[update] increased code readability and improved figures created in autopick.py and picker.py

This commit is contained in:
Marcel Paffrath 2024-09-10 16:16:46 +02:00
parent 3da47c6f6b
commit 5ab6c494c5
3 changed files with 68 additions and 18 deletions

View File

@ -262,6 +262,10 @@ class AutopickStation(object):
self.metadata = metadata self.metadata = metadata
self.origin = origin self.origin = origin
# initialize TauPy pick estimates
self.estFirstP = None
self.estFirstS = None
# initialize picking results # initialize picking results
self.p_results = PickingResults() self.p_results = PickingResults()
self.s_results = PickingResults() self.s_results = PickingResults()
@ -443,15 +447,15 @@ class AutopickStation(object):
for arr in arrivals: for arr in arrivals:
phases[identifyPhaseID(arr.phase.name)].append(arr) phases[identifyPhaseID(arr.phase.name)].append(arr)
# get first P and S onsets from arrivals list # get first P and S onsets from arrivals list
estFirstP = 0 arrival_time_p = 0
estFirstS = 0 arrival_time_s = 0
if len(phases['P']) > 0: if len(phases['P']) > 0:
arrP, estFirstP = min([(arr, arr.time) for arr in phases['P']], key=lambda t: t[1]) arrP, arrival_time_p = min([(arr, arr.time) for arr in phases['P']], key=lambda t: t[1])
if len(phases['S']) > 0: if len(phases['S']) > 0:
arrS, estFirstS = min([(arr, arr.time) for arr in phases['S']], key=lambda t: t[1]) arrS, arrival_time_s = min([(arr, arr.time) for arr in phases['S']], key=lambda t: t[1])
print('autopick: estimated first arrivals for P: {} s, S:{} s after event' print('autopick: estimated first arrivals for P: {} s, S:{} s after event'
' origin time using TauPy'.format(estFirstP, estFirstS)) ' origin time using TauPy'.format(arrival_time_p, arrival_time_s))
return estFirstP, estFirstS return arrival_time_p, arrival_time_s
def exit_taupy(): def exit_taupy():
"""If taupy failed to calculate theoretical starttimes, picking continues. """If taupy failed to calculate theoretical starttimes, picking continues.
@ -477,10 +481,13 @@ class AutopickStation(object):
raise AttributeError('No source origins given!') raise AttributeError('No source origins given!')
arrivals = create_arrivals(self.metadata, self.origin, self.pickparams["taup_model"]) arrivals = create_arrivals(self.metadata, self.origin, self.pickparams["taup_model"])
estFirstP, estFirstS = first_PS_onsets(arrivals) arrival_P, arrival_S = first_PS_onsets(arrivals)
self.estFirstP = (self.origin[0].time + arrival_P) - self.ztrace.stats.starttime
# modifiy pstart and pstop relative to estimated first P arrival (relative to station time axis) # modifiy pstart and pstop relative to estimated first P arrival (relative to station time axis)
self.pickparams["pstart"] += (self.origin[0].time + estFirstP) - self.ztrace.stats.starttime self.pickparams["pstart"] += self.estFirstP
self.pickparams["pstop"] += (self.origin[0].time + estFirstP) - self.ztrace.stats.starttime self.pickparams["pstop"] += self.estFirstP
print('autopick: CF calculation times respectively:' print('autopick: CF calculation times respectively:'
' pstart: {} s, pstop: {} s'.format(self.pickparams["pstart"], self.pickparams["pstop"])) ' pstart: {} s, pstop: {} s'.format(self.pickparams["pstart"], self.pickparams["pstop"]))
# make sure pstart and pstop are inside the starttime/endtime of vertical trace # make sure pstart and pstop are inside the starttime/endtime of vertical trace
@ -491,9 +498,10 @@ class AutopickStation(object):
# for the two horizontal components take earliest and latest time to make sure that the s onset is not clipped # for the two horizontal components take earliest and latest time to make sure that the s onset is not clipped
# if start and endtime of horizontal traces differ, the s windowsize will automatically increase # if start and endtime of horizontal traces differ, the s windowsize will automatically increase
trace_s_start = min([self.etrace.stats.starttime, self.ntrace.stats.starttime]) trace_s_start = min([self.etrace.stats.starttime, self.ntrace.stats.starttime])
self.estFirstS = (self.origin[0].time + arrival_S) - trace_s_start
# modifiy sstart and sstop relative to estimated first S arrival (relative to station time axis) # modifiy sstart and sstop relative to estimated first S arrival (relative to station time axis)
self.pickparams["sstart"] += (self.origin[0].time + estFirstS) - trace_s_start self.pickparams["sstart"] += self.estFirstS
self.pickparams["sstop"] += (self.origin[0].time + estFirstS) - trace_s_start self.pickparams["sstop"] += self.estFirstS
print('autopick: CF calculation times respectively:' print('autopick: CF calculation times respectively:'
' sstart: {} s, sstop: {} s'.format(self.pickparams["sstart"], self.pickparams["sstop"])) ' sstart: {} s, sstop: {} s'.format(self.pickparams["sstart"], self.pickparams["sstop"]))
# make sure pstart and pstop are inside the starttime/endtime of horizontal traces # make sure pstart and pstop are inside the starttime/endtime of horizontal traces
@ -609,6 +617,12 @@ class AutopickStation(object):
# plot tapered trace filtered with bpz2 filter settings # plot tapered trace filtered with bpz2 filter settings
ax1.plot(tdata, self.tr_filt_z_bpz2.data / max(self.tr_filt_z_bpz2.data), color=linecolor, linewidth=0.7, ax1.plot(tdata, self.tr_filt_z_bpz2.data / max(self.tr_filt_z_bpz2.data), color=linecolor, linewidth=0.7,
label='Data') label='Data')
# plot pickwindows for P
pstart, pstop = self.pickparams['pstart'], self.pickparams['pstop']
if pstart is not None and pstop is not None:
ax1.axvspan(pstart, pstop, color='r', alpha=0.2, zorder=0, label='P window')
if self.estFirstP is not None:
ax1.axvline(self.estFirstP, ls='dashed', color='r', alpha=0.4, label='TauPy estimate')
if self.p_results.weight < 4: if self.p_results.weight < 4:
# plot CF of initial onset (HOScf or ARZcf) # plot CF of initial onset (HOScf or ARZcf)
ax1.plot(self.cf1.getTimeArray(), self.cf1.getCF() / max(self.cf1.getCF()), 'b', label='CF1') ax1.plot(self.cf1.getTimeArray(), self.cf1.getCF() / max(self.cf1.getCF()), 'b', label='CF1')
@ -713,6 +727,15 @@ class AutopickStation(object):
ax3.plot([refSpick.getpick() - 0.5, refSpick.getpick() + 0.5], [-1.3, -1.3], 'g', linewidth=2) ax3.plot([refSpick.getpick() - 0.5, refSpick.getpick() + 0.5], [-1.3, -1.3], 'g', linewidth=2)
ax3.plot([self.s_results.lpp, self.s_results.lpp], [-1.1, 1.1], 'g--', label='lpp') ax3.plot([self.s_results.lpp, self.s_results.lpp], [-1.1, 1.1], 'g--', label='lpp')
ax3.plot([self.s_results.epp, self.s_results.epp], [-1.1, 1.1], 'g--', label='epp') ax3.plot([self.s_results.epp, self.s_results.epp], [-1.1, 1.1], 'g--', label='epp')
# plot pickwindows for S
sstart, sstop = self.pickparams['sstart'], self.pickparams['sstop']
if sstart is not None and sstop is not None:
for axis in [ax2, ax3]:
axis.axvspan(sstart, sstop, color='b', alpha=0.2, zorder=0, label='S window')
if self.estFirstS is not None:
axis.axvline(self.estFirstS, ls='dashed', color='b', alpha=0.4, label='TauPy estimate')
ax3.legend(loc=1) ax3.legend(loc=1)
ax3.set_yticks([]) ax3.set_yticks([])
ax3.set_ylim([-1.5, 1.5]) ax3.set_ylim([-1.5, 1.5])
@ -835,14 +858,21 @@ class AutopickStation(object):
self.cf1 = None self.cf1 = None
assert isinstance(self.cf1, CharacteristicFunction), 'cf1 is not set correctly: maybe the algorithm name ({})' \ assert isinstance(self.cf1, CharacteristicFunction), 'cf1 is not set correctly: maybe the algorithm name ({})' \
' is corrupted'.format(self.pickparams["algoP"]) ' is corrupted'.format(self.pickparams["algoP"])
# get the original waveform stream from first CF class cut to identical length as CF for plotting
cut_ogstream = self.cf1.getDataArray(self.cf1.getCut())
# MP: Rename to cf_stream for further use of z_copy and to prevent chaos when z_copy suddenly becomes a cf
# stream and later again a waveform stream
cf_stream = z_copy.copy()
cf_stream[0].data = self.cf1.getCF()
# calculate AIC cf from first cf (either HOS or ARZ) # calculate AIC cf from first cf (either HOS or ARZ)
z_copy[0].data = self.cf1.getCF() aiccf = AICcf(cf_stream, cuttimes)
aiccf = AICcf(z_copy, cuttimes)
# get preliminary onset time from AIC-CF # get preliminary onset time from AIC-CF
self.set_current_figure('aicFig') self.set_current_figure('aicFig')
aicpick = AICPicker(aiccf, self.pickparams["tsnrz"], self.pickparams["pickwinP"], self.iplot, aicpick = AICPicker(aiccf, self.pickparams["tsnrz"], self.pickparams["pickwinP"], self.iplot,
Tsmooth=self.pickparams["aictsmooth"], fig=self.current_figure, Tsmooth=self.pickparams["aictsmooth"], fig=self.current_figure,
linecolor=self.current_linecolor) linecolor=self.current_linecolor, ogstream=cut_ogstream)
# save aicpick for plotting later # save aicpick for plotting later
self.p_data.aicpick = aicpick self.p_data.aicpick = aicpick
# add pstart and pstop to aic plot # add pstart and pstop to aic plot
@ -855,7 +885,7 @@ class AutopickStation(object):
label='P stop') label='P stop')
ax.legend(loc=1) ax.legend(loc=1)
Pflag = self._pick_p_quality_control(aicpick, z_copy, tr_filt) Pflag = self._pick_p_quality_control(aicpick, cf_stream, tr_filt)
# go on with processing if AIC onset passes quality control # go on with processing if AIC onset passes quality control
slope = aicpick.getSlope() slope = aicpick.getSlope()
if not slope: slope = 0 if not slope: slope = 0
@ -894,7 +924,7 @@ class AutopickStation(object):
refPpick = PragPicker(self.cf2, self.pickparams["tsnrz"], self.pickparams["pickwinP"], self.iplot, refPpick = PragPicker(self.cf2, self.pickparams["tsnrz"], self.pickparams["pickwinP"], self.iplot,
self.pickparams["ausP"], self.pickparams["ausP"],
self.pickparams["tsmoothP"], aicpick.getpick(), self.current_figure, self.pickparams["tsmoothP"], aicpick.getpick(), self.current_figure,
self.current_linecolor) self.current_linecolor, ogstream=cut_ogstream)
# save PragPicker result for plotting # save PragPicker result for plotting
self.p_data.refPpick = refPpick self.p_data.refPpick = refPpick
self.p_results.mpp = refPpick.getpick() self.p_results.mpp = refPpick.getpick()
@ -1146,11 +1176,14 @@ class AutopickStation(object):
# calculate AIC cf # calculate AIC cf
haiccf = self._calculate_aic_cf_s_pick(cuttimesh) haiccf = self._calculate_aic_cf_s_pick(cuttimesh)
# get the original waveform stream cut to identical length as CF for plotting
ogstream = haiccf.getDataArray(haiccf.getCut())
# get preliminary onset time from AIC cf # get preliminary onset time from AIC cf
self.set_current_figure('aicARHfig') self.set_current_figure('aicARHfig')
aicarhpick = AICPicker(haiccf, self.pickparams["tsnrh"], self.pickparams["pickwinS"], self.iplot, aicarhpick = AICPicker(haiccf, self.pickparams["tsnrh"], self.pickparams["pickwinS"], self.iplot,
Tsmooth=self.pickparams["aictsmoothS"], fig=self.current_figure, Tsmooth=self.pickparams["aictsmoothS"], fig=self.current_figure,
linecolor=self.current_linecolor) linecolor=self.current_linecolor, ogstream=ogstream)
# save pick for later plotting # save pick for later plotting
self.aicarhpick = aicarhpick self.aicarhpick = aicarhpick

View File

@ -37,7 +37,8 @@ class AutoPicker(object):
warnings.simplefilter('ignore') warnings.simplefilter('ignore')
def __init__(self, cf, TSNR, PickWindow, iplot=0, aus=None, Tsmooth=None, Pick1=None, fig=None, linecolor='k'): def __init__(self, cf, TSNR, PickWindow, iplot=0, aus=None, Tsmooth=None, Pick1=None,
fig=None, linecolor='k', ogstream=None):
""" """
Create AutoPicker object Create AutoPicker object
:param cf: characteristic function, on which the picking algorithm is applied :param cf: characteristic function, on which the picking algorithm is applied
@ -59,12 +60,15 @@ class AutoPicker(object):
:type fig: `~matplotlib.figure.Figure` :type fig: `~matplotlib.figure.Figure`
:param linecolor: matplotlib line color string :param linecolor: matplotlib line color string
:type linecolor: str :type linecolor: str
:param ogstream: original stream (waveform), e.g. for plotting purposes
:type ogstream: `~obspy.core.stream.Stream`
""" """
assert isinstance(cf, CharacteristicFunction), "%s is not a CharacteristicFunction object" % str(cf) assert isinstance(cf, CharacteristicFunction), "%s is not a CharacteristicFunction object" % str(cf)
self._linecolor = linecolor self._linecolor = linecolor
self._pickcolor_p = 'b' self._pickcolor_p = 'b'
self.cf = cf.getCF() self.cf = cf.getCF()
self.ogstream = ogstream
self.Tcf = cf.getTimeArray() self.Tcf = cf.getTimeArray()
self.Data = cf.getXCF() self.Data = cf.getXCF()
self.dt = cf.getIncrement() self.dt = cf.getIncrement()
@ -347,6 +351,12 @@ class AICPicker(AutoPicker):
self.Tcf = self.Tcf[0:len(self.Tcf) - 1] self.Tcf = self.Tcf[0:len(self.Tcf) - 1]
ax1.plot(self.Tcf, cf / max(cf), color=self._linecolor, linewidth=0.7, label='(HOS-/AR-) Data') ax1.plot(self.Tcf, cf / max(cf), color=self._linecolor, linewidth=0.7, label='(HOS-/AR-) Data')
ax1.plot(self.Tcf, aicsmooth / max(aicsmooth), 'r', label='Smoothed AIC-CF') ax1.plot(self.Tcf, aicsmooth / max(aicsmooth), 'r', label='Smoothed AIC-CF')
# plot the original waveform also for evaluation of the CF and pick
if self.ogstream:
data = self.ogstream[0].data
if len(data) == len(self.Tcf):
ax1.plot(self.Tcf, 0.5 * data / max(data), 'k', label='Seismogram', alpha=0.3, zorder=0,
lw=0.5)
if self.Pick is not None: if self.Pick is not None:
ax1.plot([self.Pick, self.Pick], [-0.1, 0.5], 'b', linewidth=2, label='AIC-Pick') ax1.plot([self.Pick, self.Pick], [-0.1, 0.5], 'b', linewidth=2, label='AIC-Pick')
ax1.set_xlabel('Time [s] since %s' % self.Data[0].stats.starttime) ax1.set_xlabel('Time [s] since %s' % self.Data[0].stats.starttime)

View File

@ -828,6 +828,7 @@ def checksignallength(X, pick, minsiglength, pickparams, iplot=0, fig=None, line
if len(X) > 1: if len(X) > 1:
# all three components available # all three components available
# make sure, all components have equal lengths # make sure, all components have equal lengths
# MP MP: TODO: This is highly problematic in case of different starttimes (or sampling rates) of the traces
ilen = min([len(X[0].data), len(X[1].data), len(X[2].data)]) ilen = min([len(X[0].data), len(X[1].data), len(X[2].data)])
x1 = X[0][0:ilen] x1 = X[0][0:ilen]
x2 = X[1][0:ilen] x2 = X[1][0:ilen]
@ -836,6 +837,7 @@ def checksignallength(X, pick, minsiglength, pickparams, iplot=0, fig=None, line
rms = np.sqrt((np.power(x1, 2) + np.power(x2, 2) + np.power(x3, 2)) / 3) rms = np.sqrt((np.power(x1, 2) + np.power(x2, 2) + np.power(x3, 2)) / 3)
else: else:
x1 = X[0].data x1 = X[0].data
x2 = x3 = None
ilen = len(x1) ilen = len(x1)
rms = abs(x1) rms = abs(x1)
@ -874,6 +876,10 @@ def checksignallength(X, pick, minsiglength, pickparams, iplot=0, fig=None, line
fig._tight = True fig._tight = True
ax = fig.add_subplot(111) ax = fig.add_subplot(111)
ax.plot(t, rms, color=linecolor, linewidth=0.7, label='RMS Data') ax.plot(t, rms, color=linecolor, linewidth=0.7, label='RMS Data')
ax.plot(t, x1, 'k', alpha=0.3, lw=0.3, zorder=0)
if x2 is not None and x3 is not None:
ax.plot(t, x2, 'r', alpha=0.3, lw=0.3, zorder=0)
ax.plot(t, x3, 'g', alpha=0.3, lw=0.3, zorder=0)
ax.axvspan(t[inoise[0]], t[inoise[-1]], color='y', alpha=0.2, lw=0, label='Noise Window') ax.axvspan(t[inoise[0]], t[inoise[-1]], color='y', alpha=0.2, lw=0, label='Noise Window')
ax.axvspan(t[isignal[0]], t[isignal[-1]], color='b', alpha=0.2, lw=0, label='Signal Window') ax.axvspan(t[isignal[0]], t[isignal[-1]], color='b', alpha=0.2, lw=0, label='Signal Window')
ax.plot([t[isignal[0]], t[isignal[len(isignal) - 1]]], ax.plot([t[isignal[0]], t[isignal[len(isignal) - 1]]],
@ -883,6 +889,7 @@ def checksignallength(X, pick, minsiglength, pickparams, iplot=0, fig=None, line
ax.set_xlabel('Time [s] since %s' % X[0].stats.starttime) ax.set_xlabel('Time [s] since %s' % X[0].stats.starttime)
ax.set_ylabel('Counts') ax.set_ylabel('Counts')
ax.set_title('Check for Signal Length, Station %s' % X[0].stats.station) ax.set_title('Check for Signal Length, Station %s' % X[0].stats.station)
ax.set_xlim(pickparams["pstart"], pickparams["pstop"])
ax.set_yticks([]) ax.set_yticks([])
if plt_flag == 1: if plt_flag == 1:
fig.show() fig.show()