Implemented pragmatic picking algorithm developed by TM, JL, and LK
This commit is contained in:
parent
5d85a4bdc8
commit
59930c3238
@ -3,16 +3,16 @@
|
||||
Created Dec 2014
|
||||
Implementation of the picking algorithms published and described in:
|
||||
|
||||
Küperkoch, L., Meier, T., Lee, J., Friederich, W., & Egelados Working Group, 2010:
|
||||
Kueperkoch, L., Meier, T., Lee, J., Friederich, W., & Egelados Working Group, 2010:
|
||||
Automated determination of P-phase arrival times at regional and local distances
|
||||
using higher order statistics, Geophys. J. Int., 181, 1159-1170
|
||||
|
||||
Küperkoch, L., Meier, T., Brüstle, A., Lee, J., Friederich, W., & Egelados
|
||||
Kueperkoch, L., Meier, T., Bruestle, A., Lee, J., Friederich, W., & Egelados
|
||||
Working Group, 2012: Automated determination of S-phase arrival times using
|
||||
autoregressive prediction: application ot local and regional distances, Geophys. J. Int.,
|
||||
188, 687-702.
|
||||
|
||||
:author: MAGS2 EP3 working group / Ludger Küperkoch
|
||||
:author: MAGS2 EP3 working group / Ludger Kueperkoch
|
||||
"""
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
@ -23,7 +23,7 @@ class AutoPicking(object):
|
||||
Superclass of different, automated picking algorithms applied on a CF determined
|
||||
using AIC, HOS, or AR prediction.
|
||||
'''
|
||||
def __init__(self, cf, Tslope, aerr, TSNR, PickWindow, peps=None, Tsmooth=None):
|
||||
def __init__(self, cf, Tslope, aerr, TSNR, PickWindow, aus=None, Tsmooth=None, Pick1=None):
|
||||
'''
|
||||
:param: cf, characteristic function, on which the picking algorithm is applied
|
||||
:type: `~pylot.core.pick.CharFuns.CharacteristicFunction` object
|
||||
@ -41,11 +41,14 @@ class AutoPicking(object):
|
||||
:param: PickWindow, length of pick window [s]
|
||||
:type: float
|
||||
|
||||
:param: peps, find local minimum at i if aic(i-1)*(1+peps) >= aic(i)
|
||||
:param: aus ("artificial uplift of samples"), find local minimum at i if aic(i-1)*(1+aus) >= aic(i)
|
||||
:type: float
|
||||
|
||||
:param: Tsmooth, length of moving smoothing window to calculate smoothed CF [s]
|
||||
:type: float
|
||||
|
||||
:param: Pick1, initial (prelimenary) onset time, starting point for PragPicker
|
||||
:type: float
|
||||
'''
|
||||
|
||||
#assert isinstance(cf, CharFuns), "%s is not a CharacteristicFunction object" % str(cf)
|
||||
@ -58,8 +61,9 @@ class AutoPicking(object):
|
||||
self.setaerr(aerr)
|
||||
self.setTSNR(TSNR)
|
||||
self.setPickWindow(PickWindow)
|
||||
self.setpeps(peps)
|
||||
self.setaus(aus)
|
||||
self.setTsmooth(Tsmooth)
|
||||
self.setpick1(Pick1)
|
||||
self.calcPick()
|
||||
|
||||
def __str__(self):
|
||||
@ -68,15 +72,17 @@ class AutoPicking(object):
|
||||
aerr:\t{aerr}\n
|
||||
TSNR:\t\t\t{TSNR}\n
|
||||
PickWindow:\t{PickWindow}\n
|
||||
peps:\t{peps}\n
|
||||
aus:\t{aus}\n
|
||||
Tsmooth:\t{Tsmooth}\n
|
||||
Pick1:\t{Pick1}\n
|
||||
'''.format(name=type(self).__name__,
|
||||
Tslope=self.getTslope(),
|
||||
aerr=self.getaerr(),
|
||||
TSNR=self.getTSNR(),
|
||||
PickWindow=self.getPickWindow(),
|
||||
peps=self.getpeps(),
|
||||
Tsmooth=self.getTsmooth())
|
||||
aus=self.getaus(),
|
||||
Tsmooth=self.getTsmooth(),
|
||||
Pick1=self.getpick1())
|
||||
|
||||
def getTslope(self):
|
||||
return self.Tslope
|
||||
@ -102,11 +108,11 @@ class AutoPicking(object):
|
||||
def setPickWindow(self, PickWindow):
|
||||
self.PickWindow = PickWindow
|
||||
|
||||
def getpeps(self):
|
||||
return self.peps
|
||||
def getaus(self):
|
||||
return self.aus
|
||||
|
||||
def setpeps(self, peps):
|
||||
self.peps = peps
|
||||
def setaus(self, aus):
|
||||
self.aus = aus
|
||||
|
||||
def setTsmooth(self, Tsmooth):
|
||||
self.Tsmooth = Tsmooth
|
||||
@ -117,6 +123,12 @@ class AutoPicking(object):
|
||||
def getpick(self):
|
||||
return self.Pick
|
||||
|
||||
def getpick1(self):
|
||||
return self.Pick1
|
||||
|
||||
def setpick1(self, Pick1):
|
||||
self.Pick1 = Pick1
|
||||
|
||||
def calcPick(self):
|
||||
self.Pick = None
|
||||
|
||||
@ -128,7 +140,7 @@ class AICPicker(AutoPicking):
|
||||
|
||||
def calcPick(self):
|
||||
|
||||
print 'Get onset (pick) from AIC-CF ...'
|
||||
print 'Get onset time (pick) from AIC-CF ...'
|
||||
|
||||
self.Pick = -1
|
||||
#taper AIC-CF to get rid off side maxima
|
||||
@ -155,4 +167,78 @@ class PragPicker(AutoPicking):
|
||||
|
||||
def calcPick(self):
|
||||
|
||||
print 'Get onset (pick) from HOS- or AR-CF using pragmatic picking algorithm ...'
|
||||
if self.getpick1() is not None:
|
||||
print 'Get onset time (pick) from HOS- or AR-CF using pragmatic picking algorithm ...'
|
||||
|
||||
self.Pick = -1
|
||||
#smooth CF
|
||||
ismooth = round(self.Tsmooth / self.dt);
|
||||
cfsmooth = np.zeros(len(self.cf))
|
||||
if len(self.cf) < ismooth:
|
||||
print 'PragPicker: Tsmooth larger than CF!'
|
||||
return
|
||||
else:
|
||||
for i in range(1, len(self.cf)):
|
||||
if i > ismooth:
|
||||
ii1 = i - ismooth;
|
||||
cfsmooth[i] = cfsmooth[i - 1] + (self.cf[i] - self.cf[ii1]) / ismooth
|
||||
else:
|
||||
cfsmooth[i] = np.mean(self.cf[1 : i])
|
||||
|
||||
#select picking window
|
||||
#which is centered around tpick1
|
||||
ipick = np.where((self.Tcf >= self.getpick1() - self.PickWindow / 2) \
|
||||
& (self.Tcf <= self.getpick1() + self.PickWindow / 2))
|
||||
cfipick = self.cf[ipick]
|
||||
Tcfpick = self.Tcf[ipick]
|
||||
cfsmoothipick = cfsmooth[ipick]
|
||||
ipick1 = np.argmin(abs(self.Tcf - self.getpick1()))
|
||||
cfpick1 = 2 * self.cf[ipick1]
|
||||
|
||||
#check trend of CF, i.e. differences of CF and adjust aus regarding this trend
|
||||
#prominent trend: decrease aus
|
||||
#flat: use given aus
|
||||
cfdiff = np.diff(cfipick);
|
||||
i0diff = np.where(cfdiff > 0)
|
||||
cfdiff = cfdiff[i0diff]
|
||||
minaus = min(cfdiff * (1 + self.aus));
|
||||
aus1 = max([minaus, self.aus]);
|
||||
|
||||
#at first we look to the right until the end of the pick window is reached
|
||||
flagpick_r = 0
|
||||
flagpick_l = 0
|
||||
flagpick = 0
|
||||
lpickwindow = int(round(self.PickWindow / self.dt))
|
||||
for i in range(max(np.insert(ipick, 0, 2)), min([ipick1 + lpickwindow + 1, len(self.cf) - 1])):
|
||||
if self.cf[i + 1] > self.cf[i] and self.cf[i - 1] >= self.cf[i]:
|
||||
if cfsmooth[i - 1] * (1 + aus1) >= cfsmooth[i]:
|
||||
if cfpick1 >= self.cf[i]:
|
||||
pick_r = self.Tcf[i]
|
||||
self.Pick = pick_r
|
||||
flagpick_l = 1
|
||||
cfpick_r = self.cf[i]
|
||||
break
|
||||
|
||||
#now we look to the left
|
||||
for i in range(ipick1, max([ipick1 - lpickwindow + 1, 2]), -1):
|
||||
if self.cf[i + 1] > self.cf[i] and self.cf[i - 1] >= self.cf[i]:
|
||||
if cfsmooth[i - 1] * (1 + aus1) >= cfsmooth[i]:
|
||||
if cfpick1 >= self.cf[i]:
|
||||
pick_l = self.Tcf[i]
|
||||
self.Pick = pick_l
|
||||
flagpick_r = 1
|
||||
cfpick_l = self.cf[i]
|
||||
break
|
||||
|
||||
#now decide which pick: left or right?
|
||||
if flagpick_l > 0 and flagpick_r > 0:
|
||||
if cfpick_l <= cfpick_r:
|
||||
self.Pick = pick_l
|
||||
else:
|
||||
self.Pick = pick_r
|
||||
|
||||
else:
|
||||
self.Pick = -1
|
||||
print 'PragPicker: No initial onset time given! Check input!'
|
||||
return
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user