[update] increased code readability and improved figures created in autopick.py and picker.py
This commit is contained in:
parent
3da47c6f6b
commit
5ab6c494c5
@ -262,6 +262,10 @@ class AutopickStation(object):
|
|||||||
self.metadata = metadata
|
self.metadata = metadata
|
||||||
self.origin = origin
|
self.origin = origin
|
||||||
|
|
||||||
|
# initialize TauPy pick estimates
|
||||||
|
self.estFirstP = None
|
||||||
|
self.estFirstS = None
|
||||||
|
|
||||||
# initialize picking results
|
# initialize picking results
|
||||||
self.p_results = PickingResults()
|
self.p_results = PickingResults()
|
||||||
self.s_results = PickingResults()
|
self.s_results = PickingResults()
|
||||||
@ -443,15 +447,15 @@ class AutopickStation(object):
|
|||||||
for arr in arrivals:
|
for arr in arrivals:
|
||||||
phases[identifyPhaseID(arr.phase.name)].append(arr)
|
phases[identifyPhaseID(arr.phase.name)].append(arr)
|
||||||
# get first P and S onsets from arrivals list
|
# get first P and S onsets from arrivals list
|
||||||
estFirstP = 0
|
arrival_time_p = 0
|
||||||
estFirstS = 0
|
arrival_time_s = 0
|
||||||
if len(phases['P']) > 0:
|
if len(phases['P']) > 0:
|
||||||
arrP, estFirstP = min([(arr, arr.time) for arr in phases['P']], key=lambda t: t[1])
|
arrP, arrival_time_p = min([(arr, arr.time) for arr in phases['P']], key=lambda t: t[1])
|
||||||
if len(phases['S']) > 0:
|
if len(phases['S']) > 0:
|
||||||
arrS, estFirstS = min([(arr, arr.time) for arr in phases['S']], key=lambda t: t[1])
|
arrS, arrival_time_s = min([(arr, arr.time) for arr in phases['S']], key=lambda t: t[1])
|
||||||
print('autopick: estimated first arrivals for P: {} s, S:{} s after event'
|
print('autopick: estimated first arrivals for P: {} s, S:{} s after event'
|
||||||
' origin time using TauPy'.format(estFirstP, estFirstS))
|
' origin time using TauPy'.format(arrival_time_p, arrival_time_s))
|
||||||
return estFirstP, estFirstS
|
return arrival_time_p, arrival_time_s
|
||||||
|
|
||||||
def exit_taupy():
|
def exit_taupy():
|
||||||
"""If taupy failed to calculate theoretical starttimes, picking continues.
|
"""If taupy failed to calculate theoretical starttimes, picking continues.
|
||||||
@ -477,10 +481,13 @@ class AutopickStation(object):
|
|||||||
raise AttributeError('No source origins given!')
|
raise AttributeError('No source origins given!')
|
||||||
|
|
||||||
arrivals = create_arrivals(self.metadata, self.origin, self.pickparams["taup_model"])
|
arrivals = create_arrivals(self.metadata, self.origin, self.pickparams["taup_model"])
|
||||||
estFirstP, estFirstS = first_PS_onsets(arrivals)
|
arrival_P, arrival_S = first_PS_onsets(arrivals)
|
||||||
|
|
||||||
|
self.estFirstP = (self.origin[0].time + arrival_P) - self.ztrace.stats.starttime
|
||||||
|
|
||||||
# modifiy pstart and pstop relative to estimated first P arrival (relative to station time axis)
|
# modifiy pstart and pstop relative to estimated first P arrival (relative to station time axis)
|
||||||
self.pickparams["pstart"] += (self.origin[0].time + estFirstP) - self.ztrace.stats.starttime
|
self.pickparams["pstart"] += self.estFirstP
|
||||||
self.pickparams["pstop"] += (self.origin[0].time + estFirstP) - self.ztrace.stats.starttime
|
self.pickparams["pstop"] += self.estFirstP
|
||||||
print('autopick: CF calculation times respectively:'
|
print('autopick: CF calculation times respectively:'
|
||||||
' pstart: {} s, pstop: {} s'.format(self.pickparams["pstart"], self.pickparams["pstop"]))
|
' pstart: {} s, pstop: {} s'.format(self.pickparams["pstart"], self.pickparams["pstop"]))
|
||||||
# make sure pstart and pstop are inside the starttime/endtime of vertical trace
|
# make sure pstart and pstop are inside the starttime/endtime of vertical trace
|
||||||
@ -491,9 +498,10 @@ class AutopickStation(object):
|
|||||||
# for the two horizontal components take earliest and latest time to make sure that the s onset is not clipped
|
# for the two horizontal components take earliest and latest time to make sure that the s onset is not clipped
|
||||||
# if start and endtime of horizontal traces differ, the s windowsize will automatically increase
|
# if start and endtime of horizontal traces differ, the s windowsize will automatically increase
|
||||||
trace_s_start = min([self.etrace.stats.starttime, self.ntrace.stats.starttime])
|
trace_s_start = min([self.etrace.stats.starttime, self.ntrace.stats.starttime])
|
||||||
|
self.estFirstS = (self.origin[0].time + arrival_S) - trace_s_start
|
||||||
# modifiy sstart and sstop relative to estimated first S arrival (relative to station time axis)
|
# modifiy sstart and sstop relative to estimated first S arrival (relative to station time axis)
|
||||||
self.pickparams["sstart"] += (self.origin[0].time + estFirstS) - trace_s_start
|
self.pickparams["sstart"] += self.estFirstS
|
||||||
self.pickparams["sstop"] += (self.origin[0].time + estFirstS) - trace_s_start
|
self.pickparams["sstop"] += self.estFirstS
|
||||||
print('autopick: CF calculation times respectively:'
|
print('autopick: CF calculation times respectively:'
|
||||||
' sstart: {} s, sstop: {} s'.format(self.pickparams["sstart"], self.pickparams["sstop"]))
|
' sstart: {} s, sstop: {} s'.format(self.pickparams["sstart"], self.pickparams["sstop"]))
|
||||||
# make sure pstart and pstop are inside the starttime/endtime of horizontal traces
|
# make sure pstart and pstop are inside the starttime/endtime of horizontal traces
|
||||||
@ -609,6 +617,12 @@ class AutopickStation(object):
|
|||||||
# plot tapered trace filtered with bpz2 filter settings
|
# plot tapered trace filtered with bpz2 filter settings
|
||||||
ax1.plot(tdata, self.tr_filt_z_bpz2.data / max(self.tr_filt_z_bpz2.data), color=linecolor, linewidth=0.7,
|
ax1.plot(tdata, self.tr_filt_z_bpz2.data / max(self.tr_filt_z_bpz2.data), color=linecolor, linewidth=0.7,
|
||||||
label='Data')
|
label='Data')
|
||||||
|
# plot pickwindows for P
|
||||||
|
pstart, pstop = self.pickparams['pstart'], self.pickparams['pstop']
|
||||||
|
if pstart is not None and pstop is not None:
|
||||||
|
ax1.axvspan(pstart, pstop, color='r', alpha=0.2, zorder=0, label='P window')
|
||||||
|
if self.estFirstP is not None:
|
||||||
|
ax1.axvline(self.estFirstP, ls='dashed', color='r', alpha=0.4, label='TauPy estimate')
|
||||||
if self.p_results.weight < 4:
|
if self.p_results.weight < 4:
|
||||||
# plot CF of initial onset (HOScf or ARZcf)
|
# plot CF of initial onset (HOScf or ARZcf)
|
||||||
ax1.plot(self.cf1.getTimeArray(), self.cf1.getCF() / max(self.cf1.getCF()), 'b', label='CF1')
|
ax1.plot(self.cf1.getTimeArray(), self.cf1.getCF() / max(self.cf1.getCF()), 'b', label='CF1')
|
||||||
@ -713,6 +727,15 @@ class AutopickStation(object):
|
|||||||
ax3.plot([refSpick.getpick() - 0.5, refSpick.getpick() + 0.5], [-1.3, -1.3], 'g', linewidth=2)
|
ax3.plot([refSpick.getpick() - 0.5, refSpick.getpick() + 0.5], [-1.3, -1.3], 'g', linewidth=2)
|
||||||
ax3.plot([self.s_results.lpp, self.s_results.lpp], [-1.1, 1.1], 'g--', label='lpp')
|
ax3.plot([self.s_results.lpp, self.s_results.lpp], [-1.1, 1.1], 'g--', label='lpp')
|
||||||
ax3.plot([self.s_results.epp, self.s_results.epp], [-1.1, 1.1], 'g--', label='epp')
|
ax3.plot([self.s_results.epp, self.s_results.epp], [-1.1, 1.1], 'g--', label='epp')
|
||||||
|
|
||||||
|
# plot pickwindows for S
|
||||||
|
sstart, sstop = self.pickparams['sstart'], self.pickparams['sstop']
|
||||||
|
if sstart is not None and sstop is not None:
|
||||||
|
for axis in [ax2, ax3]:
|
||||||
|
axis.axvspan(sstart, sstop, color='b', alpha=0.2, zorder=0, label='S window')
|
||||||
|
if self.estFirstS is not None:
|
||||||
|
axis.axvline(self.estFirstS, ls='dashed', color='b', alpha=0.4, label='TauPy estimate')
|
||||||
|
|
||||||
ax3.legend(loc=1)
|
ax3.legend(loc=1)
|
||||||
ax3.set_yticks([])
|
ax3.set_yticks([])
|
||||||
ax3.set_ylim([-1.5, 1.5])
|
ax3.set_ylim([-1.5, 1.5])
|
||||||
@ -835,14 +858,21 @@ class AutopickStation(object):
|
|||||||
self.cf1 = None
|
self.cf1 = None
|
||||||
assert isinstance(self.cf1, CharacteristicFunction), 'cf1 is not set correctly: maybe the algorithm name ({})' \
|
assert isinstance(self.cf1, CharacteristicFunction), 'cf1 is not set correctly: maybe the algorithm name ({})' \
|
||||||
' is corrupted'.format(self.pickparams["algoP"])
|
' is corrupted'.format(self.pickparams["algoP"])
|
||||||
|
# get the original waveform stream from first CF class cut to identical length as CF for plotting
|
||||||
|
cut_ogstream = self.cf1.getDataArray(self.cf1.getCut())
|
||||||
|
|
||||||
|
# MP: Rename to cf_stream for further use of z_copy and to prevent chaos when z_copy suddenly becomes a cf
|
||||||
|
# stream and later again a waveform stream
|
||||||
|
cf_stream = z_copy.copy()
|
||||||
|
cf_stream[0].data = self.cf1.getCF()
|
||||||
|
|
||||||
# calculate AIC cf from first cf (either HOS or ARZ)
|
# calculate AIC cf from first cf (either HOS or ARZ)
|
||||||
z_copy[0].data = self.cf1.getCF()
|
aiccf = AICcf(cf_stream, cuttimes)
|
||||||
aiccf = AICcf(z_copy, cuttimes)
|
|
||||||
# get preliminary onset time from AIC-CF
|
# get preliminary onset time from AIC-CF
|
||||||
self.set_current_figure('aicFig')
|
self.set_current_figure('aicFig')
|
||||||
aicpick = AICPicker(aiccf, self.pickparams["tsnrz"], self.pickparams["pickwinP"], self.iplot,
|
aicpick = AICPicker(aiccf, self.pickparams["tsnrz"], self.pickparams["pickwinP"], self.iplot,
|
||||||
Tsmooth=self.pickparams["aictsmooth"], fig=self.current_figure,
|
Tsmooth=self.pickparams["aictsmooth"], fig=self.current_figure,
|
||||||
linecolor=self.current_linecolor)
|
linecolor=self.current_linecolor, ogstream=cut_ogstream)
|
||||||
# save aicpick for plotting later
|
# save aicpick for plotting later
|
||||||
self.p_data.aicpick = aicpick
|
self.p_data.aicpick = aicpick
|
||||||
# add pstart and pstop to aic plot
|
# add pstart and pstop to aic plot
|
||||||
@ -855,7 +885,7 @@ class AutopickStation(object):
|
|||||||
label='P stop')
|
label='P stop')
|
||||||
ax.legend(loc=1)
|
ax.legend(loc=1)
|
||||||
|
|
||||||
Pflag = self._pick_p_quality_control(aicpick, z_copy, tr_filt)
|
Pflag = self._pick_p_quality_control(aicpick, cf_stream, tr_filt)
|
||||||
# go on with processing if AIC onset passes quality control
|
# go on with processing if AIC onset passes quality control
|
||||||
slope = aicpick.getSlope()
|
slope = aicpick.getSlope()
|
||||||
if not slope: slope = 0
|
if not slope: slope = 0
|
||||||
@ -894,7 +924,7 @@ class AutopickStation(object):
|
|||||||
refPpick = PragPicker(self.cf2, self.pickparams["tsnrz"], self.pickparams["pickwinP"], self.iplot,
|
refPpick = PragPicker(self.cf2, self.pickparams["tsnrz"], self.pickparams["pickwinP"], self.iplot,
|
||||||
self.pickparams["ausP"],
|
self.pickparams["ausP"],
|
||||||
self.pickparams["tsmoothP"], aicpick.getpick(), self.current_figure,
|
self.pickparams["tsmoothP"], aicpick.getpick(), self.current_figure,
|
||||||
self.current_linecolor)
|
self.current_linecolor, ogstream=cut_ogstream)
|
||||||
# save PragPicker result for plotting
|
# save PragPicker result for plotting
|
||||||
self.p_data.refPpick = refPpick
|
self.p_data.refPpick = refPpick
|
||||||
self.p_results.mpp = refPpick.getpick()
|
self.p_results.mpp = refPpick.getpick()
|
||||||
@ -1146,11 +1176,14 @@ class AutopickStation(object):
|
|||||||
# calculate AIC cf
|
# calculate AIC cf
|
||||||
haiccf = self._calculate_aic_cf_s_pick(cuttimesh)
|
haiccf = self._calculate_aic_cf_s_pick(cuttimesh)
|
||||||
|
|
||||||
|
# get the original waveform stream cut to identical length as CF for plotting
|
||||||
|
ogstream = haiccf.getDataArray(haiccf.getCut())
|
||||||
|
|
||||||
# get preliminary onset time from AIC cf
|
# get preliminary onset time from AIC cf
|
||||||
self.set_current_figure('aicARHfig')
|
self.set_current_figure('aicARHfig')
|
||||||
aicarhpick = AICPicker(haiccf, self.pickparams["tsnrh"], self.pickparams["pickwinS"], self.iplot,
|
aicarhpick = AICPicker(haiccf, self.pickparams["tsnrh"], self.pickparams["pickwinS"], self.iplot,
|
||||||
Tsmooth=self.pickparams["aictsmoothS"], fig=self.current_figure,
|
Tsmooth=self.pickparams["aictsmoothS"], fig=self.current_figure,
|
||||||
linecolor=self.current_linecolor)
|
linecolor=self.current_linecolor, ogstream=ogstream)
|
||||||
# save pick for later plotting
|
# save pick for later plotting
|
||||||
self.aicarhpick = aicarhpick
|
self.aicarhpick = aicarhpick
|
||||||
|
|
||||||
|
@ -37,7 +37,8 @@ class AutoPicker(object):
|
|||||||
|
|
||||||
warnings.simplefilter('ignore')
|
warnings.simplefilter('ignore')
|
||||||
|
|
||||||
def __init__(self, cf, TSNR, PickWindow, iplot=0, aus=None, Tsmooth=None, Pick1=None, fig=None, linecolor='k'):
|
def __init__(self, cf, TSNR, PickWindow, iplot=0, aus=None, Tsmooth=None, Pick1=None,
|
||||||
|
fig=None, linecolor='k', ogstream=None):
|
||||||
"""
|
"""
|
||||||
Create AutoPicker object
|
Create AutoPicker object
|
||||||
:param cf: characteristic function, on which the picking algorithm is applied
|
:param cf: characteristic function, on which the picking algorithm is applied
|
||||||
@ -59,12 +60,15 @@ class AutoPicker(object):
|
|||||||
:type fig: `~matplotlib.figure.Figure`
|
:type fig: `~matplotlib.figure.Figure`
|
||||||
:param linecolor: matplotlib line color string
|
:param linecolor: matplotlib line color string
|
||||||
:type linecolor: str
|
:type linecolor: str
|
||||||
|
:param ogstream: original stream (waveform), e.g. for plotting purposes
|
||||||
|
:type ogstream: `~obspy.core.stream.Stream`
|
||||||
"""
|
"""
|
||||||
|
|
||||||
assert isinstance(cf, CharacteristicFunction), "%s is not a CharacteristicFunction object" % str(cf)
|
assert isinstance(cf, CharacteristicFunction), "%s is not a CharacteristicFunction object" % str(cf)
|
||||||
self._linecolor = linecolor
|
self._linecolor = linecolor
|
||||||
self._pickcolor_p = 'b'
|
self._pickcolor_p = 'b'
|
||||||
self.cf = cf.getCF()
|
self.cf = cf.getCF()
|
||||||
|
self.ogstream = ogstream
|
||||||
self.Tcf = cf.getTimeArray()
|
self.Tcf = cf.getTimeArray()
|
||||||
self.Data = cf.getXCF()
|
self.Data = cf.getXCF()
|
||||||
self.dt = cf.getIncrement()
|
self.dt = cf.getIncrement()
|
||||||
@ -347,6 +351,12 @@ class AICPicker(AutoPicker):
|
|||||||
self.Tcf = self.Tcf[0:len(self.Tcf) - 1]
|
self.Tcf = self.Tcf[0:len(self.Tcf) - 1]
|
||||||
ax1.plot(self.Tcf, cf / max(cf), color=self._linecolor, linewidth=0.7, label='(HOS-/AR-) Data')
|
ax1.plot(self.Tcf, cf / max(cf), color=self._linecolor, linewidth=0.7, label='(HOS-/AR-) Data')
|
||||||
ax1.plot(self.Tcf, aicsmooth / max(aicsmooth), 'r', label='Smoothed AIC-CF')
|
ax1.plot(self.Tcf, aicsmooth / max(aicsmooth), 'r', label='Smoothed AIC-CF')
|
||||||
|
# plot the original waveform also for evaluation of the CF and pick
|
||||||
|
if self.ogstream:
|
||||||
|
data = self.ogstream[0].data
|
||||||
|
if len(data) == len(self.Tcf):
|
||||||
|
ax1.plot(self.Tcf, 0.5 * data / max(data), 'k', label='Seismogram', alpha=0.3, zorder=0,
|
||||||
|
lw=0.5)
|
||||||
if self.Pick is not None:
|
if self.Pick is not None:
|
||||||
ax1.plot([self.Pick, self.Pick], [-0.1, 0.5], 'b', linewidth=2, label='AIC-Pick')
|
ax1.plot([self.Pick, self.Pick], [-0.1, 0.5], 'b', linewidth=2, label='AIC-Pick')
|
||||||
ax1.set_xlabel('Time [s] since %s' % self.Data[0].stats.starttime)
|
ax1.set_xlabel('Time [s] since %s' % self.Data[0].stats.starttime)
|
||||||
|
@ -828,6 +828,7 @@ def checksignallength(X, pick, minsiglength, pickparams, iplot=0, fig=None, line
|
|||||||
if len(X) > 1:
|
if len(X) > 1:
|
||||||
# all three components available
|
# all three components available
|
||||||
# make sure, all components have equal lengths
|
# make sure, all components have equal lengths
|
||||||
|
# MP MP: TODO: This is highly problematic in case of different starttimes (or sampling rates) of the traces
|
||||||
ilen = min([len(X[0].data), len(X[1].data), len(X[2].data)])
|
ilen = min([len(X[0].data), len(X[1].data), len(X[2].data)])
|
||||||
x1 = X[0][0:ilen]
|
x1 = X[0][0:ilen]
|
||||||
x2 = X[1][0:ilen]
|
x2 = X[1][0:ilen]
|
||||||
@ -836,6 +837,7 @@ def checksignallength(X, pick, minsiglength, pickparams, iplot=0, fig=None, line
|
|||||||
rms = np.sqrt((np.power(x1, 2) + np.power(x2, 2) + np.power(x3, 2)) / 3)
|
rms = np.sqrt((np.power(x1, 2) + np.power(x2, 2) + np.power(x3, 2)) / 3)
|
||||||
else:
|
else:
|
||||||
x1 = X[0].data
|
x1 = X[0].data
|
||||||
|
x2 = x3 = None
|
||||||
ilen = len(x1)
|
ilen = len(x1)
|
||||||
rms = abs(x1)
|
rms = abs(x1)
|
||||||
|
|
||||||
@ -874,6 +876,10 @@ def checksignallength(X, pick, minsiglength, pickparams, iplot=0, fig=None, line
|
|||||||
fig._tight = True
|
fig._tight = True
|
||||||
ax = fig.add_subplot(111)
|
ax = fig.add_subplot(111)
|
||||||
ax.plot(t, rms, color=linecolor, linewidth=0.7, label='RMS Data')
|
ax.plot(t, rms, color=linecolor, linewidth=0.7, label='RMS Data')
|
||||||
|
ax.plot(t, x1, 'k', alpha=0.3, lw=0.3, zorder=0)
|
||||||
|
if x2 is not None and x3 is not None:
|
||||||
|
ax.plot(t, x2, 'r', alpha=0.3, lw=0.3, zorder=0)
|
||||||
|
ax.plot(t, x3, 'g', alpha=0.3, lw=0.3, zorder=0)
|
||||||
ax.axvspan(t[inoise[0]], t[inoise[-1]], color='y', alpha=0.2, lw=0, label='Noise Window')
|
ax.axvspan(t[inoise[0]], t[inoise[-1]], color='y', alpha=0.2, lw=0, label='Noise Window')
|
||||||
ax.axvspan(t[isignal[0]], t[isignal[-1]], color='b', alpha=0.2, lw=0, label='Signal Window')
|
ax.axvspan(t[isignal[0]], t[isignal[-1]], color='b', alpha=0.2, lw=0, label='Signal Window')
|
||||||
ax.plot([t[isignal[0]], t[isignal[len(isignal) - 1]]],
|
ax.plot([t[isignal[0]], t[isignal[len(isignal) - 1]]],
|
||||||
@ -883,6 +889,7 @@ def checksignallength(X, pick, minsiglength, pickparams, iplot=0, fig=None, line
|
|||||||
ax.set_xlabel('Time [s] since %s' % X[0].stats.starttime)
|
ax.set_xlabel('Time [s] since %s' % X[0].stats.starttime)
|
||||||
ax.set_ylabel('Counts')
|
ax.set_ylabel('Counts')
|
||||||
ax.set_title('Check for Signal Length, Station %s' % X[0].stats.station)
|
ax.set_title('Check for Signal Length, Station %s' % X[0].stats.station)
|
||||||
|
ax.set_xlim(pickparams["pstart"], pickparams["pstop"])
|
||||||
ax.set_yticks([])
|
ax.set_yticks([])
|
||||||
if plt_flag == 1:
|
if plt_flag == 1:
|
||||||
fig.show()
|
fig.show()
|
||||||
|
Loading…
Reference in New Issue
Block a user