Merge branch 'develop' of ariadne:/data/git/pylot into 176
This commit is contained in:
commit
49cbfd92e5
@ -30,8 +30,8 @@ HYPOSAT #locrt# %location routine used ("HYPO
|
|||||||
300 #Qp# %quality factor for P waves
|
300 #Qp# %quality factor for P waves
|
||||||
100 #Qs# %quality factor for S waves
|
100 #Qs# %quality factor for S waves
|
||||||
#common settings picker#
|
#common settings picker#
|
||||||
20 #pstart# %start time [s] for calculating CF for P-picking
|
15 #pstart# %start time [s] for calculating CF for P-picking
|
||||||
80 #pstop# %end time [s] for calculating CF for P-picking
|
60 #pstop# %end time [s] for calculating CF for P-picking
|
||||||
-1.0 #sstart# %start time [s] after or before(-) P-onset for calculating CF for S-picking
|
-1.0 #sstart# %start time [s] after or before(-) P-onset for calculating CF for S-picking
|
||||||
7 #sstop# %end time [s] after P-onset for calculating CF for S-picking
|
7 #sstop# %end time [s] after P-onset for calculating CF for S-picking
|
||||||
2 20 #bpz1# %lower/upper corner freq. of first band pass filter Z-comp. [Hz]
|
2 20 #bpz1# %lower/upper corner freq. of first band pass filter Z-comp. [Hz]
|
||||||
@ -81,14 +81,14 @@ ARH #algoS# %choose algorithm for S-onset
|
|||||||
#inital AIC onset#
|
#inital AIC onset#
|
||||||
0.01 0.02 0.04 0.08 #timeerrorsP# %discrete time errors [s] corresponding to picking weights [0 1 2 3] for P
|
0.01 0.02 0.04 0.08 #timeerrorsP# %discrete time errors [s] corresponding to picking weights [0 1 2 3] for P
|
||||||
0.04 0.08 0.16 0.32 #timeerrorsS# %discrete time errors [s] corresponding to picking weights [0 1 2 3] for S
|
0.04 0.08 0.16 0.32 #timeerrorsS# %discrete time errors [s] corresponding to picking weights [0 1 2 3] for S
|
||||||
50 #minAICPslope# %below this slope [counts/s] the initial P pick is rejected
|
10 #minAICPslope# %below this slope [counts/s] the initial P pick is rejected
|
||||||
1.2 #minAICPSNR# %below this SNR the initial P pick is rejected
|
1.2 #minAICPSNR# %below this SNR the initial P pick is rejected
|
||||||
6 #minAICSslope# %below this slope [counts/s] the initial S pick is rejected
|
6 #minAICSslope# %below this slope [counts/s] the initial S pick is rejected
|
||||||
1.5 #minAICSSNR# %below this SNR the initial S pick is rejected
|
1.5 #minAICSSNR# %below this SNR the initial S pick is rejected
|
||||||
#check duration of signal using envelope function#
|
#check duration of signal using envelope function#
|
||||||
2.5 #minsiglength# %minimum required length of signal [s]
|
5 #minsiglength# %minimum required length of signal [s]
|
||||||
3 #noisefactor# %noiselevel*noisefactor=threshold
|
1.8 #noisefactor# %noiselevel*noisefactor=threshold
|
||||||
70 #minpercent# %required percentage of samples higher than threshold
|
50 #minpercent# %required percentage of samples higher than threshold
|
||||||
#check for spuriously picked S-onsets#
|
#check for spuriously picked S-onsets#
|
||||||
2.0 #zfac# %P-amplitude must exceed at least zfac times RMS-S amplitude
|
2.0 #zfac# %P-amplitude must exceed at least zfac times RMS-S amplitude
|
||||||
#check statistics of P onsets#
|
#check statistics of P onsets#
|
||||||
|
@ -9,6 +9,7 @@
|
|||||||
EVENT_DATA/LOCAL #datapath# %data path
|
EVENT_DATA/LOCAL #datapath# %data path
|
||||||
2006.01_Nisyros #database# %name of data base
|
2006.01_Nisyros #database# %name of data base
|
||||||
e1412.008.06 #eventID# %event ID for single event processing
|
e1412.008.06 #eventID# %event ID for single event processing
|
||||||
|
/DATA/Egelados/STAT_INFO #invdir# %full path to inventory or dataless-seed file
|
||||||
PILOT #datastructure# %choose data structure
|
PILOT #datastructure# %choose data structure
|
||||||
0 #iplot# %flag for plotting: 0 none, 1, partly, >1 everything
|
0 #iplot# %flag for plotting: 0 none, 1, partly, >1 everything
|
||||||
AUTOPHASES_AIC_HOS4_ARH #phasefile# %name of autoPILOT output phase file
|
AUTOPHASES_AIC_HOS4_ARH #phasefile# %name of autoPILOT output phase file
|
||||||
@ -30,8 +31,8 @@ HYPOSAT #locrt# %location routine used ("HYPO
|
|||||||
100 #Qs# %quality factor for S waves
|
100 #Qs# %quality factor for S waves
|
||||||
#common settings picker#
|
#common settings picker#
|
||||||
20 #pstart# %start time [s] for calculating CF for P-picking
|
20 #pstart# %start time [s] for calculating CF for P-picking
|
||||||
160 #pstop# %end time [s] for calculating CF for P-picking
|
100 #pstop# %end time [s] for calculating CF for P-picking
|
||||||
3.0 #sstart# %start time [s] after or before(-) P-onset for calculating CF for S-picking
|
1.0 #sstart# %start time [s] after or before(-) P-onset for calculating CF for S-picking
|
||||||
100 #sstop# %end time [s] after P-onset for calculating CF for S-picking
|
100 #sstop# %end time [s] after P-onset for calculating CF for S-picking
|
||||||
3 10 #bpz1# %lower/upper corner freq. of first band pass filter Z-comp. [Hz]
|
3 10 #bpz1# %lower/upper corner freq. of first band pass filter Z-comp. [Hz]
|
||||||
3 12 #bpz2# %lower/upper corner freq. of second band pass filter Z-comp. [Hz]
|
3 12 #bpz2# %lower/upper corner freq. of second band pass filter Z-comp. [Hz]
|
||||||
@ -64,11 +65,11 @@ ARH #algoS# %choose algorithm for S-onset
|
|||||||
0.3 #tpred2h# %for HOS/AR, length of AR-prediction window [s], H-components, 2nd pick
|
0.3 #tpred2h# %for HOS/AR, length of AR-prediction window [s], H-components, 2nd pick
|
||||||
4 #Sarorder# %for AR-picker, order of AR process of H-components
|
4 #Sarorder# %for AR-picker, order of AR process of H-components
|
||||||
10 #Srecalcwin# %for AR-picker, window length [s] for recalculation of CF (2nd pick) (H)
|
10 #Srecalcwin# %for AR-picker, window length [s] for recalculation of CF (2nd pick) (H)
|
||||||
6 #pickwinS# %for initial AIC and refined pick, length of S-pick window [s]
|
25 #pickwinS# %for initial AIC and refined pick, length of S-pick window [s]
|
||||||
5 0.2 3.0 3.0 #tsnrh# %for ARH/AR3, window lengths for SNR-and slope estimation [tnoise,tsafetey,tsignal,tslope] [s]
|
5 0.2 3.0 3.0 #tsnrh# %for ARH/AR3, window lengths for SNR-and slope estimation [tnoise,tsafetey,tsignal,tslope] [s]
|
||||||
3.0 #aictsmoothS# %for AIC-picker, take average of samples for smoothing of AIC-function [s]
|
3.5 #aictsmoothS# %for AIC-picker, take average of samples for smoothing of AIC-function [s]
|
||||||
1.0 #tsmoothS# %for AR-picker, take average of samples for smoothing CF [s] (S)
|
1.0 #tsmoothS# %for AR-picker, take average of samples for smoothing CF [s] (S)
|
||||||
0.4 #ausS# %for HOS/AR, artificial uplift of samples (aus) of CF (S)
|
0.2 #ausS# %for HOS/AR, artificial uplift of samples (aus) of CF (S)
|
||||||
1.5 #nfacS# %for AR-picker, noise factor for noise level determination (S)
|
1.5 #nfacS# %for AR-picker, noise factor for noise level determination (S)
|
||||||
%first-motion picker%
|
%first-motion picker%
|
||||||
1 #minfmweight# %minimum required p weight for first-motion determination
|
1 #minfmweight# %minimum required p weight for first-motion determination
|
||||||
@ -78,18 +79,18 @@ ARH #algoS# %choose algorithm for S-onset
|
|||||||
#inital AIC onset#
|
#inital AIC onset#
|
||||||
0.04 0.08 0.16 0.32 #timeerrorsP# %discrete time errors [s] corresponding to picking weights [0 1 2 3] for P
|
0.04 0.08 0.16 0.32 #timeerrorsP# %discrete time errors [s] corresponding to picking weights [0 1 2 3] for P
|
||||||
0.04 0.08 0.16 0.32 #timeerrorsS# %discrete time errors [s] corresponding to picking weights [0 1 2 3] for S
|
0.04 0.08 0.16 0.32 #timeerrorsS# %discrete time errors [s] corresponding to picking weights [0 1 2 3] for S
|
||||||
5 #minAICPslope# %below this slope [counts/s] the initial P pick is rejected
|
3 #minAICPslope# %below this slope [counts/s] the initial P pick is rejected
|
||||||
1.2 #minAICPSNR# %below this SNR the initial P pick is rejected
|
1.2 #minAICPSNR# %below this SNR the initial P pick is rejected
|
||||||
8 #minAICSslope# %below this slope [counts/s] the initial S pick is rejected
|
5 #minAICSslope# %below this slope [counts/s] the initial S pick is rejected
|
||||||
1.5 #minAICSSNR# %below this SNR the initial S pick is rejected
|
2.5 #minAICSSNR# %below this SNR the initial S pick is rejected
|
||||||
#check duration of signal using envelope function#
|
#check duration of signal using envelope function#
|
||||||
6 #minsiglength# %minimum required length of signal [s]
|
30 #minsiglength# %minimum required length of signal [s]
|
||||||
1.5 #noisefactor# %noiselevel*noisefactor=threshold
|
2.5 #noisefactor# %noiselevel*noisefactor=threshold
|
||||||
60 #minpercent# %required percentage of samples higher than threshold
|
60 #minpercent# %required percentage of samples higher than threshold
|
||||||
#check for spuriously picked S-onsets#
|
#check for spuriously picked S-onsets#
|
||||||
1.5 #zfac# %P-amplitude must exceed at least zfac times RMS-S amplitude
|
1.0 #zfac# %P-amplitude must exceed at least zfac times RMS-S amplitude
|
||||||
#check statistics of P onsets#
|
#check statistics of P onsets#
|
||||||
35 #mdttolerance# %maximum allowed deviation of P picks from median [s]
|
45 #mdttolerance# %maximum allowed deviation of P picks from median [s]
|
||||||
#wadati check#
|
#wadati check#
|
||||||
2.0 #wdttolerance# %maximum allowed deviation from Wadati-diagram
|
3.0 #wdttolerance# %maximum allowed deviation from Wadati-diagram
|
||||||
|
|
||||||
|
@ -18,6 +18,7 @@ calculated after Diehl & Kissling (2009).
|
|||||||
|
|
||||||
:author: MAGS2 EP3 working group / Ludger Kueperkoch
|
:author: MAGS2 EP3 working group / Ludger Kueperkoch
|
||||||
"""
|
"""
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
from pylot.core.pick.utils import getnoisewin, getsignalwin
|
from pylot.core.pick.utils import getnoisewin, getsignalwin
|
||||||
@ -245,8 +246,7 @@ class AICPicker(AutoPicking):
|
|||||||
if datafit[0] >= datafit[len(datafit) - 1]:
|
if datafit[0] >= datafit[len(datafit) - 1]:
|
||||||
print 'AICPicker: Negative slope, bad onset skipped!'
|
print 'AICPicker: Negative slope, bad onset skipped!'
|
||||||
return
|
return
|
||||||
|
self.slope = 1 / tslope * (datafit[len(dataslope) - 1] - datafit[0])
|
||||||
self.slope = 1 / tslope * datafit[len(dataslope) - 1] - datafit[0]
|
|
||||||
|
|
||||||
else:
|
else:
|
||||||
self.SNR = None
|
self.SNR = None
|
||||||
|
@ -41,9 +41,9 @@ def autopickevent(data, param):
|
|||||||
|
|
||||||
# quality control
|
# quality control
|
||||||
# median check and jackknife on P-onset times
|
# median check and jackknife on P-onset times
|
||||||
jk_checked_onsets = checkPonsets(all_onsets, mdttolerance, 2)
|
jk_checked_onsets = checkPonsets(all_onsets, mdttolerance, iplot)
|
||||||
# check S-P times (Wadati)
|
# check S-P times (Wadati)
|
||||||
return wadaticheck(jk_checked_onsets, wdttolerance, 2)
|
return wadaticheck(jk_checked_onsets, wdttolerance, iplot)
|
||||||
|
|
||||||
def autopickstation(wfstream, pickparam):
|
def autopickstation(wfstream, pickparam):
|
||||||
"""
|
"""
|
||||||
@ -196,16 +196,18 @@ def autopickstation(wfstream, pickparam):
|
|||||||
##############################################################
|
##############################################################
|
||||||
if aicpick.getpick() is not None:
|
if aicpick.getpick() is not None:
|
||||||
# check signal length to detect spuriously picked noise peaks
|
# check signal length to detect spuriously picked noise peaks
|
||||||
|
# use all available components to avoid skipping correct picks
|
||||||
|
# on vertical traces with weak P coda
|
||||||
z_copy[0].data = tr_filt.data
|
z_copy[0].data = tr_filt.data
|
||||||
Pflag = checksignallength(z_copy, aicpick.getpick(), tsnrz,
|
zne = z_copy
|
||||||
minsiglength, \
|
|
||||||
nfacsl, minpercent, iplot)
|
|
||||||
if Pflag == 1:
|
|
||||||
# check for spuriously picked S onset
|
|
||||||
# both horizontal traces needed
|
|
||||||
if len(ndat) == 0 or len(edat) == 0:
|
if len(ndat) == 0 or len(edat) == 0:
|
||||||
print 'One or more horizontal components missing!'
|
print ("One or more horizontal components missing!")
|
||||||
print 'Skipping control function checkZ4S.'
|
print ("Signal length only checked on vertical component!")
|
||||||
|
print ("Decreasing minsiglengh from %f to %f" \
|
||||||
|
% (minsiglength, minsiglength / 2))
|
||||||
|
Pflag = checksignallength(zne, aicpick.getpick(), tsnrz,
|
||||||
|
minsiglength / 2, \
|
||||||
|
nfacsl, minpercent, iplot)
|
||||||
else:
|
else:
|
||||||
# filter and taper horizontal traces
|
# filter and taper horizontal traces
|
||||||
trH1_filt = edat.copy()
|
trH1_filt = edat.copy()
|
||||||
@ -218,9 +220,19 @@ def autopickstation(wfstream, pickparam):
|
|||||||
zerophase=False)
|
zerophase=False)
|
||||||
trH1_filt.taper(max_percentage=0.05, type='hann')
|
trH1_filt.taper(max_percentage=0.05, type='hann')
|
||||||
trH2_filt.taper(max_percentage=0.05, type='hann')
|
trH2_filt.taper(max_percentage=0.05, type='hann')
|
||||||
zne = z_copy
|
|
||||||
zne += trH1_filt
|
zne += trH1_filt
|
||||||
zne += trH2_filt
|
zne += trH2_filt
|
||||||
|
Pflag = checksignallength(zne, aicpick.getpick(), tsnrz,
|
||||||
|
minsiglength, \
|
||||||
|
nfacsl, minpercent, iplot)
|
||||||
|
|
||||||
|
if Pflag == 1:
|
||||||
|
# check for spuriously picked S onset
|
||||||
|
# both horizontal traces needed
|
||||||
|
if len(ndat) == 0 or len(edat) == 0:
|
||||||
|
print 'One or more horizontal components missing!'
|
||||||
|
print 'Skipping control function checkZ4S.'
|
||||||
|
else:
|
||||||
Pflag = checkZ4S(zne, aicpick.getpick(), zfac, \
|
Pflag = checkZ4S(zne, aicpick.getpick(), zfac, \
|
||||||
tsnrz[3], iplot)
|
tsnrz[3], iplot)
|
||||||
if Pflag == 0:
|
if Pflag == 0:
|
||||||
@ -515,9 +527,10 @@ def autopickstation(wfstream, pickparam):
|
|||||||
hdat = edat.copy()
|
hdat = edat.copy()
|
||||||
hdat += ndat
|
hdat += ndat
|
||||||
h_copy = hdat.copy()
|
h_copy = hdat.copy()
|
||||||
cordat = data.restituteWFData(invdir, h_copy)
|
[cordat, restflag] = data.restituteWFData(invdir, h_copy)
|
||||||
# calculate WA-peak-to-peak amplitude
|
# calculate WA-peak-to-peak amplitude
|
||||||
# using subclass WApp of superclass Magnitude
|
# using subclass WApp of superclass Magnitude
|
||||||
|
if restflag == 1:
|
||||||
if Sweight < 4:
|
if Sweight < 4:
|
||||||
wapp = WApp(cordat, mpickS, mpickP + sstop, iplot)
|
wapp = WApp(cordat, mpickS, mpickP + sstop, iplot)
|
||||||
else:
|
else:
|
||||||
@ -544,7 +557,8 @@ def autopickstation(wfstream, pickparam):
|
|||||||
hdat = edat.copy()
|
hdat = edat.copy()
|
||||||
hdat += ndat
|
hdat += ndat
|
||||||
h_copy = hdat.copy()
|
h_copy = hdat.copy()
|
||||||
cordat = data.restituteWFData(invdir, h_copy)
|
[cordat, restflag] = data.restituteWFData(invdir, h_copy)
|
||||||
|
if restflag == 1:
|
||||||
# calculate WA-peak-to-peak amplitude
|
# calculate WA-peak-to-peak amplitude
|
||||||
# using subclass WApp of superclass Magnitude
|
# using subclass WApp of superclass Magnitude
|
||||||
wapp = WApp(cordat, mpickP, mpickP + sstop + (0.5 * (mpickP \
|
wapp = WApp(cordat, mpickP, mpickP + sstop + (0.5 * (mpickP \
|
||||||
|
@ -9,7 +9,6 @@
|
|||||||
"""
|
"""
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import scipy as sc
|
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
from obspy.core import Stream, UTCDateTime
|
from obspy.core import Stream, UTCDateTime
|
||||||
import warnings
|
import warnings
|
||||||
@ -44,7 +43,7 @@ def earllatepicker(X, nfac, TSNR, Pick1, iplot=None):
|
|||||||
LPick = None
|
LPick = None
|
||||||
EPick = None
|
EPick = None
|
||||||
PickError = None
|
PickError = None
|
||||||
print 'earllatepicker: Get earliest and latest possible pick relative to most likely pick ...'
|
print ("earllatepicker: Get earliest and latest possible pick relative to most likely pick ...")
|
||||||
|
|
||||||
x = X[0].data
|
x = X[0].data
|
||||||
t = np.arange(0, X[0].stats.npts / X[0].stats.sampling_rate,
|
t = np.arange(0, X[0].stats.npts / X[0].stats.sampling_rate,
|
||||||
@ -60,8 +59,8 @@ def earllatepicker(X, nfac, TSNR, Pick1, iplot=None):
|
|||||||
ilup, = np.where(x[isignal] > nlevel)
|
ilup, = np.where(x[isignal] > nlevel)
|
||||||
ildown, = np.where(x[isignal] < -nlevel)
|
ildown, = np.where(x[isignal] < -nlevel)
|
||||||
if not ilup.size and not ildown.size:
|
if not ilup.size and not ildown.size:
|
||||||
print 'earllatepicker: Signal lower than noise level!'
|
print ("earllatepicker: Signal lower than noise level!")
|
||||||
print 'Skip this trace!'
|
print ("Skip this trace!")
|
||||||
return LPick, EPick, PickError
|
return LPick, EPick, PickError
|
||||||
il = min(np.min(ilup) if ilup.size else float('inf'),
|
il = min(np.min(ilup) if ilup.size else float('inf'),
|
||||||
np.min(ildown) if ildown.size else float('inf'))
|
np.min(ildown) if ildown.size else float('inf'))
|
||||||
@ -143,7 +142,7 @@ def fmpicker(Xraw, Xfilt, pickwin, Pick, iplot=None):
|
|||||||
|
|
||||||
FM = None
|
FM = None
|
||||||
if Pick is not None:
|
if Pick is not None:
|
||||||
print 'fmpicker: Get first motion (polarity) of onset using unfiltered seismogram...'
|
print ("fmpicker: Get first motion (polarity) of onset using unfiltered seismogram...")
|
||||||
|
|
||||||
xraw = Xraw[0].data
|
xraw = Xraw[0].data
|
||||||
xfilt = Xfilt[0].data
|
xfilt = Xfilt[0].data
|
||||||
@ -182,15 +181,15 @@ def fmpicker(Xraw, Xfilt, pickwin, Pick, iplot=None):
|
|||||||
else:
|
else:
|
||||||
li1 = index1[0]
|
li1 = index1[0]
|
||||||
if np.size(xraw[ipick[0][1]:ipick[0][li1]]) == 0:
|
if np.size(xraw[ipick[0][1]:ipick[0][li1]]) == 0:
|
||||||
print 'fmpicker: Onset on unfiltered trace too emergent for first motion determination!'
|
print ("fmpicker: Onset on unfiltered trace too emergent for first motion determination!")
|
||||||
P1 = None
|
P1 = None
|
||||||
else:
|
else:
|
||||||
imax1 = np.argmax(abs(xraw[ipick[0][1]:ipick[0][li1]]))
|
imax1 = np.argmax(abs(xraw[ipick[0][1]:ipick[0][li1]]))
|
||||||
if imax1 == 0:
|
if imax1 == 0:
|
||||||
imax1 = np.argmax(abs(xraw[ipick[0][1]:ipick[0][index1[1]]]))
|
imax1 = np.argmax(abs(xraw[ipick[0][1]:ipick[0][index1[1]]]))
|
||||||
if imax1 == 0:
|
if imax1 == 0:
|
||||||
print 'fmpicker: Zero crossings too close!'
|
print ("fmpicker: Zero crossings too close!")
|
||||||
print 'Skip first motion determination!'
|
print ("Skip first motion determination!")
|
||||||
return FM
|
return FM
|
||||||
|
|
||||||
islope1 = np.where((t >= Pick) & (t <= Pick + t[imax1]))
|
islope1 = np.where((t >= Pick) & (t <= Pick + t[imax1]))
|
||||||
@ -224,15 +223,15 @@ def fmpicker(Xraw, Xfilt, pickwin, Pick, iplot=None):
|
|||||||
else:
|
else:
|
||||||
li2 = index2[0]
|
li2 = index2[0]
|
||||||
if np.size(xfilt[ipick[0][1]:ipick[0][li2]]) == 0:
|
if np.size(xfilt[ipick[0][1]:ipick[0][li2]]) == 0:
|
||||||
print 'fmpicker: Onset on filtered trace too emergent for first motion determination!'
|
print ("fmpicker: Onset on filtered trace too emergent for first motion determination!")
|
||||||
P2 = None
|
P2 = None
|
||||||
else:
|
else:
|
||||||
imax2 = np.argmax(abs(xfilt[ipick[0][1]:ipick[0][li2]]))
|
imax2 = np.argmax(abs(xfilt[ipick[0][1]:ipick[0][li2]]))
|
||||||
if imax2 == 0:
|
if imax2 == 0:
|
||||||
imax2 = np.argmax(abs(xfilt[ipick[0][1]:ipick[0][index2[1]]]))
|
imax2 = np.argmax(abs(xfilt[ipick[0][1]:ipick[0][index2[1]]]))
|
||||||
if imax2 == 0:
|
if imax2 == 0:
|
||||||
print 'fmpicker: Zero crossings too close!'
|
print ("fmpicker: Zero crossings too close!")
|
||||||
print 'Skip first motion determination!'
|
print ("Skip first motion determination!")
|
||||||
return FM
|
return FM
|
||||||
|
|
||||||
islope2 = np.where((t >= Pick) & (t <= Pick + t[imax2]))
|
islope2 = np.where((t >= Pick) & (t <= Pick + t[imax2]))
|
||||||
@ -256,7 +255,7 @@ def fmpicker(Xraw, Xfilt, pickwin, Pick, iplot=None):
|
|||||||
elif P1[0] > 0 and P2[0] <= 0:
|
elif P1[0] > 0 and P2[0] <= 0:
|
||||||
FM = '+'
|
FM = '+'
|
||||||
|
|
||||||
print 'fmpicker: Found polarity %s' % FM
|
print ("fmpicker: Found polarity %s" % FM)
|
||||||
|
|
||||||
if iplot > 1:
|
if iplot > 1:
|
||||||
plt.figure(iplot)
|
plt.figure(iplot)
|
||||||
@ -331,10 +330,10 @@ def getSNR(X, TSNR, t1):
|
|||||||
# get signal window
|
# get signal window
|
||||||
isignal = getsignalwin(t, t1, TSNR[2])
|
isignal = getsignalwin(t, t1, TSNR[2])
|
||||||
if np.size(inoise) < 1:
|
if np.size(inoise) < 1:
|
||||||
print 'getSNR: Empty array inoise, check noise window!'
|
print ("getSNR: Empty array inoise, check noise window!")
|
||||||
return
|
return
|
||||||
elif np.size(isignal) < 1:
|
elif np.size(isignal) < 1:
|
||||||
print 'getSNR: Empty array isignal, check signal window!'
|
print ("getSNR: Empty array isignal, check signal window!")
|
||||||
return
|
return
|
||||||
|
|
||||||
# demean over entire waveform
|
# demean over entire waveform
|
||||||
@ -372,7 +371,7 @@ def getnoisewin(t, t1, tnoise, tgap):
|
|||||||
inoise, = np.where((t <= max([t1 - tgap, 0])) \
|
inoise, = np.where((t <= max([t1 - tgap, 0])) \
|
||||||
& (t >= max([t1 - tnoise - tgap, 0])))
|
& (t >= max([t1 - tnoise - tgap, 0])))
|
||||||
if np.size(inoise) < 1:
|
if np.size(inoise) < 1:
|
||||||
print 'getnoisewin: Empty array inoise, check noise window!'
|
print ("getnoisewin: Empty array inoise, check noise window!")
|
||||||
|
|
||||||
return inoise
|
return inoise
|
||||||
|
|
||||||
@ -396,7 +395,7 @@ def getsignalwin(t, t1, tsignal):
|
|||||||
isignal, = np.where((t <= min([t1 + tsignal, len(t)])) \
|
isignal, = np.where((t <= min([t1 + tsignal, len(t)])) \
|
||||||
& (t >= t1))
|
& (t >= t1))
|
||||||
if np.size(isignal) < 1:
|
if np.size(isignal) < 1:
|
||||||
print 'getsignalwin: Empty array isignal, check signal window!'
|
print ("getsignalwin: Empty array isignal, check signal window!")
|
||||||
|
|
||||||
return isignal
|
return isignal
|
||||||
|
|
||||||
@ -483,8 +482,8 @@ def wadaticheck(pickdic, dttolerance, iplot):
|
|||||||
|
|
||||||
# calculate vp/vs ratio before check
|
# calculate vp/vs ratio before check
|
||||||
vpvsr = p1[0] + 1
|
vpvsr = p1[0] + 1
|
||||||
print '###############################################'
|
print ("###############################################")
|
||||||
print 'wadaticheck: Average Vp/Vs ratio before check:', vpvsr
|
print ("wadaticheck: Average Vp/Vs ratio before check: %f" % vpvsr)
|
||||||
|
|
||||||
checkedPpicks = []
|
checkedPpicks = []
|
||||||
checkedSpicks = []
|
checkedSpicks = []
|
||||||
@ -521,18 +520,18 @@ def wadaticheck(pickdic, dttolerance, iplot):
|
|||||||
|
|
||||||
# calculate vp/vs ratio after check
|
# calculate vp/vs ratio after check
|
||||||
cvpvsr = p2[0] + 1
|
cvpvsr = p2[0] + 1
|
||||||
print 'wadaticheck: Average Vp/Vs ratio after check:', cvpvsr
|
print ("wadaticheck: Average Vp/Vs ratio after check: %f" % cvpvsr)
|
||||||
print 'wadatacheck: Skipped %d S pick(s).' % ibad
|
print ("wadatacheck: Skipped %d S pick(s)" % ibad)
|
||||||
else:
|
else:
|
||||||
print '###############################################'
|
print ("###############################################")
|
||||||
print 'wadatacheck: Not enough checked S-P times available!'
|
print ("wadatacheck: Not enough checked S-P times available!")
|
||||||
print 'Skip Wadati check!'
|
print ("Skip Wadati check!")
|
||||||
|
|
||||||
checkedonsets = pickdic
|
checkedonsets = pickdic
|
||||||
|
|
||||||
else:
|
else:
|
||||||
print 'wadaticheck: Not enough S-P times available for reliable regression!'
|
print ("wadaticheck: Not enough S-P times available for reliable regression!")
|
||||||
print 'Skip wadati check!'
|
print ("Skip wadati check!")
|
||||||
wfitflag = 1
|
wfitflag = 1
|
||||||
|
|
||||||
# plot results
|
# plot results
|
||||||
@ -562,9 +561,9 @@ def wadaticheck(pickdic, dttolerance, iplot):
|
|||||||
def checksignallength(X, pick, TSNR, minsiglength, nfac, minpercent, iplot):
|
def checksignallength(X, pick, TSNR, minsiglength, nfac, minpercent, iplot):
|
||||||
'''
|
'''
|
||||||
Function to detect spuriously picked noise peaks.
|
Function to detect spuriously picked noise peaks.
|
||||||
Uses envelope to determine, how many samples [per cent] after
|
Uses RMS trace of all 3 components (if available) to determine,
|
||||||
P onset are below certain threshold, calculated from noise
|
how many samples [per cent] after P onset are below certain
|
||||||
level times noise factor.
|
threshold, calculated from noise level times noise factor.
|
||||||
|
|
||||||
: param: X, time series (seismogram)
|
: param: X, time series (seismogram)
|
||||||
: type: `~obspy.core.stream.Stream`
|
: type: `~obspy.core.stream.Stream`
|
||||||
@ -592,47 +591,54 @@ def checksignallength(X, pick, TSNR, minsiglength, nfac, minpercent, iplot):
|
|||||||
|
|
||||||
assert isinstance(X, Stream), "%s is not a stream object" % str(X)
|
assert isinstance(X, Stream), "%s is not a stream object" % str(X)
|
||||||
|
|
||||||
print 'Checking signal length ...'
|
print ("Checking signal length ...")
|
||||||
|
|
||||||
x = X[0].data
|
if len(X) > 1:
|
||||||
t = np.arange(0, X[0].stats.npts / X[0].stats.sampling_rate,
|
# all three components available
|
||||||
|
# make sure, all components have equal lengths
|
||||||
|
ilen = min([len(X[0].data), len(X[1].data), len(X[2].data)])
|
||||||
|
x1 = X[0][0:ilen]
|
||||||
|
x2 = X[1][0:ilen]
|
||||||
|
x3 = X[2][0:ilen]
|
||||||
|
# get RMS trace
|
||||||
|
rms = np.sqrt((np.power(x1, 2) + np.power(x2, 2) + np.power(x3, 2)) / 3)
|
||||||
|
else:
|
||||||
|
x1 = X[0].data
|
||||||
|
rms = np.sqrt(np.power(2, x1))
|
||||||
|
|
||||||
|
t = np.arange(0, ilen / X[0].stats.sampling_rate,
|
||||||
X[0].stats.delta)
|
X[0].stats.delta)
|
||||||
|
|
||||||
# generate envelope function from Hilbert transform
|
# get noise window in front of pick plus saftey gap
|
||||||
y = np.imag(sc.signal.hilbert(x))
|
inoise = getnoisewin(t, pick - 0.5, TSNR[0], TSNR[1])
|
||||||
e = np.sqrt(np.power(x, 2) + np.power(y, 2))
|
|
||||||
# get noise window
|
|
||||||
inoise = getnoisewin(t, pick, TSNR[0], TSNR[1])
|
|
||||||
# get signal window
|
# get signal window
|
||||||
isignal = getsignalwin(t, pick, TSNR[2])
|
isignal = getsignalwin(t, pick, minsiglength)
|
||||||
# calculate minimum adjusted signal level
|
# calculate minimum adjusted signal level
|
||||||
minsiglevel = max(e[inoise]) * nfac
|
minsiglevel = max(rms[inoise]) * nfac
|
||||||
# minimum adjusted number of samples over minimum signal level
|
# minimum adjusted number of samples over minimum signal level
|
||||||
minnum = len(isignal) * minpercent/100
|
minnum = len(isignal) * minpercent/100
|
||||||
# get number of samples above minimum adjusted signal level
|
# get number of samples above minimum adjusted signal level
|
||||||
numoverthr = len(np.where(e[isignal] >= minsiglevel)[0])
|
numoverthr = len(np.where(rms[isignal] >= minsiglevel)[0])
|
||||||
|
|
||||||
if numoverthr >= minnum:
|
if numoverthr >= minnum:
|
||||||
print 'checksignallength: Signal reached required length.'
|
print ("checksignallength: Signal reached required length.")
|
||||||
returnflag = 1
|
returnflag = 1
|
||||||
else:
|
else:
|
||||||
print 'checksignallength: Signal shorter than required minimum signal length!'
|
print ("checksignallength: Signal shorter than required minimum signal length!")
|
||||||
print 'Presumably picked noise peak, pick is rejected!'
|
print ("Presumably picked noise peak, pick is rejected!")
|
||||||
print '(min. signal length required:', minsiglength, 's)'
|
print ("(min. signal length required: %s s)" % minsiglength)
|
||||||
returnflag = 0
|
returnflag = 0
|
||||||
|
|
||||||
if iplot == 2:
|
if iplot == 2:
|
||||||
plt.figure(iplot)
|
plt.figure(iplot)
|
||||||
p1, = plt.plot(t,x, 'k')
|
p1, = plt.plot(t,rms, 'k')
|
||||||
p2, = plt.plot(t[inoise], e[inoise], 'c')
|
p2, = plt.plot(t[inoise], rms[inoise], 'c')
|
||||||
p3, = plt.plot(t[isignal],e[isignal], 'r')
|
p3, = plt.plot(t[isignal],rms[isignal], 'r')
|
||||||
p2, = plt.plot(t[inoise], e[inoise])
|
|
||||||
p3, = plt.plot(t[isignal],e[isignal], 'r')
|
|
||||||
p4, = plt.plot([t[isignal[0]], t[isignal[len(isignal)-1]]], \
|
p4, = plt.plot([t[isignal[0]], t[isignal[len(isignal)-1]]], \
|
||||||
[minsiglevel, minsiglevel], 'g')
|
[minsiglevel, minsiglevel], 'g', linewidth=2)
|
||||||
p5, = plt.plot([pick, pick], [min(x), max(x)], 'b', linewidth=2)
|
p5, = plt.plot([pick, pick], [min(rms), max(rms)], 'b', linewidth=2)
|
||||||
plt.legend([p1, p2, p3, p4, p5], ['Data', 'Envelope Noise Window', \
|
plt.legend([p1, p2, p3, p4, p5], ['RMS Data', 'RMS Noise Window', \
|
||||||
'Envelope Signal Window', 'Minimum Signal Level', \
|
'RMS Signal Window', 'Minimum Signal Level', \
|
||||||
'Onset'], loc='best')
|
'Onset'], loc='best')
|
||||||
plt.xlabel('Time [s] since %s' % X[0].stats.starttime)
|
plt.xlabel('Time [s] since %s' % X[0].stats.starttime)
|
||||||
plt.ylabel('Counts')
|
plt.ylabel('Counts')
|
||||||
@ -675,8 +681,8 @@ def checkPonsets(pickdic, dttolerance, iplot):
|
|||||||
stations.append(key)
|
stations.append(key)
|
||||||
|
|
||||||
# apply jackknife bootstrapping on variance of P onsets
|
# apply jackknife bootstrapping on variance of P onsets
|
||||||
print '###############################################'
|
print ("###############################################")
|
||||||
print 'checkPonsets: Apply jackknife bootstrapping on P-onset times ...'
|
print ("checkPonsets: Apply jackknife bootstrapping on P-onset times ...")
|
||||||
[xjack,PHI_pseudo,PHI_sub] = jackknife(Ppicks, 'VAR', 1)
|
[xjack,PHI_pseudo,PHI_sub] = jackknife(Ppicks, 'VAR', 1)
|
||||||
# get pseudo variances smaller than average variances
|
# get pseudo variances smaller than average variances
|
||||||
# (times safety factor), these picks passed jackknife test
|
# (times safety factor), these picks passed jackknife test
|
||||||
@ -684,7 +690,7 @@ def checkPonsets(pickdic, dttolerance, iplot):
|
|||||||
# these picks did not pass jackknife test
|
# these picks did not pass jackknife test
|
||||||
badjk = np.where(PHI_pseudo > 2 * xjack)
|
badjk = np.where(PHI_pseudo > 2 * xjack)
|
||||||
badjkstations = np.array(stations)[badjk]
|
badjkstations = np.array(stations)[badjk]
|
||||||
print 'checkPonsets: %d pick(s) did not pass jackknife test!' % len(badjkstations)
|
print ("checkPonsets: %d pick(s) did not pass jackknife test!" % len(badjkstations))
|
||||||
|
|
||||||
# calculate median from these picks
|
# calculate median from these picks
|
||||||
pmedian = np.median(np.array(Ppicks)[ij])
|
pmedian = np.median(np.array(Ppicks)[ij])
|
||||||
@ -696,9 +702,9 @@ def checkPonsets(pickdic, dttolerance, iplot):
|
|||||||
goodstations = np.array(stations)[igood]
|
goodstations = np.array(stations)[igood]
|
||||||
badstations = np.array(stations)[ibad]
|
badstations = np.array(stations)[ibad]
|
||||||
|
|
||||||
print 'checkPonsets: %d pick(s) deviate too much from median!' % len(ibad)
|
print ("checkPonsets: %d pick(s) deviate too much from median!" % len(ibad))
|
||||||
print 'checkPonsets: Skipped %d P pick(s) out of %d' % (len(badstations) \
|
print ("checkPonsets: Skipped %d P pick(s) out of %d" % (len(badstations) \
|
||||||
+ len(badjkstations), len(stations))
|
+ len(badjkstations), len(stations)))
|
||||||
|
|
||||||
goodmarker = 'goodPonsetcheck'
|
goodmarker = 'goodPonsetcheck'
|
||||||
badmarker = 'badPonsetcheck'
|
badmarker = 'badPonsetcheck'
|
||||||
@ -765,8 +771,8 @@ def jackknife(X, phi, h):
|
|||||||
g = len(X) / h
|
g = len(X) / h
|
||||||
|
|
||||||
if type(g) is not int:
|
if type(g) is not int:
|
||||||
print 'jackknife: Cannot divide quantity X in equal sized subgroups!'
|
print ("jackknife: Cannot divide quantity X in equal sized subgroups!")
|
||||||
print 'Choose another size for subgroups!'
|
print ("Choose another size for subgroups!")
|
||||||
return PHI_jack, PHI_pseudo, PHI_sub
|
return PHI_jack, PHI_pseudo, PHI_sub
|
||||||
else:
|
else:
|
||||||
# estimator of undisturbed spot check
|
# estimator of undisturbed spot check
|
||||||
@ -834,7 +840,7 @@ def checkZ4S(X, pick, zfac, checkwin, iplot):
|
|||||||
|
|
||||||
assert isinstance(X, Stream), "%s is not a stream object" % str(X)
|
assert isinstance(X, Stream), "%s is not a stream object" % str(X)
|
||||||
|
|
||||||
print 'Check for spuriously picked S onset instead of P onset ...'
|
print ("Check for spuriously picked S onset instead of P onset ...")
|
||||||
|
|
||||||
returnflag = 0
|
returnflag = 0
|
||||||
|
|
||||||
@ -875,9 +881,9 @@ def checkZ4S(X, pick, zfac, checkwin, iplot):
|
|||||||
# vertical P-coda level must exceed horizontal P-coda level
|
# vertical P-coda level must exceed horizontal P-coda level
|
||||||
# zfac times encodalevel
|
# zfac times encodalevel
|
||||||
if zcodalevel < minsiglevel:
|
if zcodalevel < minsiglevel:
|
||||||
print 'checkZ4S: Maybe S onset? Skip this P pick!'
|
print ("checkZ4S: Maybe S onset? Skip this P pick!")
|
||||||
else:
|
else:
|
||||||
print 'checkZ4S: P onset passes checkZ4S test!'
|
print ("checkZ4S: P onset passes checkZ4S test!")
|
||||||
returnflag = 1
|
returnflag = 1
|
||||||
|
|
||||||
if iplot > 1:
|
if iplot > 1:
|
||||||
|
@ -229,6 +229,9 @@ class Data(object):
|
|||||||
:param streams:
|
:param streams:
|
||||||
:return:
|
:return:
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
restflag = 0
|
||||||
|
|
||||||
if streams is None:
|
if streams is None:
|
||||||
st_raw = self.getWFData()
|
st_raw = self.getWFData()
|
||||||
st = st_raw.copy()
|
st = st_raw.copy()
|
||||||
@ -237,7 +240,7 @@ class Data(object):
|
|||||||
|
|
||||||
for tr in st:
|
for tr in st:
|
||||||
# remove underscores
|
# remove underscores
|
||||||
if tr.stats.station[3] == '_':
|
if len(tr.stats.station) > 3 and tr.stats.station[3] == '_':
|
||||||
tr.stats.station = tr.stats.station[0:3]
|
tr.stats.station = tr.stats.station[0:3]
|
||||||
dlp = '%s/*.dless' % invdlpath
|
dlp = '%s/*.dless' % invdlpath
|
||||||
invp = '%s/*.xml' % invdlpath
|
invp = '%s/*.xml' % invdlpath
|
||||||
@ -274,6 +277,7 @@ class Data(object):
|
|||||||
'date': st[
|
'date': st[
|
||||||
i].stats.starttime,
|
i].stats.starttime,
|
||||||
'units': "VEL"})
|
'units': "VEL"})
|
||||||
|
restflag = 1
|
||||||
except ValueError as e:
|
except ValueError as e:
|
||||||
vmsg = '{0}'.format(e)
|
vmsg = '{0}'.format(e)
|
||||||
print(vmsg)
|
print(vmsg)
|
||||||
@ -304,6 +308,7 @@ class Data(object):
|
|||||||
st[i].attach_response(inv)
|
st[i].attach_response(inv)
|
||||||
st[i].remove_response(output='VEL',
|
st[i].remove_response(output='VEL',
|
||||||
pre_filt=prefilt)
|
pre_filt=prefilt)
|
||||||
|
restflag = 1
|
||||||
except ValueError as e:
|
except ValueError as e:
|
||||||
vmsg = '{0}'.format(e)
|
vmsg = '{0}'.format(e)
|
||||||
print(vmsg)
|
print(vmsg)
|
||||||
@ -335,6 +340,7 @@ class Data(object):
|
|||||||
'units': "VEL"}
|
'units': "VEL"}
|
||||||
st[i].simulate(paz_remove=None, pre_filt=prefilt,
|
st[i].simulate(paz_remove=None, pre_filt=prefilt,
|
||||||
seedresp=seedresp)
|
seedresp=seedresp)
|
||||||
|
restflag = 1
|
||||||
except ValueError as e:
|
except ValueError as e:
|
||||||
vmsg = '{0}'.format(e)
|
vmsg = '{0}'.format(e)
|
||||||
print(vmsg)
|
print(vmsg)
|
||||||
@ -347,7 +353,7 @@ class Data(object):
|
|||||||
print("Go on processing data without source parameter "
|
print("Go on processing data without source parameter "
|
||||||
"determination!")
|
"determination!")
|
||||||
|
|
||||||
return st
|
return st, restflag
|
||||||
|
|
||||||
def getEvtData(self):
|
def getEvtData(self):
|
||||||
"""
|
"""
|
||||||
|
Loading…
Reference in New Issue
Block a user