Cosmetics, changed print commands to keep compatibility to Python 3.
This commit is contained in:
parent
bf1194ec3b
commit
60b9f176f0
@ -7,7 +7,6 @@
|
|||||||
|
|
||||||
:author: Ludger Kueperkoch / MAGS2 EP3 working group
|
:author: Ludger Kueperkoch / MAGS2 EP3 working group
|
||||||
"""
|
"""
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import scipy as sc
|
import scipy as sc
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
@ -44,7 +43,7 @@ def earllatepicker(X, nfac, TSNR, Pick1, iplot=None):
|
|||||||
LPick = None
|
LPick = None
|
||||||
EPick = None
|
EPick = None
|
||||||
PickError = None
|
PickError = None
|
||||||
print 'earllatepicker: Get earliest and latest possible pick relative to most likely pick ...'
|
print ("earllatepicker: Get earliest and latest possible pick relative to most likely pick ...")
|
||||||
|
|
||||||
x = X[0].data
|
x = X[0].data
|
||||||
t = np.arange(0, X[0].stats.npts / X[0].stats.sampling_rate,
|
t = np.arange(0, X[0].stats.npts / X[0].stats.sampling_rate,
|
||||||
@ -60,8 +59,8 @@ def earllatepicker(X, nfac, TSNR, Pick1, iplot=None):
|
|||||||
ilup, = np.where(x[isignal] > nlevel)
|
ilup, = np.where(x[isignal] > nlevel)
|
||||||
ildown, = np.where(x[isignal] < -nlevel)
|
ildown, = np.where(x[isignal] < -nlevel)
|
||||||
if not ilup.size and not ildown.size:
|
if not ilup.size and not ildown.size:
|
||||||
print 'earllatepicker: Signal lower than noise level!'
|
print ("earllatepicker: Signal lower than noise level!")
|
||||||
print 'Skip this trace!'
|
print ("Skip this trace!")
|
||||||
return LPick, EPick, PickError
|
return LPick, EPick, PickError
|
||||||
il = min(np.min(ilup) if ilup.size else float('inf'),
|
il = min(np.min(ilup) if ilup.size else float('inf'),
|
||||||
np.min(ildown) if ildown.size else float('inf'))
|
np.min(ildown) if ildown.size else float('inf'))
|
||||||
@ -143,7 +142,7 @@ def fmpicker(Xraw, Xfilt, pickwin, Pick, iplot=None):
|
|||||||
|
|
||||||
FM = None
|
FM = None
|
||||||
if Pick is not None:
|
if Pick is not None:
|
||||||
print 'fmpicker: Get first motion (polarity) of onset using unfiltered seismogram...'
|
print ("fmpicker: Get first motion (polarity) of onset using unfiltered seismogram...")
|
||||||
|
|
||||||
xraw = Xraw[0].data
|
xraw = Xraw[0].data
|
||||||
xfilt = Xfilt[0].data
|
xfilt = Xfilt[0].data
|
||||||
@ -182,15 +181,15 @@ def fmpicker(Xraw, Xfilt, pickwin, Pick, iplot=None):
|
|||||||
else:
|
else:
|
||||||
li1 = index1[0]
|
li1 = index1[0]
|
||||||
if np.size(xraw[ipick[0][1]:ipick[0][li1]]) == 0:
|
if np.size(xraw[ipick[0][1]:ipick[0][li1]]) == 0:
|
||||||
print 'fmpicker: Onset on unfiltered trace too emergent for first motion determination!'
|
print ("fmpicker: Onset on unfiltered trace too emergent for first motion determination!")
|
||||||
P1 = None
|
P1 = None
|
||||||
else:
|
else:
|
||||||
imax1 = np.argmax(abs(xraw[ipick[0][1]:ipick[0][li1]]))
|
imax1 = np.argmax(abs(xraw[ipick[0][1]:ipick[0][li1]]))
|
||||||
if imax1 == 0:
|
if imax1 == 0:
|
||||||
imax1 = np.argmax(abs(xraw[ipick[0][1]:ipick[0][index1[1]]]))
|
imax1 = np.argmax(abs(xraw[ipick[0][1]:ipick[0][index1[1]]]))
|
||||||
if imax1 == 0:
|
if imax1 == 0:
|
||||||
print 'fmpicker: Zero crossings too close!'
|
print ("fmpicker: Zero crossings too close!")
|
||||||
print 'Skip first motion determination!'
|
print ("Skip first motion determination!")
|
||||||
return FM
|
return FM
|
||||||
|
|
||||||
islope1 = np.where((t >= Pick) & (t <= Pick + t[imax1]))
|
islope1 = np.where((t >= Pick) & (t <= Pick + t[imax1]))
|
||||||
@ -224,15 +223,15 @@ def fmpicker(Xraw, Xfilt, pickwin, Pick, iplot=None):
|
|||||||
else:
|
else:
|
||||||
li2 = index2[0]
|
li2 = index2[0]
|
||||||
if np.size(xfilt[ipick[0][1]:ipick[0][li2]]) == 0:
|
if np.size(xfilt[ipick[0][1]:ipick[0][li2]]) == 0:
|
||||||
print 'fmpicker: Onset on filtered trace too emergent for first motion determination!'
|
print ("fmpicker: Onset on filtered trace too emergent for first motion determination!")
|
||||||
P2 = None
|
P2 = None
|
||||||
else:
|
else:
|
||||||
imax2 = np.argmax(abs(xfilt[ipick[0][1]:ipick[0][li2]]))
|
imax2 = np.argmax(abs(xfilt[ipick[0][1]:ipick[0][li2]]))
|
||||||
if imax2 == 0:
|
if imax2 == 0:
|
||||||
imax2 = np.argmax(abs(xfilt[ipick[0][1]:ipick[0][index2[1]]]))
|
imax2 = np.argmax(abs(xfilt[ipick[0][1]:ipick[0][index2[1]]]))
|
||||||
if imax2 == 0:
|
if imax2 == 0:
|
||||||
print 'fmpicker: Zero crossings too close!'
|
print ("fmpicker: Zero crossings too close!")
|
||||||
print 'Skip first motion determination!'
|
print ("Skip first motion determination!")
|
||||||
return FM
|
return FM
|
||||||
|
|
||||||
islope2 = np.where((t >= Pick) & (t <= Pick + t[imax2]))
|
islope2 = np.where((t >= Pick) & (t <= Pick + t[imax2]))
|
||||||
@ -256,7 +255,7 @@ def fmpicker(Xraw, Xfilt, pickwin, Pick, iplot=None):
|
|||||||
elif P1[0] > 0 and P2[0] <= 0:
|
elif P1[0] > 0 and P2[0] <= 0:
|
||||||
FM = '+'
|
FM = '+'
|
||||||
|
|
||||||
print 'fmpicker: Found polarity %s' % FM
|
print ("fmpicker: Found polarity %s" % FM)
|
||||||
|
|
||||||
if iplot > 1:
|
if iplot > 1:
|
||||||
plt.figure(iplot)
|
plt.figure(iplot)
|
||||||
@ -331,10 +330,10 @@ def getSNR(X, TSNR, t1):
|
|||||||
# get signal window
|
# get signal window
|
||||||
isignal = getsignalwin(t, t1, TSNR[2])
|
isignal = getsignalwin(t, t1, TSNR[2])
|
||||||
if np.size(inoise) < 1:
|
if np.size(inoise) < 1:
|
||||||
print 'getSNR: Empty array inoise, check noise window!'
|
print ("getSNR: Empty array inoise, check noise window!")
|
||||||
return
|
return
|
||||||
elif np.size(isignal) < 1:
|
elif np.size(isignal) < 1:
|
||||||
print 'getSNR: Empty array isignal, check signal window!'
|
print ("getSNR: Empty array isignal, check signal window!")
|
||||||
return
|
return
|
||||||
|
|
||||||
# demean over entire waveform
|
# demean over entire waveform
|
||||||
@ -372,7 +371,7 @@ def getnoisewin(t, t1, tnoise, tgap):
|
|||||||
inoise, = np.where((t <= max([t1 - tgap, 0])) \
|
inoise, = np.where((t <= max([t1 - tgap, 0])) \
|
||||||
& (t >= max([t1 - tnoise - tgap, 0])))
|
& (t >= max([t1 - tnoise - tgap, 0])))
|
||||||
if np.size(inoise) < 1:
|
if np.size(inoise) < 1:
|
||||||
print 'getnoisewin: Empty array inoise, check noise window!'
|
print ("getnoisewin: Empty array inoise, check noise window!")
|
||||||
|
|
||||||
return inoise
|
return inoise
|
||||||
|
|
||||||
@ -396,7 +395,7 @@ def getsignalwin(t, t1, tsignal):
|
|||||||
isignal, = np.where((t <= min([t1 + tsignal, len(t)])) \
|
isignal, = np.where((t <= min([t1 + tsignal, len(t)])) \
|
||||||
& (t >= t1))
|
& (t >= t1))
|
||||||
if np.size(isignal) < 1:
|
if np.size(isignal) < 1:
|
||||||
print 'getsignalwin: Empty array isignal, check signal window!'
|
print ("getsignalwin: Empty array isignal, check signal window!")
|
||||||
|
|
||||||
return isignal
|
return isignal
|
||||||
|
|
||||||
@ -483,8 +482,8 @@ def wadaticheck(pickdic, dttolerance, iplot):
|
|||||||
|
|
||||||
# calculate vp/vs ratio before check
|
# calculate vp/vs ratio before check
|
||||||
vpvsr = p1[0] + 1
|
vpvsr = p1[0] + 1
|
||||||
print '###############################################'
|
print ("###############################################")
|
||||||
print 'wadaticheck: Average Vp/Vs ratio before check:', vpvsr
|
print ("wadaticheck: Average Vp/Vs ratio before check:", vpvsr)
|
||||||
|
|
||||||
checkedPpicks = []
|
checkedPpicks = []
|
||||||
checkedSpicks = []
|
checkedSpicks = []
|
||||||
@ -521,18 +520,18 @@ def wadaticheck(pickdic, dttolerance, iplot):
|
|||||||
|
|
||||||
# calculate vp/vs ratio after check
|
# calculate vp/vs ratio after check
|
||||||
cvpvsr = p2[0] + 1
|
cvpvsr = p2[0] + 1
|
||||||
print 'wadaticheck: Average Vp/Vs ratio after check:', cvpvsr
|
print ("wadaticheck: Average Vp/Vs ratio after check:", cvpvsr)
|
||||||
print 'wadatacheck: Skipped %d S pick(s).' % ibad
|
print ("wadatacheck: Skipped %d S pick(s)." % ibad)
|
||||||
else:
|
else:
|
||||||
print '###############################################'
|
print ("###############################################")
|
||||||
print 'wadatacheck: Not enough checked S-P times available!'
|
print ("wadatacheck: Not enough checked S-P times available!")
|
||||||
print 'Skip Wadati check!'
|
print ("Skip Wadati check!")
|
||||||
|
|
||||||
checkedonsets = pickdic
|
checkedonsets = pickdic
|
||||||
|
|
||||||
else:
|
else:
|
||||||
print 'wadaticheck: Not enough S-P times available for reliable regression!'
|
print ("wadaticheck: Not enough S-P times available for reliable regression!")
|
||||||
print 'Skip wadati check!'
|
print ("Skip wadati check!")
|
||||||
wfitflag = 1
|
wfitflag = 1
|
||||||
|
|
||||||
# plot results
|
# plot results
|
||||||
@ -592,7 +591,7 @@ def checksignallength(X, pick, TSNR, minsiglength, nfac, minpercent, iplot):
|
|||||||
|
|
||||||
assert isinstance(X, Stream), "%s is not a stream object" % str(X)
|
assert isinstance(X, Stream), "%s is not a stream object" % str(X)
|
||||||
|
|
||||||
print 'Checking signal length ...'
|
print ("Checking signal length ...")
|
||||||
|
|
||||||
x = X[0].data
|
x = X[0].data
|
||||||
t = np.arange(0, X[0].stats.npts / X[0].stats.sampling_rate,
|
t = np.arange(0, X[0].stats.npts / X[0].stats.sampling_rate,
|
||||||
@ -601,8 +600,8 @@ def checksignallength(X, pick, TSNR, minsiglength, nfac, minpercent, iplot):
|
|||||||
# generate envelope function from Hilbert transform
|
# generate envelope function from Hilbert transform
|
||||||
y = np.imag(sc.signal.hilbert(x))
|
y = np.imag(sc.signal.hilbert(x))
|
||||||
e = np.sqrt(np.power(x, 2) + np.power(y, 2))
|
e = np.sqrt(np.power(x, 2) + np.power(y, 2))
|
||||||
# get noise window
|
# get noise window in front of pick plus saftey gap
|
||||||
inoise = getnoisewin(t, pick, TSNR[0], TSNR[1])
|
inoise = getnoisewin(t, pick - 0.5, TSNR[0], TSNR[1])
|
||||||
# get signal window
|
# get signal window
|
||||||
isignal = getsignalwin(t, pick, TSNR[2])
|
isignal = getsignalwin(t, pick, TSNR[2])
|
||||||
# calculate minimum adjusted signal level
|
# calculate minimum adjusted signal level
|
||||||
@ -613,12 +612,12 @@ def checksignallength(X, pick, TSNR, minsiglength, nfac, minpercent, iplot):
|
|||||||
numoverthr = len(np.where(e[isignal] >= minsiglevel)[0])
|
numoverthr = len(np.where(e[isignal] >= minsiglevel)[0])
|
||||||
|
|
||||||
if numoverthr >= minnum:
|
if numoverthr >= minnum:
|
||||||
print 'checksignallength: Signal reached required length.'
|
print ("checksignallength: Signal reached required length.")
|
||||||
returnflag = 1
|
returnflag = 1
|
||||||
else:
|
else:
|
||||||
print 'checksignallength: Signal shorter than required minimum signal length!'
|
print ("checksignallength: Signal shorter than required minimum signal length!")
|
||||||
print 'Presumably picked noise peak, pick is rejected!'
|
print ("Presumably picked noise peak, pick is rejected!")
|
||||||
print '(min. signal length required:', minsiglength, 's)'
|
print ("(min. signal length required:', minsiglength, 's)'")
|
||||||
returnflag = 0
|
returnflag = 0
|
||||||
|
|
||||||
if iplot == 2:
|
if iplot == 2:
|
||||||
@ -629,7 +628,7 @@ def checksignallength(X, pick, TSNR, minsiglength, nfac, minpercent, iplot):
|
|||||||
p2, = plt.plot(t[inoise], e[inoise])
|
p2, = plt.plot(t[inoise], e[inoise])
|
||||||
p3, = plt.plot(t[isignal],e[isignal], 'r')
|
p3, = plt.plot(t[isignal],e[isignal], 'r')
|
||||||
p4, = plt.plot([t[isignal[0]], t[isignal[len(isignal)-1]]], \
|
p4, = plt.plot([t[isignal[0]], t[isignal[len(isignal)-1]]], \
|
||||||
[minsiglevel, minsiglevel], 'g')
|
[minsiglevel, minsiglevel], 'g', linewidth=2)
|
||||||
p5, = plt.plot([pick, pick], [min(x), max(x)], 'b', linewidth=2)
|
p5, = plt.plot([pick, pick], [min(x), max(x)], 'b', linewidth=2)
|
||||||
plt.legend([p1, p2, p3, p4, p5], ['Data', 'Envelope Noise Window', \
|
plt.legend([p1, p2, p3, p4, p5], ['Data', 'Envelope Noise Window', \
|
||||||
'Envelope Signal Window', 'Minimum Signal Level', \
|
'Envelope Signal Window', 'Minimum Signal Level', \
|
||||||
@ -675,8 +674,8 @@ def checkPonsets(pickdic, dttolerance, iplot):
|
|||||||
stations.append(key)
|
stations.append(key)
|
||||||
|
|
||||||
# apply jackknife bootstrapping on variance of P onsets
|
# apply jackknife bootstrapping on variance of P onsets
|
||||||
print '###############################################'
|
print ("###############################################")
|
||||||
print 'checkPonsets: Apply jackknife bootstrapping on P-onset times ...'
|
print ("checkPonsets: Apply jackknife bootstrapping on P-onset times ...")
|
||||||
[xjack,PHI_pseudo,PHI_sub] = jackknife(Ppicks, 'VAR', 1)
|
[xjack,PHI_pseudo,PHI_sub] = jackknife(Ppicks, 'VAR', 1)
|
||||||
# get pseudo variances smaller than average variances
|
# get pseudo variances smaller than average variances
|
||||||
# (times safety factor), these picks passed jackknife test
|
# (times safety factor), these picks passed jackknife test
|
||||||
@ -684,7 +683,7 @@ def checkPonsets(pickdic, dttolerance, iplot):
|
|||||||
# these picks did not pass jackknife test
|
# these picks did not pass jackknife test
|
||||||
badjk = np.where(PHI_pseudo > 2 * xjack)
|
badjk = np.where(PHI_pseudo > 2 * xjack)
|
||||||
badjkstations = np.array(stations)[badjk]
|
badjkstations = np.array(stations)[badjk]
|
||||||
print 'checkPonsets: %d pick(s) did not pass jackknife test!' % len(badjkstations)
|
print ("checkPonsets: %d pick(s) did not pass jackknife test!" % len(badjkstations))
|
||||||
|
|
||||||
# calculate median from these picks
|
# calculate median from these picks
|
||||||
pmedian = np.median(np.array(Ppicks)[ij])
|
pmedian = np.median(np.array(Ppicks)[ij])
|
||||||
@ -696,9 +695,9 @@ def checkPonsets(pickdic, dttolerance, iplot):
|
|||||||
goodstations = np.array(stations)[igood]
|
goodstations = np.array(stations)[igood]
|
||||||
badstations = np.array(stations)[ibad]
|
badstations = np.array(stations)[ibad]
|
||||||
|
|
||||||
print 'checkPonsets: %d pick(s) deviate too much from median!' % len(ibad)
|
print ("checkPonsets: %d pick(s) deviate too much from median!" % len(ibad))
|
||||||
print 'checkPonsets: Skipped %d P pick(s) out of %d' % (len(badstations) \
|
print ("checkPonsets: Skipped %d P pick(s) out of %d" % (len(badstations) \
|
||||||
+ len(badjkstations), len(stations))
|
+ len(badjkstations), len(stations)))
|
||||||
|
|
||||||
goodmarker = 'goodPonsetcheck'
|
goodmarker = 'goodPonsetcheck'
|
||||||
badmarker = 'badPonsetcheck'
|
badmarker = 'badPonsetcheck'
|
||||||
@ -765,8 +764,8 @@ def jackknife(X, phi, h):
|
|||||||
g = len(X) / h
|
g = len(X) / h
|
||||||
|
|
||||||
if type(g) is not int:
|
if type(g) is not int:
|
||||||
print 'jackknife: Cannot divide quantity X in equal sized subgroups!'
|
print ("jackknife: Cannot divide quantity X in equal sized subgroups!")
|
||||||
print 'Choose another size for subgroups!'
|
print ("Choose another size for subgroups!")
|
||||||
return PHI_jack, PHI_pseudo, PHI_sub
|
return PHI_jack, PHI_pseudo, PHI_sub
|
||||||
else:
|
else:
|
||||||
# estimator of undisturbed spot check
|
# estimator of undisturbed spot check
|
||||||
@ -834,7 +833,7 @@ def checkZ4S(X, pick, zfac, checkwin, iplot):
|
|||||||
|
|
||||||
assert isinstance(X, Stream), "%s is not a stream object" % str(X)
|
assert isinstance(X, Stream), "%s is not a stream object" % str(X)
|
||||||
|
|
||||||
print 'Check for spuriously picked S onset instead of P onset ...'
|
print ("Check for spuriously picked S onset instead of P onset ...")
|
||||||
|
|
||||||
returnflag = 0
|
returnflag = 0
|
||||||
|
|
||||||
@ -875,9 +874,9 @@ def checkZ4S(X, pick, zfac, checkwin, iplot):
|
|||||||
# vertical P-coda level must exceed horizontal P-coda level
|
# vertical P-coda level must exceed horizontal P-coda level
|
||||||
# zfac times encodalevel
|
# zfac times encodalevel
|
||||||
if zcodalevel < minsiglevel:
|
if zcodalevel < minsiglevel:
|
||||||
print 'checkZ4S: Maybe S onset? Skip this P pick!'
|
print ("checkZ4S: Maybe S onset? Skip this P pick!")
|
||||||
else:
|
else:
|
||||||
print 'checkZ4S: P onset passes checkZ4S test!'
|
print ("checkZ4S: P onset passes checkZ4S test!")
|
||||||
returnflag = 1
|
returnflag = 1
|
||||||
|
|
||||||
if iplot > 1:
|
if iplot > 1:
|
||||||
|
Loading…
Reference in New Issue
Block a user