release version: 0.1a

release notes:
==============
Features
- consistent manual phase picking through predefined SNR dependant zoom level
- uniform uncertainty estimation from waveform's properties for automatic and manual picks
- pdf representation and comparison of picks taking the uncertainty intrinsically into account
- Richter and moment magnitude estimation
- location determination with external installation of [NonLinLoc](http://alomax.free.fr/nlloc/index.html)
Known issues
- Magnitude estimation from manual PyLoT takes some time (instrument correction)
This commit is contained in:
Marc S. Boxberg
2016-10-04 09:36:11 +02:00
parent 7054ac6ab2
commit 503ea419c4
88 changed files with 12463 additions and 1 deletions

View File

@@ -0,0 +1,3 @@
## default time errors for old PILOT phases
0.04 0.08 0.16 0.32 #timeerrorsP# %discrete time errors [s] corresponding to picking weights [0 1 2 3] for P
0.04 0.08 0.16 0.32 #timeerrorsS# %discrete time errors [s] corresponding to picking weights [0 1 2 3] for S

100
inputs/autoPyLoT.in Normal file
View File

@@ -0,0 +1,100 @@
%This is a parameter input file for autoPyLoT.
%All main and special settings regarding data handling
%and picking are to be set here!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#main settings#
/DATA/Insheim #rootpath# %project path
EVENT_DATA/LOCAL #datapath# %data path
2013.02_Insheim #database# %name of data base
e0019.048.13 #eventID# %certain evnt ID for processing
True #apverbose#
PILOT #datastructure# %choose data structure
0 #iplot# %flag for plotting: 0 none, 1, partly, >1 everything
AUTOPHASES_AIC_HOS4_ARH #phasefile# %name of autoPILOT output phase file
AUTOLOC_AIC_HOS4_ARH #locfile# %name of autoPILOT output location file
AUTOFOCMEC_AIC_HOS4_ARH.in #focmecin# %name of focmec input file containing polarities
HYPOSAT #locrt# %location routine used ("HYPOINVERSE" or "HYPOSAT")
6 #pmin# %minimum required P picks for location
4 #p0min# %minimum required P picks for location if at least
%3 excellent P picks are found
2 #smin# %minimum required S picks for location
/home/ludger/bin/run_HYPOSAT4autoPILOT.csh #cshellp# %path and name of c-shell script to run location routine
7.6 8.5 #blon# %longitude bounding for location map
49 49.4 #blat# %lattitude bounding for location map
#parameters for moment magnitude estimation#
5000 #vp# %average P-wave velocity
2800 #vs# %average S-wave velocity
2200 #rho# %rock density [kg/m^3]
300 #Qp# %quality factor for P waves
100 #Qs# %quality factor for S waves
#common settings picker#
15 #pstart# %start time [s] for calculating CF for P-picking
40 #pstop# %end time [s] for calculating CF for P-picking
-1.0 #sstart# %start time [s] after or before(-) P-onset for calculating CF for S-picking
7 #sstop# %end time [s] after P-onset for calculating CF for S-picking
2 20 #bpz1# %lower/upper corner freq. of first band pass filter Z-comp. [Hz]
2 30 #bpz2# %lower/upper corner freq. of second band pass filter Z-comp. [Hz]
2 15 #bph1# %lower/upper corner freq. of first band pass filter H-comp. [Hz]
2 20 #bph2# %lower/upper corner freq. of second band pass filter z-comp. [Hz]
#special settings for calculating CF#
%!!Be careful when editing the following!!
#Z-component#
HOS #algoP# %choose algorithm for P-onset determination (HOS, ARZ, or AR3)
7 #tlta# %for HOS-/AR-AIC-picker, length of LTA window [s]
4 #hosorder# %for HOS-picker, order of Higher Order Statistics
2 #Parorder# %for AR-picker, order of AR process of Z-component
1.2 #tdet1z# %for AR-picker, length of AR determination window [s] for Z-component, 1st pick
0.4 #tpred1z# %for AR-picker, length of AR prediction window [s] for Z-component, 1st pick
0.6 #tdet2z# %for AR-picker, length of AR determination window [s] for Z-component, 2nd pick
0.2 #tpred2z# %for AR-picker, length of AR prediction window [s] for Z-component, 2nd pick
0.001 #addnoise# %add noise to seismogram for stable AR prediction
3 0.1 0.5 0.1 #tsnrz# %for HOS/AR, window lengths for SNR-and slope estimation [tnoise,tsafetey,tsignal,tslope] [s]
3 #pickwinP# %for initial AIC pick, length of P-pick window [s]
8 #Precalcwin# %for HOS/AR, window length [s] for recalculation of CF (relative to 1st pick)
0 #peps4aic# %for HOS/AR, artificial uplift of samples of AIC-function (P)
0.2 #aictsmooth# %for HOS/AR, take average of samples for smoothing of AIC-function [s]
0.1 #tsmoothP# %for HOS/AR, take average of samples for smoothing CF [s]
0.001 #ausP# %for HOS/AR, artificial uplift of samples (aus) of CF (P)
1.3 #nfacP# %for HOS/AR, noise factor for noise level determination (P)
#H-components#
ARH #algoS# %choose algorithm for S-onset determination (ARH or AR3)
0.8 #tdet1h# %for HOS/AR, length of AR-determination window [s], H-components, 1st pick
0.4 #tpred1h# %for HOS/AR, length of AR-prediction window [s], H-components, 1st pick
0.6 #tdet2h# %for HOS/AR, length of AR-determinaton window [s], H-components, 2nd pick
0.3 #tpred2h# %for HOS/AR, length of AR-prediction window [s], H-components, 2nd pick
4 #Sarorder# %for AR-picker, order of AR process of H-components
6 #Srecalcwin# %for AR-picker, window length [s] for recalculation of CF (2nd pick) (H)
3 #pickwinS# %for initial AIC pick, length of S-pick window [s]
2 0.2 1.5 0.5 #tsnrh# %for ARH/AR3, window lengths for SNR-and slope estimation [tnoise,tsafetey,tsignal,tslope] [s]
0.05 #aictsmoothS# %for AIC-picker, take average of samples for smoothing of AIC-function [s]
0.02 #tsmoothS# %for AR-picker, take average of samples for smoothing CF [s] (S)
0.2 #pepsS# %for AR-picker, artificial uplift of samples of CF (S)
0.4 #ausS# %for HOS/AR, artificial uplift of samples (aus) of CF (S)
1.5 #nfacS# %for AR-picker, noise factor for noise level determination (S)
%first-motion picker%
1 #minfmweight# %minimum required p weight for first-motion determination
2 #minFMSNR# %miniumum required SNR for first-motion determination
0.2 #fmpickwin# %pick window around P onset for calculating zero crossings
%quality assessment%
#inital AIC onset#
0.01 0.02 0.04 0.08 #timeerrorsP# %discrete time errors [s] corresponding to picking weights [0 1 2 3] for P
0.04 0.08 0.16 0.32 #timeerrorsS# %discrete time errors [s] corresponding to picking weights [0 1 2 3] for S
80 #minAICPslope# %below this slope [counts/s] the initial P pick is rejected
1.2 #minAICPSNR# %below this SNR the initial P pick is rejected
50 #minAICSslope# %below this slope [counts/s] the initial S pick is rejected
1.5 #minAICSSNR# %below this SNR the initial S pick is rejected
#check duration of signal using envelope function#
1.5 #prepickwin# %pre-signal window length [s] for noise level estimation
0.7 #minsiglength# %minimum required length of signal [s]
0.2 #sgap# %safety gap between noise and signal window [s]
2 #noisefactor# %noiselevel*noisefactor=threshold
60 #minpercent# %per cent of samples required higher than threshold
#check for spuriously picked S-onsets#
3.0 #zfac# %P-amplitude must exceed zfac times RMS-S amplitude
#jackknife-processing for P-picks#
3 #thresholdweight#%minimum required weight of picks
3 #dttolerance# %maximum allowed deviation of P picks from median [s]
4 #minstats# %minimum number of stations with reliable P picks
3 #Sdttolerance# %maximum allowed deviation from Wadati-diagram

99
inputs/autoPyLoT_local.in Normal file
View File

@@ -0,0 +1,99 @@
%This is a parameter input file for autoPyLoT.
%All main and special settings regarding data handling
%and picking are to be set here!
%Parameters are optimized for local data sets!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#main settings#
/DATA/Insheim #rootpath# %project path
EVENT_DATA/LOCAL #datapath# %data path
2016.08_Insheim #database# %name of data base
e0007.224.16 #eventID# %event ID for single event processing
/DATA/Insheim/STAT_INFO #invdir# %full path to inventory or dataless-seed file
PILOT #datastructure#%choose data structure
0 #iplot# %flag for plotting: 0 none, 1 partly, >1 everything
True #apverbose# %choose 'True' or 'False' for terminal output
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#NLLoc settings#
/home/ludger/NLLOC #nllocbin# %path to NLLoc executable
/home/ludger/NLLOC/Insheim #nllocroot# %root of NLLoc-processing directory
AUTOPHASES.obs #phasefile# %name of autoPyLoT-output phase file for NLLoc
%(in nllocroot/obs)
Insheim_min1d032016_auto.in #ctrfile# %name of autoPyLoT-output control file for NLLoc
%(in nllocroot/run)
ttime #ttpatter# %pattern of NLLoc ttimes from grid
%(in nllocroot/times)
AUTOLOC_nlloc #outpatter# %pattern of NLLoc-output file
%(returns 'eventID_outpatter')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#parameters for seismic moment estimation#
3530 #vp# %average P-wave velocity
2500 #rho# %average rock density [kg/m^3]
300 0.8 #Qp# %quality factor for P waves ([Qp, ap], Qp*f^a)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
AUTOFOCMEC_AIC_HOS4_ARH.in #focmecin# %name of focmec input file containing derived polarities
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#common settings picker#
15.0 #pstart# %start time [s] for calculating CF for P-picking
60.0 #pstop# %end time [s] for calculating CF for P-picking
-1.0 #sstart# %start time [s] relative to P-onset for calculating CF for S-picking
10.0 #sstop# %end time [s] after P-onset for calculating CF for S-picking
2 20 #bpz1# %lower/upper corner freq. of first band pass filter Z-comp. [Hz]
2 30 #bpz2# %lower/upper corner freq. of second band pass filter Z-comp. [Hz]
2 15 #bph1# %lower/upper corner freq. of first band pass filter H-comp. [Hz]
2 20 #bph2# %lower/upper corner freq. of second band pass filter z-comp. [Hz]
#special settings for calculating CF#
%!!Edit the following only if you know what you are doing!!%
#Z-component#
HOS #algoP# %choose algorithm for P-onset determination (HOS, ARZ, or AR3)
7.0 #tlta# %for HOS-/AR-AIC-picker, length of LTA window [s]
4 #hosorder# %for HOS-picker, order of Higher Order Statistics
2 #Parorder# %for AR-picker, order of AR process of Z-component
1.2 #tdet1z# %for AR-picker, length of AR determination window [s] for Z-component, 1st pick
0.4 #tpred1z# %for AR-picker, length of AR prediction window [s] for Z-component, 1st pick
0.6 #tdet2z# %for AR-picker, length of AR determination window [s] for Z-component, 2nd pick
0.2 #tpred2z# %for AR-picker, length of AR prediction window [s] for Z-component, 2nd pick
0.001 #addnoise# %add noise to seismogram for stable AR prediction
3 0.1 0.5 0.5 #tsnrz# %for HOS/AR, window lengths for SNR-and slope estimation [tnoise,tsafetey,tsignal,tslope] [s]
3.0 #pickwinP# %for initial AIC pick, length of P-pick window [s]
6.0 #Precalcwin# %for HOS/AR, window length [s] for recalculation of CF (relative to 1st pick)
0.2 #aictsmooth# %for HOS/AR, take average of samples for smoothing of AIC-function [s]
0.1 #tsmoothP# %for HOS/AR, take average of samples for smoothing CF [s]
0.001 #ausP# %for HOS/AR, artificial uplift of samples (aus) of CF (P)
1.3 #nfacP# %for HOS/AR, noise factor for noise level determination (P)
#H-components#
ARH #algoS# %choose algorithm for S-onset determination (ARH or AR3)
0.8 #tdet1h# %for HOS/AR, length of AR-determination window [s], H-components, 1st pick
0.4 #tpred1h# %for HOS/AR, length of AR-prediction window [s], H-components, 1st pick
0.6 #tdet2h# %for HOS/AR, length of AR-determinaton window [s], H-components, 2nd pick
0.3 #tpred2h# %for HOS/AR, length of AR-prediction window [s], H-components, 2nd pick
4 #Sarorder# %for AR-picker, order of AR process of H-components
5.0 #Srecalcwin# %for AR-picker, window length [s] for recalculation of CF (2nd pick) (H)
3.0 #pickwinS# %for initial AIC pick, length of S-pick window [s]
2 0.2 1.5 0.5 #tsnrh# %for ARH/AR3, window lengths for SNR-and slope estimation [tnoise,tsafetey,tsignal,tslope] [s]
0.5 #aictsmoothS# %for AIC-picker, take average of samples for smoothing of AIC-function [s]
0.7 #tsmoothS# %for AR-picker, take average of samples for smoothing CF [s] (S)
0.9 #ausS# %for HOS/AR, artificial uplift of samples (aus) of CF (S)
1.5 #nfacS# %for AR-picker, noise factor for noise level determination (S)
%first-motion picker%
1 #minfmweight# %minimum required P weight for first-motion determination
2 #minFMSNR# %miniumum required SNR for first-motion determination
0.2 #fmpickwin# %pick window around P onset for calculating zero crossings
%quality assessment%
#inital AIC onset#
0.01 0.02 0.04 0.08 #timeerrorsP# %discrete time errors [s] corresponding to picking weights [0 1 2 3] for P
0.04 0.08 0.16 0.32 #timeerrorsS# %discrete time errors [s] corresponding to picking weights [0 1 2 3] for S
4 #minAICPslope# %below this slope [counts/s] the initial P pick is rejected
1.2 #minAICPSNR# %below this SNR the initial P pick is rejected
2 #minAICSslope# %below this slope [counts/s] the initial S pick is rejected
1.5 #minAICSSNR# %below this SNR the initial S pick is rejected
#check duration of signal using envelope function#
3 #minsiglength# %minimum required length of signal [s]
1.0 #noisefactor# %noiselevel*noisefactor=threshold
40 #minpercent# %required percentage of samples higher than threshold
#check for spuriously picked S-onsets#
2.0 #zfac# %P-amplitude must exceed at least zfac times RMS-S amplitude
#check statistics of P onsets#
2.5 #mdttolerance# %maximum allowed deviation of P picks from median [s]
#wadati check#
1.0 #wdttolerance# %maximum allowed deviation from Wadati-diagram

View File

@@ -0,0 +1,100 @@
%This is a parameter input file for autoPyLoT.
%All main and special settings regarding data handling
%and picking are to be set here!
%Parameters are optimized for regional data sets!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#main settings#
/DATA/Egelados #rootpath# %project path
EVENT_DATA/LOCAL #datapath# %data path
2006.01_Nisyros #database# %name of data base
e1412.008.06 #eventID# %event ID for single event processing
/DATA/Egelados/STAT_INFO #invdir# %full path to inventory or dataless-seed file
PILOT #datastructure# %choose data structure
0 #iplot# %flag for plotting: 0 none, 1, partly, >1 everything
True #apverbose# %choose 'True' or 'False' for terminal output
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#NLLoc settings#
/home/ludger/NLLOC #nllocbin# %path to NLLoc executable
/home/ludger/NLLOC/Insheim #nllocroot# %root of NLLoc-processing directory
AUTOPHASES.obs #phasefile# %name of autoPyLoT-output phase file for NLLoc
%(in nllocroot/obs)
Insheim_min1d2015_auto.in #ctrfile# %name of autoPyLoT-output control file for NLLoc
%(in nllocroot/run)
ttime #ttpatter# %pattern of NLLoc ttimes from grid
%(in nllocroot/times)
AUTOLOC_nlloc #outpatter# %pattern of NLLoc-output file
%(returns 'eventID_outpatter')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#parameters for seismic moment estimation#
3530 #vp# %average P-wave velocity
2700 #rho# %average rock density [kg/m^3]
1000f**0.8 #Qp# %quality factor for P waves (Qp*f^a)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
AUTOFOCMEC_AIC_HOS4_ARH.in #focmecin# %name of focmec input file containing derived polarities
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#common settings picker#
20 #pstart# %start time [s] for calculating CF for P-picking
100 #pstop# %end time [s] for calculating CF for P-picking
1.0 #sstart# %start time [s] after or before(-) P-onset for calculating CF for S-picking
100 #sstop# %end time [s] after P-onset for calculating CF for S-picking
3 10 #bpz1# %lower/upper corner freq. of first band pass filter Z-comp. [Hz]
3 12 #bpz2# %lower/upper corner freq. of second band pass filter Z-comp. [Hz]
3 8 #bph1# %lower/upper corner freq. of first band pass filter H-comp. [Hz]
3 6 #bph2# %lower/upper corner freq. of second band pass filter H-comp. [Hz]
#special settings for calculating CF#
%!!Be careful when editing the following!!
#Z-component#
HOS #algoP# %choose algorithm for P-onset determination (HOS, ARZ, or AR3)
7 #tlta# %for HOS-/AR-AIC-picker, length of LTA window [s]
4 #hosorder# %for HOS-picker, order of Higher Order Statistics
2 #Parorder# %for AR-picker, order of AR process of Z-component
1.2 #tdet1z# %for AR-picker, length of AR determination window [s] for Z-component, 1st pick
0.4 #tpred1z# %for AR-picker, length of AR prediction window [s] for Z-component, 1st pick
0.6 #tdet2z# %for AR-picker, length of AR determination window [s] for Z-component, 2nd pick
0.2 #tpred2z# %for AR-picker, length of AR prediction window [s] for Z-component, 2nd pick
0.001 #addnoise# %add noise to seismogram for stable AR prediction
5 0.2 3.0 1.5 #tsnrz# %for HOS/AR, window lengths for SNR-and slope estimation [tnoise,tsafetey,tsignal,tslope] [s]
3 #pickwinP# %for initial AIC and refined pick, length of P-pick window [s]
8 #Precalcwin# %for HOS/AR, window length [s] for recalculation of CF (relative to 1st pick)
1.0 #aictsmooth# %for HOS/AR, take average of samples for smoothing of AIC-function [s]
0.3 #tsmoothP# %for HOS/AR, take average of samples for smoothing CF [s]
0.3 #ausP# %for HOS/AR, artificial uplift of samples (aus) of CF (P)
1.3 #nfacP# %for HOS/AR, noise factor for noise level determination (P)
#H-components#
ARH #algoS# %choose algorithm for S-onset determination (ARH or AR3)
0.8 #tdet1h# %for HOS/AR, length of AR-determination window [s], H-components, 1st pick
0.4 #tpred1h# %for HOS/AR, length of AR-prediction window [s], H-components, 1st pick
0.6 #tdet2h# %for HOS/AR, length of AR-determinaton window [s], H-components, 2nd pick
0.3 #tpred2h# %for HOS/AR, length of AR-prediction window [s], H-components, 2nd pick
4 #Sarorder# %for AR-picker, order of AR process of H-components
10 #Srecalcwin# %for AR-picker, window length [s] for recalculation of CF (2nd pick) (H)
25 #pickwinS# %for initial AIC and refined pick, length of S-pick window [s]
5 0.2 3.0 3.0 #tsnrh# %for ARH/AR3, window lengths for SNR-and slope estimation [tnoise,tsafetey,tsignal,tslope] [s]
3.5 #aictsmoothS# %for AIC-picker, take average of samples for smoothing of AIC-function [s]
1.0 #tsmoothS# %for AR-picker, take average of samples for smoothing CF [s] (S)
0.2 #ausS# %for HOS/AR, artificial uplift of samples (aus) of CF (S)
1.5 #nfacS# %for AR-picker, noise factor for noise level determination (S)
%first-motion picker%
1 #minfmweight# %minimum required p weight for first-motion determination
2 #minFMSNR# %miniumum required SNR for first-motion determination
6.0 #fmpickwin# %pick window around P onset for calculating zero crossings
%quality assessment%
#inital AIC onset#
0.04 0.08 0.16 0.32 #timeerrorsP# %discrete time errors [s] corresponding to picking weights [0 1 2 3] for P
0.04 0.08 0.16 0.32 #timeerrorsS# %discrete time errors [s] corresponding to picking weights [0 1 2 3] for S
3 #minAICPslope# %below this slope [counts/s] the initial P pick is rejected
1.2 #minAICPSNR# %below this SNR the initial P pick is rejected
5 #minAICSslope# %below this slope [counts/s] the initial S pick is rejected
2.5 #minAICSSNR# %below this SNR the initial S pick is rejected
#check duration of signal using envelope function#
30 #minsiglength# %minimum required length of signal [s]
2.5 #noisefactor# %noiselevel*noisefactor=threshold
60 #minpercent# %required percentage of samples higher than threshold
#check for spuriously picked S-onsets#
0.5 #zfac# %P-amplitude must exceed at least zfac times RMS-S amplitude
#check statistics of P onsets#
45 #mdttolerance# %maximum allowed deviation of P picks from median [s]
#wadati check#
3.0 #wdttolerance# %maximum allowed deviation from Wadati-diagram

2
inputs/filter.in Normal file
View File

@@ -0,0 +1,2 @@
P bandpass 4 2.0 20.0
S bandpass 4 2.0 15.0

98
inputs/pylot.in Normal file
View File

@@ -0,0 +1,98 @@
%This is a example parameter input file for PyLoT.
%All main and special settings regarding data handling
%and picking are to be set here!
%Parameters shown here are optimized for local data sets!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#main settings#
/data/Geothermie/Insheim #rootpath# %project path
EVENT_DATA/LOCAL #datapath# %data path
2013.02_Insheim #database# %name of data base
e0019.048.13 #eventID# %event ID for single event processing
/data/Geothermie/Insheim/STAT_INFO #invdir# %full path to inventory or dataless-seed file
PILOT #datastructure# %choose data structure
0 #iplot# %flag for plotting: 0 none, 1 partly, >1 everything
True #apverbose# %choose 'True' or 'False' for terminal output
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#NLLoc settings#
/progs/bin #nllocbin# %path to NLLoc executable
/data/Geothermie/Insheim/LOCALISATION/NLLoc #nllocroot# %root of NLLoc-processing directory
AUTOPHASES.obs #phasefile# %name of autoPyLoT-output phase file for NLLoc
%(in nllocroot/obs)
Insheim_min1d2015.in #ctrfile# %name of PyLoT-output control file for NLLoc
%(in nllocroot/run)
ttime #ttpatter# %pattern of NLLoc ttimes from grid
%(in nllocroot/times)
AUTOLOC_nlloc #outpatter# %pattern of NLLoc-output file
%(returns 'eventID_outpatter')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#parameters for seismic moment estimation#
3530 #vp# %average P-wave velocity
2500 #rho# %average rock density [kg/m^3]
300 0.8 #Qp# %quality factor for P waves (Qp*f^a); list(Qp, a)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
AUTOFOCMEC_AIC_HOS4_ARH.in #focmecin# %name of focmec input file containing derived polarities
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#common settings picker#
15.0 #pstart# %start time [s] for calculating CF for P-picking
60.0 #pstop# %end time [s] for calculating CF for P-picking
-1.0 #sstart# %start time [s] relative to P-onset for calculating CF for S-picking
10.0 #sstop# %end time [s] after P-onset for calculating CF for S-picking
2 20 #bpz1# %lower/upper corner freq. of first band pass filter Z-comp. [Hz]
2 30 #bpz2# %lower/upper corner freq. of second band pass filter Z-comp. [Hz]
2 15 #bph1# %lower/upper corner freq. of first band pass filter H-comp. [Hz]
2 20 #bph2# %lower/upper corner freq. of second band pass filter z-comp. [Hz]
#special settings for calculating CF#
%!!Edit the following only if you know what you are doing!!%
#Z-component#
HOS #algoP# %choose algorithm for P-onset determination (HOS, ARZ, or AR3)
7.0 #tlta# %for HOS-/AR-AIC-picker, length of LTA window [s]
4 #hosorder# %for HOS-picker, order of Higher Order Statistics
2 #Parorder# %for AR-picker, order of AR process of Z-component
1.2 #tdet1z# %for AR-picker, length of AR determination window [s] for Z-component, 1st pick
0.4 #tpred1z# %for AR-picker, length of AR prediction window [s] for Z-component, 1st pick
0.6 #tdet2z# %for AR-picker, length of AR determination window [s] for Z-component, 2nd pick
0.2 #tpred2z# %for AR-picker, length of AR prediction window [s] for Z-component, 2nd pick
0.001 #addnoise# %add noise to seismogram for stable AR prediction
3 0.1 0.5 0.5 #tsnrz# %for HOS/AR, window lengths for SNR-and slope estimation [tnoise,tsafetey,tsignal,tslope] [s]
3.0 #pickwinP# %for initial AIC pick, length of P-pick window [s]
6.0 #Precalcwin# %for HOS/AR, window length [s] for recalculation of CF (relative to 1st pick)
0.2 #aictsmooth# %for HOS/AR, take average of samples for smoothing of AIC-function [s]
0.1 #tsmoothP# %for HOS/AR, take average of samples for smoothing CF [s]
0.001 #ausP# %for HOS/AR, artificial uplift of samples (aus) of CF (P)
1.3 #nfacP# %for HOS/AR, noise factor for noise level determination (P)
#H-components#
ARH #algoS# %choose algorithm for S-onset determination (ARH or AR3)
0.8 #tdet1h# %for HOS/AR, length of AR-determination window [s], H-components, 1st pick
0.4 #tpred1h# %for HOS/AR, length of AR-prediction window [s], H-components, 1st pick
0.6 #tdet2h# %for HOS/AR, length of AR-determinaton window [s], H-components, 2nd pick
0.3 #tpred2h# %for HOS/AR, length of AR-prediction window [s], H-components, 2nd pick
4 #Sarorder# %for AR-picker, order of AR process of H-components
5.0 #Srecalcwin# %for AR-picker, window length [s] for recalculation of CF (2nd pick) (H)
3.0 #pickwinS# %for initial AIC pick, length of S-pick window [s]
2 0.2 1.5 0.5 #tsnrh# %for ARH/AR3, window lengths for SNR-and slope estimation [tnoise,tsafetey,tsignal,tslope] [s]
0.5 #aictsmoothS# %for AIC-picker, take average of samples for smoothing of AIC-function [s]
0.7 #tsmoothS# %for AR-picker, take average of samples for smoothing CF [s] (S)
0.9 #ausS# %for HOS/AR, artificial uplift of samples (aus) of CF (S)
1.5 #nfacS# %for AR-picker, noise factor for noise level determination (S)
%first-motion picker%
1 #minfmweight# %minimum required P weight for first-motion determination
2 #minFMSNR# %miniumum required SNR for first-motion determination
0.2 #fmpickwin# %pick window around P onset for calculating zero crossings
%quality assessment%
#inital AIC onset#
0.01 0.02 0.04 0.08 #timeerrorsP# %discrete time errors [s] corresponding to picking weights [0 1 2 3] for P
0.04 0.08 0.16 0.32 #timeerrorsS# %discrete time errors [s] corresponding to picking weights [0 1 2 3] for S
4 #minAICPslope# %below this slope [counts/s] the initial P pick is rejected
1.2 #minAICPSNR# %below this SNR the initial P pick is rejected
2 #minAICSslope# %below this slope [counts/s] the initial S pick is rejected
1.5 #minAICSSNR# %below this SNR the initial S pick is rejected
#check duration of signal using envelope function#
3 #minsiglength# %minimum required length of signal [s]
1.0 #noisefactor# %noiselevel*noisefactor=threshold
40 #minpercent# %required percentage of samples higher than threshold
#check for spuriously picked S-onsets#
2.0 #zfac# %P-amplitude must exceed at least zfac times RMS-S amplitude
#check statistics of P onsets#
2.5 #mdttolerance# %maximum allowed deviation of P picks from median [s]
#wadati check#
1.0 #wdttolerance# %maximum allowed deviation from Wadati-diagram

View File

@@ -0,0 +1,53 @@
0 1.4
10 1.5
20 1.7
25 1.9
30 2.1
35 2.3
40 2.4
45 2.5
50 2.6
60 2.8
70 2.8
75 2.9
85 2.9
90 3.0
100 3.0
110 3.1
120 3.1
130 3.2
140 3.2
150 3.3
160 3.3
170 3.4
180 3.4
190 3.5
200 3.5
210 3.6
230 3.7
240 3.7
250 3.8
260 3.8
270 3.9
280 3.9
290 4.0
300 4.0
310 4.1
320 4.2
330 4.2
340 4.2
350 4.3
360 4.3
370 4.3
380 4.4
390 4.4
400 4.5
430 4.6
470 4.7
510 4.8
560 4.9
600 5.1
700 5.2
800 5.4
900 5.5
1000 5.7