freq. of second band pass filter Z-comp. [Hz]
|
||||
3 8 #bph1# %lower/upper corner freq. of first band pass filter H-comp. [Hz]
|
||||
@ -48,13 +49,12 @@ HOS #algoP# %choose algorithm for P-onset
|
||||
0.6 #tdet2z# %for AR-picker, length of AR determination window [s] for Z-component, 2nd pick
|
||||
0.2 #tpred2z# %for AR-picker, length of AR prediction window [s] for Z-component, 2nd pick
|
||||
0.001 #addnoise# %add noise to seismogram for stable AR prediction
|
||||
4 0.1 1.0 0.5 #tsnrz# %for HOS/AR, window lengths for SNR-and slope estimation [tnoise,tsafetey,tsignal,tslope] [s]
|
||||
4 #pickwinP# %for initial AIC pick, length of P-pick window [s]
|
||||
4 0.2 2.0 1.5 #tsnrz# %for HOS/AR, window lengths for SNR-and slope estimation [tnoise,tsafetey,tsignal,tslope] [s]
|
||||
4 #pickwinP# %for initial AIC and refined pick, length of P-pick window [s]
|
||||
8 #Precalcwin# %for HOS/AR, window length [s] for recalculation of CF (relative to 1st pick)
|
||||
0 #peps4aic# %for HOS/AR, artificial uplift of samples of AIC-function (P)
|
||||
0.2 #aictsmooth# %for HOS/AR, take average of samples for smoothing of AIC-function [s]
|
||||
0.1 #tsmoothP# %for HOS/AR, take average of samples for smoothing CF [s]
|
||||
0.001 #ausP# %for HOS/AR, artificial uplift of samples (aus) of CF (P)
|
||||
3.0 #aictsmooth# %for HOS/AR, take average of samples for smoothing of AIC-function [s]
|
||||
0.3 #tsmoothP# %for HOS/AR, take average of samples for smoothing CF [s]
|
||||
0.3 #ausP# %for HOS/AR, artificial uplift of samples (aus) of CF (P)
|
||||
1.3 #nfacP# %for HOS/AR, noise factor for noise level determination (P)
|
||||
#H-components#
|
||||
ARH #algoS# %choose algorithm for S-onset determination (ARH or AR3)
|
||||
@ -63,18 +63,17 @@ ARH #algoS# %choose algorithm for S-onset
|
||||
0.6 #tdet2h# %for HOS/AR, length of AR-determinaton window [s], H-components, 2nd pick
|
||||
0.3 #tpred2h# %for HOS/AR, length of AR-prediction window [s], H-components, 2nd pick
|
||||
4 #Sarorder# %for AR-picker, order of AR process of H-components
|
||||
20 #Srecalcwin# %for AR-picker, window length [s] for recalculation of CF (2nd pick) (H)
|
||||
5 #pickwinS# %for initial AIC pick, length of S-pick window [s]
|
||||
6 0.2 2.0 1.5 #tsnrh# %for ARH/AR3, window lengths for SNR-and slope estimation [tnoise,tsafetey,tsignal,tslope] [s]
|
||||
0.05 #aictsmoothS# %for AIC-picker, take average of samples for smoothing of AIC-function [s]
|
||||
0.02 #tsmoothS# %for AR-picker, take average of samples for smoothing CF [s] (S)
|
||||
0.2 #pepsS# %for AR-picker, artificial uplift of samples of CF (S)
|
||||
10 #Srecalcwin# %for AR-picker, window length [s] for recalculation of CF (2nd pick) (H)
|
||||
6 #pickwinS# %for initial AIC and refined pick, length of S-pick window [s]
|
||||
5 0.2 3.0 3.0 #tsnrh# %for ARH/AR3, window lengths for SNR-and slope estimation [tnoise,tsafetey,tsignal,tslope] [s]
|
||||
3.0 #aictsmoothS# %for AIC-picker, take average of samples for smoothing of AIC-function [s]
|
||||
1.0 #tsmoothS# %for AR-picker, take average of samples for smoothing CF [s] (S)
|
||||
0.4 #ausS# %for HOS/AR, artificial uplift of samples (aus) of CF (S)
|
||||
1.5 #nfacS# %for AR-picker, noise factor for noise level determination (S)
|
||||
%first-motion picker%
|
||||
1 #minfmweight# %minimum required p weight for first-motion determination
|
||||
2 #minFMSNR# %miniumum required SNR for first-motion determination
|
||||
5.0 #fmpickwin# %pick window around P onset for calculating zero crossings
|
||||
6.0 #fmpickwin# %pick window around P onset for calculating zero crossings
|
||||
%quality assessment%
|
||||
#inital AIC onset#
|
||||
0.04 0.08 0.16 0.32 #timeerrorsP# %discrete time errors [s] corresponding to picking weights [0 1 2 3] for P
|
||||
|
@ -74,6 +74,10 @@ def run_autopicking(wfstream, pickparam):
|
||||
minFMSNR = pickparam.getParam('minFMSNR')
|
||||
fmpickwin = pickparam.getParam('fmpickwin')
|
||||
minfmweight = pickparam.getParam('minfmweight')
|
||||
# parameters for checking signal length
|
||||
minsiglength = pickparam.getParam('minsiglength')
|
||||
minpercent = pickparam.getParam('minpercent')
|
||||
nfacsl = pickparam.getParam('noisefactor')
|
||||
|
||||
# initialize output
|
||||
Pweight = 4 # weight for P onset
|
||||
@ -94,6 +98,7 @@ def run_autopicking(wfstream, pickparam):
|
||||
|
||||
aicSflag = 0
|
||||
aicPflag = 0
|
||||
Pflag = 0
|
||||
Sflag = 0
|
||||
|
||||
# split components
|
||||
@ -152,9 +157,15 @@ def run_autopicking(wfstream, pickparam):
|
||||
# of class AutoPicking
|
||||
aicpick = AICPicker(aiccf, tsnrz, pickwinP, iplot, None, tsmoothP)
|
||||
##############################################################
|
||||
# check signal length to detect spuriously picked noise peaks
|
||||
z_copy[0].data = tr_filt.data
|
||||
Pflag = checksignallength(z_copy, aicpick.getpick(), tsnrz, minsiglength, \
|
||||
nfacsl, minpercent, iplot)
|
||||
##############################################################
|
||||
# go on with processing if AIC onset passes quality control
|
||||
if (aicpick.getSlope() >= minAICPslope and
|
||||
aicpick.getSNR() >= minAICPSNR):
|
||||
aicpick.getSNR() >= minAICPSNR and
|
||||
Pflag == 1):
|
||||
aicPflag = 1
|
||||
print 'AIC P-pick passes quality control: Slope: %f, SNR: %f' % \
|
||||
(aicpick.getSlope(), aicpick.getSNR())
|
||||
@ -227,8 +238,8 @@ def run_autopicking(wfstream, pickparam):
|
||||
Sflag = 0
|
||||
|
||||
else:
|
||||
print 'run_autopicking: No vertical component data available, ' \
|
||||
'skipping station!'
|
||||
print 'run_autopicking: No vertical component data availabler!, ' \
|
||||
'Skip station!'
|
||||
|
||||
if edat is not None and ndat is not None and len(edat) > 0 and len(
|
||||
ndat) > 0 and Pweight < 4:
|
||||
|
@ -9,6 +9,7 @@
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
import scipy as sc
|
||||
import matplotlib.pyplot as plt
|
||||
from obspy.core import Stream, UTCDateTime
|
||||
import warnings
|
||||
@ -47,14 +48,11 @@ def earllatepicker(X, nfac, TSNR, Pick1, iplot=None):
|
||||
x = X[0].data
|
||||
t = np.arange(0, X[0].stats.npts / X[0].stats.sampling_rate,
|
||||
X[0].stats.delta)
|
||||
# get latest possible pick
|
||||
# get noise window
|
||||
inoise = getnoisewin(t, Pick1, TSNR[0], TSNR[1])
|
||||
# get signal window
|
||||
isignal = getsignalwin(t, Pick1, TSNR[2])
|
||||
# remove mean
|
||||
meanwin = np.hstack((inoise, isignal))
|
||||
x = x - np.mean(x[meanwin])
|
||||
x = x - np.mean(x[inoise])
|
||||
# calculate noise level
|
||||
nlevel = np.sqrt(np.mean(np.square(x[inoise]))) * nfac
|
||||
# get time where signal exceeds nlevel
|
||||
@ -337,7 +335,7 @@ def getSNR(X, TSNR, t1):
|
||||
return
|
||||
|
||||
# demean over entire snr window
|
||||
x -= x[inoise[0]:isignal[-1]].mean()
|
||||
x = x - np.mean(x[np.hstack([inoise, isignal])])
|
||||
|
||||
# calculate ratios
|
||||
noiselevel = np.sqrt(np.mean(np.square(x[inoise])))
|
||||
@ -514,3 +512,88 @@ def wadaticheck(pickdic, dttolerance, iplot):
|
||||
plt.close(iplot)
|
||||
|
||||
return checkedonsets
|
||||
|
||||
|
||||
def checksignallength(X, pick, TSNR, minsiglength, nfac, minpercent, iplot):
|
||||
'''
|
||||
Function to detect spuriously picked noise peaks.
|
||||
Uses envelope to determine, how many samples [per cent] after
|
||||
P onset are below certain threshold, calculated from noise
|
||||
level times noise factor.
|
||||
|
||||
: param: X, time series (seismogram)
|
||||
: type: `~obspy.core.stream.Stream`
|
||||
|
||||
: param: pick, initial (AIC) P onset time
|
||||
: type: float
|
||||
|
||||
: param: TSNR, length of time windows around initial pick [s]
|
||||
: type: tuple (T_noise, T_gap, T_signal)
|
||||
|
||||
: param: minsiglength, minium required signal length [s] to
|
||||
declare pick as P onset
|
||||
: type: float
|
||||
|
||||
: param: nfac, noise factor (nfac * noise level = threshold)
|
||||
: type: float
|
||||
|
||||
: param: minpercent, minimum required percentage of samples
|
||||
above calculated threshold
|
||||
: type: float
|
||||
|
||||
: param: iplot, if iplot > 1, results are shown in figure
|
||||
: type: int
|
||||
'''
|
||||
|
||||
assert isinstance(X, Stream), "%s is not a stream object" % str(X)
|
||||
|
||||
print 'Checking signal length ...'
|
||||
|
||||
x = X[0].data
|
||||
t = np.arange(0, X[0].stats.npts / X[0].stats.sampling_rate,
|
||||
X[0].stats.delta)
|
||||
|
||||
# generate envelope function from Hilbert transform
|
||||
y = np.imag(sc.signal.hilbert(x))
|
||||
e = np.sqrt(np.power(x, 2) + np.power(y, 2))
|
||||
# get noise window
|
||||
inoise = getnoisewin(t, pick, TSNR[0], TSNR[1])
|
||||
# get signal window
|
||||
isignal = getsignalwin(t, pick, TSNR[2])
|
||||
# calculate minimum adjusted signal level
|
||||
minsiglevel = max(e[inoise]) * nfac
|
||||
# minimum adjusted number of samples over minimum signal level
|
||||
minnum = len(isignal) * minpercent/100
|
||||
# get number of samples above minimum adjusted signal level
|
||||
numoverthr = len(np.where(e[isignal] >= minsiglevel)[0])
|
||||
|
||||
if numoverthr >= minnum:
|
||||
print 'checksignallength: Signal reached required length.'
|
||||
returnflag = 1
|
||||
else:
|
||||
print 'checksignallength: Signal shorter than required minimum signal length!'
|
||||
print 'Presumably picked picked noise peak, pick is rejected!'
|
||||
returnflag = 0
|
||||
|
||||
if iplot == 2:
|
||||
plt.figure(iplot)
|
||||
p1, = plt.plot(t,x, 'k')
|
||||
p2, = plt.plot(t[inoise], e[inoise])
|
||||
p3, = plt.plot(t[isignal],e[isignal], 'r')
|
||||
p4, = plt.plot([t[isignal[0]], t[isignal[len(isignal)-1]]], \
|
||||
[minsiglevel, minsiglevel], 'g')
|
||||
p5, = plt.plot([pick, pick], [min(x), max(x)], 'c')
|
||||
plt.legend([p1, p2, p3, p4, p5], ['Data', 'Envelope Noise Window', \
|
||||
'Envelope Signal Window', 'Minimum Signal Level', \
|
||||
'Onset'], loc='best')
|
||||
plt.xlabel('Time [s] since %s' % X[0].stats.starttime)
|
||||
plt.ylabel('Counts')
|
||||
plt.title('Check for Signal Length, Station %s' % X[0].stats.station)
|
||||
plt.yticks([])
|
||||
plt.show()
|
||||
raw_input()
|
||||
plt.close(iplot)
|
||||
|
||||
return returnflag
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user