Implemented pragmatic picking algorithm developed by TM, JL, and LK

This commit is contained in:
Ludger Küperkoch 2014-12-15 15:03:41 +01:00
parent 5d85a4bdc8
commit 59930c3238

View File

@ -3,16 +3,16 @@
Created Dec 2014
Implementation of the picking algorithms published and described in:
Küperkoch, L., Meier, T., Lee, J., Friederich, W., & Egelados Working Group, 2010:
Kueperkoch, L., Meier, T., Lee, J., Friederich, W., & Egelados Working Group, 2010:
Automated determination of P-phase arrival times at regional and local distances
using higher order statistics, Geophys. J. Int., 181, 1159-1170
Küperkoch, L., Meier, T., Brüstle, A., Lee, J., Friederich, W., & Egelados
Kueperkoch, L., Meier, T., Bruestle, A., Lee, J., Friederich, W., & Egelados
Working Group, 2012: Automated determination of S-phase arrival times using
autoregressive prediction: application ot local and regional distances, Geophys. J. Int.,
188, 687-702.
:author: MAGS2 EP3 working group / Ludger Küperkoch
:author: MAGS2 EP3 working group / Ludger Kueperkoch
"""
import numpy as np
import matplotlib.pyplot as plt
@ -23,7 +23,7 @@ class AutoPicking(object):
Superclass of different, automated picking algorithms applied on a CF determined
using AIC, HOS, or AR prediction.
'''
def __init__(self, cf, Tslope, aerr, TSNR, PickWindow, peps=None, Tsmooth=None):
def __init__(self, cf, Tslope, aerr, TSNR, PickWindow, aus=None, Tsmooth=None, Pick1=None):
'''
:param: cf, characteristic function, on which the picking algorithm is applied
:type: `~pylot.core.pick.CharFuns.CharacteristicFunction` object
@ -41,11 +41,14 @@ class AutoPicking(object):
:param: PickWindow, length of pick window [s]
:type: float
:param: peps, find local minimum at i if aic(i-1)*(1+peps) >= aic(i)
:param: aus ("artificial uplift of samples"), find local minimum at i if aic(i-1)*(1+aus) >= aic(i)
:type: float
:param: Tsmooth, length of moving smoothing window to calculate smoothed CF [s]
:type: float
:param: Pick1, initial (prelimenary) onset time, starting point for PragPicker
:type: float
'''
#assert isinstance(cf, CharFuns), "%s is not a CharacteristicFunction object" % str(cf)
@ -58,8 +61,9 @@ class AutoPicking(object):
self.setaerr(aerr)
self.setTSNR(TSNR)
self.setPickWindow(PickWindow)
self.setpeps(peps)
self.setaus(aus)
self.setTsmooth(Tsmooth)
self.setpick1(Pick1)
self.calcPick()
def __str__(self):
@ -68,15 +72,17 @@ class AutoPicking(object):
aerr:\t{aerr}\n
TSNR:\t\t\t{TSNR}\n
PickWindow:\t{PickWindow}\n
peps:\t{peps}\n
aus:\t{aus}\n
Tsmooth:\t{Tsmooth}\n
Pick1:\t{Pick1}\n
'''.format(name=type(self).__name__,
Tslope=self.getTslope(),
aerr=self.getaerr(),
TSNR=self.getTSNR(),
PickWindow=self.getPickWindow(),
peps=self.getpeps(),
Tsmooth=self.getTsmooth())
aus=self.getaus(),
Tsmooth=self.getTsmooth(),
Pick1=self.getpick1())
def getTslope(self):
return self.Tslope
@ -102,11 +108,11 @@ class AutoPicking(object):
def setPickWindow(self, PickWindow):
self.PickWindow = PickWindow
def getpeps(self):
return self.peps
def getaus(self):
return self.aus
def setpeps(self, peps):
self.peps = peps
def setaus(self, aus):
self.aus = aus
def setTsmooth(self, Tsmooth):
self.Tsmooth = Tsmooth
@ -117,6 +123,12 @@ class AutoPicking(object):
def getpick(self):
return self.Pick
def getpick1(self):
return self.Pick1
def setpick1(self, Pick1):
self.Pick1 = Pick1
def calcPick(self):
self.Pick = None
@ -128,7 +140,7 @@ class AICPicker(AutoPicking):
def calcPick(self):
print 'Get onset (pick) from AIC-CF ...'
print 'Get onset time (pick) from AIC-CF ...'
self.Pick = -1
#taper AIC-CF to get rid off side maxima
@ -155,4 +167,78 @@ class PragPicker(AutoPicking):
def calcPick(self):
print 'Get onset (pick) from HOS- or AR-CF using pragmatic picking algorithm ...'
if self.getpick1() is not None:
print 'Get onset time (pick) from HOS- or AR-CF using pragmatic picking algorithm ...'
self.Pick = -1
#smooth CF
ismooth = round(self.Tsmooth / self.dt);
cfsmooth = np.zeros(len(self.cf))
if len(self.cf) < ismooth:
print 'PragPicker: Tsmooth larger than CF!'
return
else:
for i in range(1, len(self.cf)):
if i > ismooth:
ii1 = i - ismooth;
cfsmooth[i] = cfsmooth[i - 1] + (self.cf[i] - self.cf[ii1]) / ismooth
else:
cfsmooth[i] = np.mean(self.cf[1 : i])
#select picking window
#which is centered around tpick1
ipick = np.where((self.Tcf >= self.getpick1() - self.PickWindow / 2) \
& (self.Tcf <= self.getpick1() + self.PickWindow / 2))
cfipick = self.cf[ipick]
Tcfpick = self.Tcf[ipick]
cfsmoothipick = cfsmooth[ipick]
ipick1 = np.argmin(abs(self.Tcf - self.getpick1()))
cfpick1 = 2 * self.cf[ipick1]
#check trend of CF, i.e. differences of CF and adjust aus regarding this trend
#prominent trend: decrease aus
#flat: use given aus
cfdiff = np.diff(cfipick);
i0diff = np.where(cfdiff > 0)
cfdiff = cfdiff[i0diff]
minaus = min(cfdiff * (1 + self.aus));
aus1 = max([minaus, self.aus]);
#at first we look to the right until the end of the pick window is reached
flagpick_r = 0
flagpick_l = 0
flagpick = 0
lpickwindow = int(round(self.PickWindow / self.dt))
for i in range(max(np.insert(ipick, 0, 2)), min([ipick1 + lpickwindow + 1, len(self.cf) - 1])):
if self.cf[i + 1] > self.cf[i] and self.cf[i - 1] >= self.cf[i]:
if cfsmooth[i - 1] * (1 + aus1) >= cfsmooth[i]:
if cfpick1 >= self.cf[i]:
pick_r = self.Tcf[i]
self.Pick = pick_r
flagpick_l = 1
cfpick_r = self.cf[i]
break
#now we look to the left
for i in range(ipick1, max([ipick1 - lpickwindow + 1, 2]), -1):
if self.cf[i + 1] > self.cf[i] and self.cf[i - 1] >= self.cf[i]:
if cfsmooth[i - 1] * (1 + aus1) >= cfsmooth[i]:
if cfpick1 >= self.cf[i]:
pick_l = self.Tcf[i]
self.Pick = pick_l
flagpick_r = 1
cfpick_l = self.cf[i]
break
#now decide which pick: left or right?
if flagpick_l > 0 and flagpick_r > 0:
if cfpick_l <= cfpick_r:
self.Pick = pick_l
else:
self.Pick = pick_r
else:
self.Pick = -1
print 'PragPicker: No initial onset time given! Check input!'
return