reformat code (fix indentation and python 3.x issues)
This commit is contained in:
parent
3dc9bb3d06
commit
4bd92565b9
@ -147,7 +147,7 @@ class AICPicker(AutoPicking):
|
|||||||
|
|
||||||
def calcPick(self):
|
def calcPick(self):
|
||||||
|
|
||||||
print 'AICPicker: Get initial onset time (pick) from AIC-CF ...'
|
print('AICPicker: Get initial onset time (pick) from AIC-CF ...')
|
||||||
|
|
||||||
self.Pick = None
|
self.Pick = None
|
||||||
self.slope = None
|
self.slope = None
|
||||||
@ -163,7 +163,7 @@ class AICPicker(AutoPicking):
|
|||||||
ismooth = int(round(self.Tsmooth / self.dt))
|
ismooth = int(round(self.Tsmooth / self.dt))
|
||||||
aicsmooth = np.zeros(len(aic))
|
aicsmooth = np.zeros(len(aic))
|
||||||
if len(aic) < ismooth:
|
if len(aic) < ismooth:
|
||||||
print 'AICPicker: Tsmooth larger than CF!'
|
print('AICPicker: Tsmooth larger than CF!')
|
||||||
return
|
return
|
||||||
else:
|
else:
|
||||||
for i in range(1, len(aic)):
|
for i in range(1, len(aic)):
|
||||||
@ -211,8 +211,8 @@ class AICPicker(AutoPicking):
|
|||||||
# get signal window
|
# get signal window
|
||||||
isignal = getsignalwin(self.Tcf, self.Pick, self.TSNR[2])
|
isignal = getsignalwin(self.Tcf, self.Pick, self.TSNR[2])
|
||||||
# calculate SNR from CF
|
# calculate SNR from CF
|
||||||
self.SNR = max(abs(aic[isignal] - np.mean(aic[isignal]))) / max(abs(aic[inoise] \
|
self.SNR = max(abs(aic[isignal] - np.mean(aic[isignal]))) / \
|
||||||
- np.mean(aic[inoise])))
|
max(abs(aic[inoise] - np.mean(aic[inoise])))
|
||||||
# calculate slope from CF after initial pick
|
# calculate slope from CF after initial pick
|
||||||
# get slope window
|
# get slope window
|
||||||
tslope = self.TSNR[3] #slope determination window
|
tslope = self.TSNR[3] #slope determination window
|
||||||
@ -222,8 +222,8 @@ class AICPicker(AutoPicking):
|
|||||||
# 'cause slope should be calculated up to first local minimum only!
|
# 'cause slope should be calculated up to first local minimum only!
|
||||||
imax = np.argmax(self.Data[0].data[islope])
|
imax = np.argmax(self.Data[0].data[islope])
|
||||||
if imax == 0:
|
if imax == 0:
|
||||||
print 'AICPicker: Maximum for slope determination right at the beginning of the window!'
|
print('AICPicker: Maximum for slope determination right at the beginning of the window!')
|
||||||
print 'Choose longer slope determination window!'
|
print('Choose longer slope determination window!')
|
||||||
if self.iplot > 1:
|
if self.iplot > 1:
|
||||||
p = plt.figure(self.iplot)
|
p = plt.figure(self.iplot)
|
||||||
x = self.Data[0].data
|
x = self.Data[0].data
|
||||||
@ -244,7 +244,7 @@ class AICPicker(AutoPicking):
|
|||||||
P = np.polyfit(xslope, dataslope, 1)
|
P = np.polyfit(xslope, dataslope, 1)
|
||||||
datafit = np.polyval(P, xslope)
|
datafit = np.polyval(P, xslope)
|
||||||
if datafit[0] >= datafit[len(datafit) - 1]:
|
if datafit[0] >= datafit[len(datafit) - 1]:
|
||||||
print 'AICPicker: Negative slope, bad onset skipped!'
|
print('AICPicker: Negative slope, bad onset skipped!')
|
||||||
return
|
return
|
||||||
self.slope = 1 / tslope * (datafit[len(dataslope) - 1] - datafit[0])
|
self.slope = 1 / tslope * (datafit[len(dataslope) - 1] - datafit[0])
|
||||||
|
|
||||||
@ -273,9 +273,9 @@ class AICPicker(AutoPicking):
|
|||||||
p13, = plt.plot(self.Tcf[isignal], self.Data[0].data[isignal], 'r')
|
p13, = plt.plot(self.Tcf[isignal], self.Data[0].data[isignal], 'r')
|
||||||
p14, = plt.plot(self.Tcf[islope], dataslope, 'g--')
|
p14, = plt.plot(self.Tcf[islope], dataslope, 'g--')
|
||||||
p15, = plt.plot(self.Tcf[islope], datafit, 'g', linewidth=2)
|
p15, = plt.plot(self.Tcf[islope], datafit, 'g', linewidth=2)
|
||||||
plt.legend([p11, p12, p13, p14, p15], ['Data', 'Noise Window', 'Signal Window', 'Slope Window', 'Slope'], \
|
plt.legend([p11, p12, p13, p14, p15], ['Data', 'Noise Window', 'Signal Window', 'Slope Window', 'Slope'],
|
||||||
loc='best')
|
loc='best')
|
||||||
plt.title('Station %s, SNR=%7.2f, Slope= %12.2f counts/s' % (self.Data[0].stats.station, \
|
plt.title('Station %s, SNR=%7.2f, Slope= %12.2f counts/s' % (self.Data[0].stats.station,
|
||||||
self.SNR, self.slope))
|
self.SNR, self.slope))
|
||||||
plt.xlabel('Time [s] since %s' % self.Data[0].stats.starttime)
|
plt.xlabel('Time [s] since %s' % self.Data[0].stats.starttime)
|
||||||
plt.ylabel('Counts')
|
plt.ylabel('Counts')
|
||||||
@ -286,7 +286,7 @@ class AICPicker(AutoPicking):
|
|||||||
plt.close(p)
|
plt.close(p)
|
||||||
|
|
||||||
if self.Pick == None:
|
if self.Pick == None:
|
||||||
print 'AICPicker: Could not find minimum, picking window too short?'
|
print('AICPicker: Could not find minimum, picking window too short?')
|
||||||
|
|
||||||
|
|
||||||
class PragPicker(AutoPicking):
|
class PragPicker(AutoPicking):
|
||||||
@ -297,7 +297,7 @@ class PragPicker(AutoPicking):
|
|||||||
def calcPick(self):
|
def calcPick(self):
|
||||||
|
|
||||||
if self.getpick1() is not None:
|
if self.getpick1() is not None:
|
||||||
print 'PragPicker: Get most likely pick from HOS- or AR-CF using pragmatic picking algorithm ...'
|
print('PragPicker: Get most likely pick from HOS- or AR-CF using pragmatic picking algorithm ...')
|
||||||
|
|
||||||
self.Pick = None
|
self.Pick = None
|
||||||
self.SNR = None
|
self.SNR = None
|
||||||
@ -307,7 +307,7 @@ class PragPicker(AutoPicking):
|
|||||||
ismooth = int(round(self.Tsmooth / self.dt))
|
ismooth = int(round(self.Tsmooth / self.dt))
|
||||||
cfsmooth = np.zeros(len(self.cf))
|
cfsmooth = np.zeros(len(self.cf))
|
||||||
if len(self.cf) < ismooth:
|
if len(self.cf) < ismooth:
|
||||||
print 'PragPicker: Tsmooth larger than CF!'
|
print('PragPicker: Tsmooth larger than CF!')
|
||||||
return
|
return
|
||||||
else:
|
else:
|
||||||
for i in range(1, len(self.cf)):
|
for i in range(1, len(self.cf)):
|
||||||
@ -330,11 +330,11 @@ class PragPicker(AutoPicking):
|
|||||||
#check trend of CF, i.e. differences of CF and adjust aus regarding this trend
|
#check trend of CF, i.e. differences of CF and adjust aus regarding this trend
|
||||||
#prominent trend: decrease aus
|
#prominent trend: decrease aus
|
||||||
#flat: use given aus
|
#flat: use given aus
|
||||||
cfdiff = np.diff(cfipick);
|
cfdiff = np.diff(cfipick)
|
||||||
i0diff = np.where(cfdiff > 0)
|
i0diff = np.where(cfdiff > 0)
|
||||||
cfdiff = cfdiff[i0diff]
|
cfdiff = cfdiff[i0diff]
|
||||||
minaus = min(cfdiff * (1 + self.aus));
|
minaus = min(cfdiff * (1 + self.aus))
|
||||||
aus1 = max([minaus, self.aus]);
|
aus1 = max([minaus, self.aus])
|
||||||
|
|
||||||
#at first we look to the right until the end of the pick window is reached
|
#at first we look to the right until the end of the pick window is reached
|
||||||
flagpick_r = 0
|
flagpick_r = 0
|
||||||
@ -374,7 +374,7 @@ class PragPicker(AutoPicking):
|
|||||||
self.Pick = pick_l
|
self.Pick = pick_l
|
||||||
pickflag = 1
|
pickflag = 1
|
||||||
else:
|
else:
|
||||||
print 'PragPicker: Could not find reliable onset!'
|
print('PragPicker: Could not find reliable onset!')
|
||||||
self.Pick = None
|
self.Pick = None
|
||||||
pickflag = 0
|
pickflag = 0
|
||||||
|
|
||||||
@ -393,6 +393,6 @@ class PragPicker(AutoPicking):
|
|||||||
plt.close(p)
|
plt.close(p)
|
||||||
|
|
||||||
else:
|
else:
|
||||||
print 'PragPicker: No initial onset time given! Check input!'
|
print('PragPicker: No initial onset time given! Check input!')
|
||||||
self.Pick = None
|
self.Pick = None
|
||||||
return
|
return
|
||||||
|
Loading…
Reference in New Issue
Block a user