[merge] feature/refactor into develop

This commit is contained in:
2019-04-12 10:31:29 +02:00
25 changed files with 1858 additions and 995 deletions

View File

@@ -0,0 +1,78 @@
import unittest
from pylot.core.pick.autopick import PickingResults
class TestPickingResults(unittest.TestCase):
def setUp(self):
self.pr = PickingResults()
def test_non_existing_key_dot_access(self):
"""Accessing an attribute in the class that wasnt added to the dict should give a AttributeError"""
with self.assertRaises(AttributeError):
self.pr.doesntexist
def test_non_existing_key_dict_access(self):
"""Accessing a missing attribute in a dictionary throws a KeyError"""
with self.assertRaises(KeyError):
self.pr['keydoesnotexist']
def test_dot_member_creation(self):
self.pr.x = 0
self.assertEqual(self.pr.x, 0)
self.pr.x += 42
self.assertEqual(self.pr.x, 42)
def test_dot_builtin_member(self):
self.assertEqual(self.pr.weight, 4)
self.pr.weight = 99
self.assertEqual(self.pr.weight, 99)
def test_key_access(self):
self.pr['y'] = 11
self.assertEqual(self.pr['y'], 11)
def test_builtin_fields(self):
self.assertEqual(self.pr['weight'], 4)
def test_in(self):
self.assertFalse('keydoesnotexist' in self.pr)
self.pr['k'] = 0
self.assertTrue('k' in self.pr)
def test_keys_function(self):
a = 99
self.pr.newkey = a
self.assertIn(a, self.pr.values())
self.assertIn('newkey', self.pr.keys())
def test_len_and_clear(self):
self.pr.clear()
self.assertEqual(len(self.pr), 0)
self.pr.a = 6
self.pr['b'] = 9
self.assertEqual(len(self.pr), 2)
def test_get_default(self):
self.assertEqual(self.pr.get('keynotexisting', 42), 42)
weight = self.pr.get('weight', -1)
self.assertEqual(weight, 4)
self.assertNotEqual(weight, -1)
def test_dunder_attributes(self):
"""Storing Pythons special dunder method in a dictionary is valid and should not override the instances dunder
methods"""
prev_len = len(self.pr)
try:
self.pr['__len__'] = None
except Exception:
self.fail("test_dunder_attributes failed to add a dunder attribute to the dictionary keys")
try:
curr_len = len(self.pr)
except Exception:
self.fail("test_dunder_attributes overwrote an instance internal dunder method")
self.assertEqual(prev_len+1, curr_len) # +1 for the added __len__ key/value-pair
self.pr.__len__ = 42
self.assertEqual(42, self.pr['__len__'])
self.assertEqual(prev_len+1, curr_len, msg="__len__ was overwritten")

View File

@@ -0,0 +1,35 @@
import unittest
from pylot.core.pick.autopick import PickingParameters
class TestPickingParameters(unittest.TestCase):
def setUp(self):
self.simple_dict = {'a': 3, 'b': 14}
self.nested_dict = {'a': self.simple_dict, 'b': self.simple_dict}
def assertParameterEquality(self, dic, instance):
"""Test wether all parameters given in dic are found in instance"""
for key, value in dic.items():
self.assertEqual(value, getattr(instance, key))
def test_add_params_from_dict_simple(self):
pickparam = PickingParameters()
pickparam.add_params_from_dict(self.simple_dict)
self.assertParameterEquality(self.simple_dict, pickparam)
def test_add_params_from_dict_nested(self):
pickparam = PickingParameters()
pickparam.add_params_from_dict(self.nested_dict)
self.assertParameterEquality(self.nested_dict, pickparam)
def test_init(self):
pickparam = PickingParameters(self.simple_dict)
self.assertParameterEquality(self.simple_dict, pickparam)
def test_dot_access(self):
pickparam = PickingParameters(self.simple_dict)
self.assertEqual(pickparam.a, self.simple_dict['a'])
if __name__ == '__main__':
unittest.main()

View File

@@ -0,0 +1,104 @@
%This is a parameter input file for PyLoT/autoPyLoT.
%All main and special settings regarding data handling
%and picking are to be set here!
%Parameters are optimized for %extent data sets!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#main settings#
/home/darius #rootpath# %project path
alparray #datapath# %data path
waveforms_used #database# %name of data base
e0093.173.16 #eventID# %event ID for single event processing (* for all events found in database)
/home/darius/alparray/metadata #invdir# %full path to inventory or dataless-seed file
PILOT #datastructure# %choose data structure
True #apverbose# %choose 'True' or 'False' for terminal output
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#NLLoc settings#
None #nllocbin# %path to NLLoc executable
/home/darius/alparray/auto #nllocroot# %root of NLLoc-processing directory
AUTOPHASES.obs #phasefile# %name of autoPyLoT-output phase file for NLLoc
Insheim_min1d032016_auto.in #ctrfile# %name of autoPyLoT-output control file for NLLoc
ttime #ttpatter# %pattern of NLLoc ttimes from grid
AUTOLOC_nlloc #outpatter# %pattern of NLLoc-output file
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#parameters for seismic moment estimation#
3530.0 #vp# %average P-wave velocity
2500.0 #rho# %average rock density [kg/m^3]
300.0 0.8 #Qp# %quality factor for P waves (Qp*f^a); list(Qp, a)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#settings local magnitude#
1.0 1.0 1.0 #WAscaling# %Scaling relation (log(Ao)+Alog(r)+Br+C) of Wood-Anderson amplitude Ao [nm] If zeros are set, original Richter magnitude is calculated!
1.0 1.0 #magscaling# %Scaling relation for derived local magnitude [a*Ml+b]. If zeros are set, no scaling of network magnitude is applied!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#filter settings#
0.01 0.01 #minfreq# %Lower filter frequency [P, S]
0.5 0.5 #maxfreq# %Upper filter frequency [P, S]
3 3 #filter_order# %filter order [P, S]
bandpass bandpass #filter_type# %filter type (bandpass, bandstop, lowpass, highpass) [P, S]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#common settings picker#
global #extent# %extent of array ("local", "regional" or "global")
-100.0 #pstart# %start time [s] for calculating CF for P-picking (if TauPy: seconds relative to estimated onset)
350.0 #pstop# %end time [s] for calculating CF for P-picking (if TauPy: seconds relative to estimated onset)
200.0 #sstart# %start time [s] relative to P-onset for calculating CF for S-picking
875.0 #sstop# %end time [s] after P-onset for calculating CF for S-picking
False #use_taup# %use estimated traveltimes from TauPy for calculating windows for CF
IASP91 #taup_model# %define TauPy model for traveltime estimation. Possible values: 1066a, 1066b, ak135, ak135f, herrin, iasp91, jb, prem, pwdk, sp6
0.01 0.1 #bpz1# %lower/upper corner freq. of first band pass filter Z-comp. [Hz]
0.001 0.5 #bpz2# %lower/upper corner freq. of second band pass filter Z-comp. [Hz]
0.01 0.5 #bph1# %lower/upper corner freq. of first band pass filter H-comp. [Hz]
0.001 0.5 #bph2# %lower/upper corner freq. of second band pass filter z-comp. [Hz]
#special settings for calculating CF#
%!!Edit the following only if you know what you are doing!!%
#Z-component#
HOS #algoP# %choose algorithm for P-onset determination (HOS, ARZ, or AR3)
100.0 #tlta# %for HOS-/AR-AIC-picker, length of LTA window [s]
4 #hosorder# %for HOS-picker, order of Higher Order Statistics
2 #Parorder# %for AR-picker, order of AR process of Z-component
24.0 #tdet1z# %for AR-picker, length of AR determination window [s] for Z-component, 1st pick
20.0 #tpred1z# %for AR-picker, length of AR prediction window [s] for Z-component, 1st pick
16.0 #tdet2z# %for AR-picker, length of AR determination window [s] for Z-component, 2nd pick
8.0 #tpred2z# %for AR-picker, length of AR prediction window [s] for Z-component, 2nd pick
0.5 #addnoise# %add noise to seismogram for stable AR prediction
30.0 5.0 20.0 10.0 #tsnrz# %for HOS/AR, window lengths for SNR-and slope estimation [tnoise, tsafetey, tsignal, tslope] [s]
55.0 #pickwinP# %for initial AIC pick, length of P-pick window [s]
20.0 #Precalcwin# %for HOS/AR, window length [s] for recalculation of CF (relative to 1st pick)
6.0 #aictsmooth# %for HOS/AR, take average of samples for smoothing of AIC-function [s]
4.0 #tsmoothP# %for HOS/AR, take average of samples for smoothing CF [s]
0.5 #ausP# %for HOS/AR, artificial uplift of samples (aus) of CF (P)
1.1 #nfacP# %for HOS/AR, noise factor for noise level determination (P)
50.0 #checkwindowP# %time window before HOS/AR-maximum to check for smaller maxima [s]
0.7 #minfactorP# %Second maximum must be at least minfactor * first maximum [-]
#H-components#
ARH #algoS# %choose algorithm for S-onset determination (ARH or AR3)
30.0 #tdet1h# %for HOS/AR, length of AR-determination window [s], H-components, 1st pick
18.0 #tpred1h# %for HOS/AR, length of AR-prediction window [s], H-components, 1st pick
16.0 #tdet2h# %for HOS/AR, length of AR-determinaton window [s], H-components, 2nd pick
8.0 #tpred2h# %for HOS/AR, length of AR-prediction window [s], H-components, 2nd pick
4 #Sarorder# %for AR-picker, order of AR process of H-components
30.0 #Srecalcwin# %for AR-picker, window length [s] for recalculation of CF (2nd pick) (H)
195.0 #pickwinS# %for initial AIC pick, length of S-pick window [s]
30.0 10.0 15.0 10.0 #tsnrh# %for ARH/AR3, window lengths for SNR-and slope estimation [tnoise, tsafetey, tsignal, tslope] [s]
22.0 #aictsmoothS# %for AIC-picker, take average of samples for smoothing of AIC-function [s]
10.0 #tsmoothS# %for AR-picker, take average of samples for smoothing CF [s] (S)
0.001 #ausS# %for HOS/AR, artificial uplift of samples (aus) of CF (S)
1.2 #nfacS# %for AR-picker, noise factor for noise level determination (S)
250.0 #checkwindowS# %time window before AR-maximum to check for smaller maxima [s]
0.4 #minfactorS# %Second maximum must be at least minfactor * first maximum [-]
#first-motion picker#
1 #minfmweight# %minimum required P weight for first-motion determination
3.0 #minFMSNR# %miniumum required SNR for first-motion determination
10.0 #fmpickwin# %pick window around P onset for calculating zero crossings
#quality assessment#
4.0 8.0 12.0 16.0 #timeerrorsP# %discrete time errors [s] corresponding to picking weights [0 1 2 3] for P
4.0 8.0 12.0 16.0 #timeerrorsS# %discrete time errors [s] corresponding to picking weights [0 1 2 3] for S
0.01 #minAICPslope# %below this slope [counts/s] the initial P pick is rejected
1.1 #minAICPSNR# %below this SNR the initial P pick is rejected
0.01 #minAICSslope# %below this slope [counts/s] the initial S pick is rejected
1.1 #minAICSSNR# %below this SNR the initial S pick is rejected
12.0 #minsiglength# %length of signal part for which amplitudes must exceed noiselevel [s]
1.1 #noisefactor# %noiselevel*noisefactor=threshold
20.0 #minpercent# %required percentage of amplitudes exceeding threshold
1.25 #zfac# %P-amplitude must exceed at least zfac times RMS-S amplitude
60.0 #mdttolerance# %maximum allowed deviation of P picks from median [s]
60.0 #wdttolerance# %maximum allowed deviation from Wadati-diagram
5.0 #jackfactor# %pick is removed if the variance of the subgroup with the pick removed is larger than the mean variance of all subgroups times safety factor

View File

@@ -0,0 +1,104 @@
%This is a parameter input file for PyLoT/autoPyLoT.
%All main and special settings regarding data handling
%and picking are to be set here!
%Parameters are optimized for %extent data sets!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#main settings#
/home/darius #rootpath# %project path
alparray #datapath# %data path
waveforms_used #database# %name of data base
e0093.173.16 #eventID# %event ID for single event processing (* for all events found in database)
/home/darius/alparray/metadata #invdir# %full path to inventory or dataless-seed file
PILOT #datastructure# %choose data structure
True #apverbose# %choose 'True' or 'False' for terminal output
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#NLLoc settings#
None #nllocbin# %path to NLLoc executable
/home/darius/alparray/auto #nllocroot# %root of NLLoc-processing directory
AUTOPHASES.obs #phasefile# %name of autoPyLoT-output phase file for NLLoc
Insheim_min1d032016_auto.in #ctrfile# %name of autoPyLoT-output control file for NLLoc
ttime #ttpatter# %pattern of NLLoc ttimes from grid
AUTOLOC_nlloc #outpatter# %pattern of NLLoc-output file
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#parameters for seismic moment estimation#
3530.0 #vp# %average P-wave velocity
2500.0 #rho# %average rock density [kg/m^3]
300.0 0.8 #Qp# %quality factor for P waves (Qp*f^a); list(Qp, a)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#settings local magnitude#
1.0 1.0 1.0 #WAscaling# %Scaling relation (log(Ao)+Alog(r)+Br+C) of Wood-Anderson amplitude Ao [nm] If zeros are set, original Richter magnitude is calculated!
1.0 1.0 #magscaling# %Scaling relation for derived local magnitude [a*Ml+b]. If zeros are set, no scaling of network magnitude is applied!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#filter settings#
0.01 0.01 #minfreq# %Lower filter frequency [P, S]
0.5 0.5 #maxfreq# %Upper filter frequency [P, S]
3 3 #filter_order# %filter order [P, S]
bandpass bandpass #filter_type# %filter type (bandpass, bandstop, lowpass, highpass) [P, S]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#common settings picker#
global #extent# %extent of array ("local", "regional" or "global")
-100.0 #pstart# %start time [s] for calculating CF for P-picking (if TauPy: seconds relative to estimated onset)
350.0 #pstop# %end time [s] for calculating CF for P-picking (if TauPy: seconds relative to estimated onset)
200.0 #sstart# %start time [s] relative to P-onset for calculating CF for S-picking
875.0 #sstop# %end time [s] after P-onset for calculating CF for S-picking
True #use_taup# %use estimated traveltimes from TauPy for calculating windows for CF
IASP91 #taup_model# %define TauPy model for traveltime estimation. Possible values: 1066a, 1066b, ak135, ak135f, herrin, iasp91, jb, prem, pwdk, sp6
0.01 0.1 #bpz1# %lower/upper corner freq. of first band pass filter Z-comp. [Hz]
0.001 0.5 #bpz2# %lower/upper corner freq. of second band pass filter Z-comp. [Hz]
0.01 0.5 #bph1# %lower/upper corner freq. of first band pass filter H-comp. [Hz]
0.001 0.5 #bph2# %lower/upper corner freq. of second band pass filter z-comp. [Hz]
#special settings for calculating CF#
%!!Edit the following only if you know what you are doing!!%
#Z-component#
HOS #algoP# %choose algorithm for P-onset determination (HOS, ARZ, or AR3)
100.0 #tlta# %for HOS-/AR-AIC-picker, length of LTA window [s]
4 #hosorder# %for HOS-picker, order of Higher Order Statistics
2 #Parorder# %for AR-picker, order of AR process of Z-component
24.0 #tdet1z# %for AR-picker, length of AR determination window [s] for Z-component, 1st pick
20.0 #tpred1z# %for AR-picker, length of AR prediction window [s] for Z-component, 1st pick
16.0 #tdet2z# %for AR-picker, length of AR determination window [s] for Z-component, 2nd pick
8.0 #tpred2z# %for AR-picker, length of AR prediction window [s] for Z-component, 2nd pick
0.5 #addnoise# %add noise to seismogram for stable AR prediction
30.0 5.0 20.0 10.0 #tsnrz# %for HOS/AR, window lengths for SNR-and slope estimation [tnoise, tsafetey, tsignal, tslope] [s]
55.0 #pickwinP# %for initial AIC pick, length of P-pick window [s]
20.0 #Precalcwin# %for HOS/AR, window length [s] for recalculation of CF (relative to 1st pick)
6.0 #aictsmooth# %for HOS/AR, take average of samples for smoothing of AIC-function [s]
4.0 #tsmoothP# %for HOS/AR, take average of samples for smoothing CF [s]
0.5 #ausP# %for HOS/AR, artificial uplift of samples (aus) of CF (P)
1.1 #nfacP# %for HOS/AR, noise factor for noise level determination (P)
50.0 #checkwindowP# %time window before HOS/AR-maximum to check for smaller maxima [s]
0.7 #minfactorP# %Second maximum must be at least minfactor * first maximum [-]
#H-components#
ARH #algoS# %choose algorithm for S-onset determination (ARH or AR3)
30.0 #tdet1h# %for HOS/AR, length of AR-determination window [s], H-components, 1st pick
18.0 #tpred1h# %for HOS/AR, length of AR-prediction window [s], H-components, 1st pick
16.0 #tdet2h# %for HOS/AR, length of AR-determinaton window [s], H-components, 2nd pick
8.0 #tpred2h# %for HOS/AR, length of AR-prediction window [s], H-components, 2nd pick
4 #Sarorder# %for AR-picker, order of AR process of H-components
30.0 #Srecalcwin# %for AR-picker, window length [s] for recalculation of CF (2nd pick) (H)
195.0 #pickwinS# %for initial AIC pick, length of S-pick window [s]
30.0 10.0 15.0 10.0 #tsnrh# %for ARH/AR3, window lengths for SNR-and slope estimation [tnoise, tsafetey, tsignal, tslope] [s]
22.0 #aictsmoothS# %for AIC-picker, take average of samples for smoothing of AIC-function [s]
10.0 #tsmoothS# %for AR-picker, take average of samples for smoothing CF [s] (S)
0.001 #ausS# %for HOS/AR, artificial uplift of samples (aus) of CF (S)
1.2 #nfacS# %for AR-picker, noise factor for noise level determination (S)
250.0 #checkwindowS# %time window before AR-maximum to check for smaller maxima [s]
0.4 #minfactorS# %Second maximum must be at least minfactor * first maximum [-]
#first-motion picker#
1 #minfmweight# %minimum required P weight for first-motion determination
3.0 #minFMSNR# %miniumum required SNR for first-motion determination
10.0 #fmpickwin# %pick window around P onset for calculating zero crossings
#quality assessment#
4.0 8.0 12.0 16.0 #timeerrorsP# %discrete time errors [s] corresponding to picking weights [0 1 2 3] for P
4.0 8.0 12.0 16.0 #timeerrorsS# %discrete time errors [s] corresponding to picking weights [0 1 2 3] for S
0.01 #minAICPslope# %below this slope [counts/s] the initial P pick is rejected
1.1 #minAICPSNR# %below this SNR the initial P pick is rejected
0.01 #minAICSslope# %below this slope [counts/s] the initial S pick is rejected
1.1 #minAICSSNR# %below this SNR the initial S pick is rejected
12.0 #minsiglength# %length of signal part for which amplitudes must exceed noiselevel [s]
1.1 #noisefactor# %noiselevel*noisefactor=threshold
20.0 #minpercent# %required percentage of amplitudes exceeding threshold
1.25 #zfac# %P-amplitude must exceed at least zfac times RMS-S amplitude
60.0 #mdttolerance# %maximum allowed deviation of P picks from median [s]
60.0 #wdttolerance# %maximum allowed deviation from Wadati-diagram
5.0 #jackfactor# %pick is removed if the variance of the subgroup with the pick removed is larger than the mean variance of all subgroups times safety factor

View File

@@ -0,0 +1,21 @@
<?xml version='1.0' encoding='utf-8'?>
<q:quakeml xmlns:q="http://quakeml.org/xmlns/quakeml/1.2" xmlns="http://quakeml.org/xmlns/bed/1.2">
<eventParameters publicID="smi:local/53a38563-739a-48b2-9f34-bf40ee7b656a">
<event publicID="smi:local/e0001.024.16">
<origin publicID="smi:local/e0001.024.16">
<time>
<value>2016-01-24T10:30:30.000000Z</value>
</time>
<latitude>
<value>59.66</value>
</latitude>
<longitude>
<value>-153.45</value>
</longitude>
<depth>
<value>128.0</value>
</depth>
</origin>
</event>
</eventParameters>
</q:quakeml>

View File

@@ -0,0 +1 @@
/data/AlpArray/mini_SEED_LH/2016-01-24T10:30:30

View File

@@ -0,0 +1,211 @@
import unittest
from unittest import skip
import obspy
from obspy import UTCDateTime
import os
import sys
from pylot.core.pick.autopick import autopickstation
from pylot.core.io.inputs import PylotParameter
from pylot.core.io.data import Data
from pylot.core.util.utils import trim_station_components
class HidePrints:
"""
Used to hide all standard output the Function to be tested have, since it clutters the test results.
"""
def __init__(self, hide_prints=True):
"""Create object with hide_prints=False to disable print hiding"""
self.hide = hide_prints
def __enter__(self):
if self.hide:
self._original_stdout = sys.stdout
devnull = open(os.devnull, "w")
sys.stdout = devnull
def __exit__(self, exc_type, exc_val, exc_tb):
if self.hide:
sys.stdout = self._original_stdout
class MockMetadata:
"""Mock metadata object used for taupy to avoid reading large dless file from disk.
get_coordinates must take the same arguments as pylot.core.utils.dataprocssing.py/class Metadata."""
def __init__(self):
self.station_names = ['GR.GRA1', 'GR.GRA2', 'G.ECH', 'CH.FIESA', 'Z3.A106A']
gra1 = {u'azimuth': 0.0, u'dip': -90.0, u'elevation': 499.5, u'latitude': 49.691888, u'local_depth': 0.0,
u'longitude': 11.22172}
gra2 = {u'azimuth': 0.0, u'dip': -90.0, u'elevation': 512.0, u'latitude': 49.655208, u'local_depth': 0.0,
u'longitude': 11.359444}
ech = {u'azimuth': 90.0, u'dip': 0.0, u'elevation': 580.0, u'latitude': 48.216313, u'local_depth': 250.0,
u'longitude': 7.158961}
fiesa = {'azimuth': 0.0, 'dip': -90.0, 'elevation': 2340.5, 'latitude': 46.43521, 'local_depth': 0.0,
'longitude': 8.11051}
a106 = {'azimuth': 90.0, 'dip': 0.0, 'elevation': 468.0, 'latitude': 48.753388, 'local_depth': 0.0,
'longitude': 9.721937}
self.coordinates = [gra1, gra2, ech, fiesa, a106]
def get_coordinates(self, station_id, time=None):
"""
Mocks the method get_coordinates from obspy.io.xseed.parser.Parser object
to avoid building a parser for the unit tests
:param station_id: 'GR.GRA1..LHZ' or similar
:type station_id: str
:return: dictionary containing azimuth, dip, elevation, latitude, longitude,
local depth as keys
:rtype: dict
>>>m = MockMetadata(); m.get_coordinates('GR.GRA2..LHZ')
{u'azimuth': 0.0, u'dip': -90.0, u'elevation': 512.0, u'latitude': 49.655208, u'local_depth': 0.0, u'longitude': 11.359444}
"""
for index, name in enumerate(self.station_names):
if station_id.startswith(name):
return self.coordinates[index]
class TestAutopickStation(unittest.TestCase):
"""
Test the autopickstation function as if it were called from GUI.
Three stations (GR.GRA1, GR.GRA2, G.ECH) are tested with and without TauPy respectively
"""
def setUp(self):
self.event_id = 'e0001.024.16'
# Create wfstream for picking
mseed_relative_path = os.path.join(os.path.dirname(__file__), self.event_id, '*.mseed')
self.wfstream = obspy.read(mseed_relative_path)
# trim waveform to get the same results as the GUI call
with HidePrints():
self.wfstream = trim_station_components(self.wfstream, trim_start=True, trim_end=False)
self.gra1 = self.wfstream.select(station='GRA1')
self.gra2 = self.wfstream.select(station='GRA2')
self.ech = self.wfstream.select(station='ECH')
self.fiesa = self.wfstream.select(station='FIESA')
self.a106 = self.wfstream.select(station='A106A')
self.a005a = self.wfstream.select(station='A005A')
# Create input parameter container
self.inputfile_taupy_enabled = os.path.join(os.path.dirname(__file__), 'autoPyLoT_global_taupy_true.in')
self.inputfile_taupy_disabled = os.path.join(os.path.dirname(__file__), 'autoPyLoT_global_taupy_false.in')
self.pickparam_taupy_enabled = PylotParameter(fnin=self.inputfile_taupy_enabled)
self.pickparam_taupy_disabled = PylotParameter(fnin=self.inputfile_taupy_disabled)
self.xml_file = os.path.join(os.path.dirname(__file__),self.event_id, 'PyLoT_'+self.event_id+'.xml')
self.data = Data(evtdata=self.xml_file)
# create origin for taupy testing
self.origin = [obspy.core.event.origin.Origin(magnitude=7.1, latitude=59.66, longitude=-153.45, depth=128.0, time=UTCDateTime("2016-01-24T10:30:30.0"))]
# mocking metadata since reading it takes a long time to read from file
self.metadata = MockMetadata()
# show complete diff when difference in results dictionaries are found
self.maxDiff = None
#@skip("Works")
def test_autopickstation_taupy_disabled_gra1(self):
expected = {'P': {'picker': 'auto', 'snrdb': 15.405649120980094, 'weight': 0, 'Mo': None, 'marked': [], 'Mw': None, 'fc': None, 'snr': 34.718816470730317, 'mpp': UTCDateTime(2016, 1, 24, 10, 41, 31, 690000), 'w0': None, 'spe': 0.93333333333333235, 'network': u'GR', 'epp': UTCDateTime(2016, 1, 24, 10, 41, 28, 890000), 'lpp': UTCDateTime(2016, 1, 24, 10, 41, 32, 690000), 'fm': 'D', 'channel': u'LHZ'}, 'S': {'picker': 'auto', 'snrdb': 10.669661906545489, 'network': u'GR', 'weight': 0, 'Ao': None, 'lpp': UTCDateTime(2016, 1, 24, 10, 50, 30, 690000), 'snr': 11.667187857573905, 'epp': UTCDateTime(2016, 1, 24, 10, 50, 21, 690000), 'mpp': UTCDateTime(2016, 1, 24, 10, 50, 29, 690000), 'fm': None, 'spe': 2.6666666666666665, 'channel': u'LHE'}}
with HidePrints():
result, station = autopickstation(wfstream=self.gra1, pickparam=self.pickparam_taupy_disabled, metadata=(None, None))
self.assertDictContainsSubset(expected=expected['P'], actual=result['P'])
self.assertDictContainsSubset(expected=expected['S'], actual=result['S'])
self.assertEqual('GRA1', station)
def test_autopickstation_taupy_enabled_gra1(self):
expected = {'P': {'picker': 'auto', 'snrdb': 15.599905299126778, 'weight': 0, 'Mo': None, 'marked': [], 'Mw': None, 'fc': None, 'snr': 36.307013769185403, 'mpp': UTCDateTime(2016, 1, 24, 10, 41, 27, 690000), 'w0': None, 'spe': 0.93333333333333235, 'network': u'GR', 'epp': UTCDateTime(2016, 1, 24, 10, 41, 24, 890000), 'lpp': UTCDateTime(2016, 1, 24, 10, 41, 28, 690000), 'fm': 'U', 'channel': u'LHZ'}, 'S': {'picker': 'auto', 'snrdb': 10.669661906545489, 'network': u'GR', 'weight': 0, 'Ao': None, 'lpp': UTCDateTime(2016, 1, 24, 10, 50, 30, 690000), 'snr': 11.667187857573905, 'epp': UTCDateTime(2016, 1, 24, 10, 50, 21, 690000), 'mpp': UTCDateTime(2016, 1, 24, 10, 50, 29, 690000), 'fm': None, 'spe': 2.6666666666666665, 'channel': u'LHE'}}
with HidePrints():
result, station = autopickstation(wfstream=self.gra1, pickparam=self.pickparam_taupy_enabled, metadata=self.metadata, origin=self.origin)
self.assertDictContainsSubset(expected=expected['P'], actual=result['P'])
self.assertDictContainsSubset(expected=expected['S'], actual=result['S'])
self.assertEqual('GRA1', station)
def test_autopickstation_taupy_disabled_gra2(self):
expected = {'P': {'picker': 'auto', 'snrdb': None, 'weight': 9, 'Mo': None, 'marked': 'shortsignallength', 'Mw': None, 'fc': None, 'snr': None, 'mpp': UTCDateTime(2016, 1, 24, 10, 36, 59, 150000), 'w0': None, 'spe': None, 'network': u'GR', 'epp': UTCDateTime(2016, 1, 24, 10, 36, 43, 150000), 'lpp': UTCDateTime(2016, 1, 24, 10, 37, 15, 150000), 'fm': 'N', 'channel': u'LHZ'}, 'S': {'picker': 'auto', 'snrdb': None, 'network': u'GR', 'weight': 4, 'Ao': None, 'lpp': UTCDateTime(2016, 1, 24, 10, 37, 15, 150000), 'snr': None, 'epp': UTCDateTime(2016, 1, 24, 10, 36, 43, 150000), 'mpp': UTCDateTime(2016, 1, 24, 10, 36, 59, 150000), 'fm': None, 'spe': None, 'channel': u'LHE'}}
with HidePrints():
result, station = autopickstation(wfstream=self.gra2, pickparam=self.pickparam_taupy_disabled, metadata=(None, None))
self.assertDictContainsSubset(expected=expected['P'], actual=result['P'])
self.assertDictContainsSubset(expected=expected['S'], actual=result['S'])
self.assertEqual('GRA2', station)
def test_autopickstation_taupy_enabled_gra2(self):
expected = {'P': {'picker': 'auto', 'snrdb': 13.957959025719253, 'weight': 0, 'Mo': None, 'marked': [], 'Mw': None, 'fc': None, 'snr': 24.876879503607871, 'mpp': UTCDateTime(2016, 1, 24, 10, 41, 29, 150000), 'w0': None, 'spe': 1.0, 'network': u'GR', 'epp': UTCDateTime(2016, 1, 24, 10, 41, 26, 150000), 'lpp': UTCDateTime(2016, 1, 24, 10, 41, 30, 150000), 'fm': None, 'channel': u'LHZ'}, 'S': {'picker': 'auto', 'snrdb': 10.573236990555648, 'network': u'GR', 'weight': 1, 'Ao': None, 'lpp': UTCDateTime(2016, 1, 24, 10, 50, 34, 150000), 'snr': 11.410999834108294, 'epp': UTCDateTime(2016, 1, 24, 10, 50, 21, 150000), 'mpp': UTCDateTime(2016, 1, 24, 10, 50, 33, 150000), 'fm': None, 'spe': 4.666666666666667, 'channel': u'LHE'}}
with HidePrints():
result, station = autopickstation(wfstream=self.gra2, pickparam=self.pickparam_taupy_enabled, metadata=self.metadata, origin = self.origin)
self.assertDictContainsSubset(expected=expected['P'], actual=result['P'])
self.assertDictContainsSubset(expected=expected['S'], actual=result['S'])
self.assertEqual('GRA2', station)
def test_autopickstation_taupy_disabled_ech(self):
expected = {'P': {'picker': 'auto', 'snrdb': None, 'weight': 9, 'Mo': None, 'marked': 'SinsteadP', 'Mw': None, 'fc': None, 'snr': None, 'mpp': UTCDateTime(2016, 1, 24, 10, 26, 57), 'w0': None, 'spe': None, 'network': u'G', 'epp': UTCDateTime(2016, 1, 24, 10, 26, 41), 'lpp': UTCDateTime(2016, 1, 24, 10, 27, 13), 'fm': 'N', 'channel': u'LHZ'}, 'S': {'picker': 'auto', 'snrdb': None, 'network': u'G', 'weight': 4, 'Ao': None, 'lpp': UTCDateTime(2016, 1, 24, 10, 27, 13), 'snr': None, 'epp': UTCDateTime(2016, 1, 24, 10, 26, 41), 'mpp': UTCDateTime(2016, 1, 24, 10, 26, 57), 'fm': None, 'spe': None, 'channel': u'LHE'}}
with HidePrints():
result, station = autopickstation(wfstream=self.ech, pickparam=self.pickparam_taupy_disabled)
self.assertDictContainsSubset(expected=expected['P'], actual=result['P'])
self.assertDictContainsSubset(expected=expected['S'], actual=result['S'])
self.assertEqual('ECH', station)
def test_autopickstation_taupy_enabled_ech(self):
# this station has a long time of before the first onset, so taupy will help during picking
expected = {'P': {'picker': 'auto', 'snrdb': 9.9753586609166316, 'weight': 0, 'Mo': None, 'marked': [], 'Mw': None, 'fc': None, 'snr': 9.9434218804137107, 'mpp': UTCDateTime(2016, 1, 24, 10, 41, 34), 'w0': None, 'spe': 1.6666666666666667, 'network': u'G', 'epp': UTCDateTime(2016, 1, 24, 10, 41, 29), 'lpp': UTCDateTime(2016, 1, 24, 10, 41, 35), 'fm': None, 'channel': u'LHZ'}, 'S': {'picker': 'auto', 'snrdb': 12.698999454169567, 'network': u'G', 'weight': 0, 'Ao': None, 'lpp': UTCDateTime(2016, 1, 24, 10, 50, 44), 'snr': 18.616581906366577, 'epp': UTCDateTime(2016, 1, 24, 10, 50, 33), 'mpp': UTCDateTime(2016, 1, 24, 10, 50, 43), 'fm': None, 'spe': 3.3333333333333335, 'channel': u'LHE'}}
with HidePrints():
result, station = autopickstation(wfstream=self.ech, pickparam=self.pickparam_taupy_enabled, metadata=self.metadata, origin=self.origin)
self.assertDictContainsSubset(expected=expected['P'], actual=result['P'])
self.assertDictContainsSubset(expected=expected['S'], actual=result['S'])
self.assertEqual('ECH', station)
def test_autopickstation_taupy_disabled_fiesa(self):
# this station has a long time of before the first onset, so taupy will help during picking
expected = {'P': {'picker': 'auto', 'snrdb': None, 'weight': 9, 'Mo': None, 'marked': 'SinsteadP', 'Mw': None, 'fc': None, 'snr': None, 'mpp': UTCDateTime(2016, 1, 24, 10, 35, 58), 'w0': None, 'spe': None, 'network': u'CH', 'epp': UTCDateTime(2016, 1, 24, 10, 35, 42), 'lpp': UTCDateTime(2016, 1, 24, 10, 36, 14), 'fm': 'N', 'channel': u'LHZ'}, 'S': {'picker': 'auto', 'snrdb': None, 'network': u'CH', 'weight': 4, 'Ao': None, 'lpp': UTCDateTime(2016, 1, 24, 10, 36, 14), 'snr': None, 'epp': UTCDateTime(2016, 1, 24, 10, 35, 42), 'mpp': UTCDateTime(2016, 1, 24, 10, 35, 58), 'fm': None, 'spe': None, 'channel': u'LHE'}}
with HidePrints():
result, station = autopickstation(wfstream=self.fiesa, pickparam=self.pickparam_taupy_disabled)
self.assertDictContainsSubset(expected=expected['P'], actual=result['P'])
self.assertDictContainsSubset(expected=expected['S'], actual=result['S'])
self.assertEqual('FIESA', station)
def test_autopickstation_taupy_enabled_fiesa(self):
# this station has a long time of before the first onset, so taupy will help during picking
expected = {'P': {'picker': 'auto', 'snrdb': 13.921049277904373, 'weight': 0, 'Mo': None, 'marked': [], 'Mw': None, 'fc': None, 'snr': 24.666352170589487, 'mpp': UTCDateTime(2016, 1, 24, 10, 41, 47), 'w0': None, 'spe': 1.2222222222222285, 'network': u'CH', 'epp': UTCDateTime(2016, 1, 24, 10, 41, 43, 333333), 'lpp': UTCDateTime(2016, 1, 24, 10, 41, 48), 'fm': None, 'channel': u'LHZ'}, 'S': {'picker': 'auto', 'snrdb': 10.893086316477728, 'network': u'CH', 'weight': 0, 'Ao': None, 'lpp': UTCDateTime(2016, 1, 24, 10, 51, 5), 'snr': 12.283118216397849, 'epp': UTCDateTime(2016, 1, 24, 10, 50, 59, 333333), 'mpp': UTCDateTime(2016, 1, 24, 10, 51, 2), 'fm': None, 'spe': 2.8888888888888764, 'channel': u'LHE'}}
with HidePrints():
result, station = autopickstation(wfstream=self.fiesa, pickparam=self.pickparam_taupy_enabled, metadata=self.metadata, origin=self.origin)
self.assertDictContainsSubset(expected=expected['P'], actual=result['P'])
self.assertDictContainsSubset(expected=expected['S'], actual=result['S'])
self.assertEqual('FIESA', station)
def test_autopickstation_gra1_z_comp_missing(self):
"""Picking on a stream without a vertical trace should return None"""
wfstream = self.gra1.copy()
wfstream = wfstream.select(channel='*E') + wfstream.select(channel='*N')
with HidePrints():
result, station = autopickstation(wfstream=wfstream, pickparam=self.pickparam_taupy_disabled, metadata=(None, None))
self.assertIsNone(result)
self.assertEqual('GRA1', station)
def test_autopickstation_gra1_horizontal_comps_missing(self):
"""Picking on a stream without horizontal traces should still pick the P phase on the vertical component"""
wfstream = self.gra1.copy()
wfstream = wfstream.select(channel='*Z')
expected = {'P': {'picker': 'auto', 'snrdb': 15.405649120980094, 'network': u'GR', 'weight': 0, 'Ao': None, 'Mo': None, 'marked': [], 'lpp': UTCDateTime(2016, 1, 24, 10, 41, 32, 690000), 'Mw': None, 'fc': None, 'snr': 34.718816470730317, 'epp': UTCDateTime(2016, 1, 24, 10, 41, 28, 890000), 'mpp': UTCDateTime(2016, 1, 24, 10, 41, 31, 690000), 'w0': None, 'spe': 0.9333333333333323, 'fm': 'D', 'channel': u'LHZ'}, 'S': {'picker': 'auto', 'snrdb': None, 'network': None, 'weight': 4, 'Mo': None, 'Ao': None, 'lpp': None, 'Mw': None, 'fc': None, 'snr': None, 'marked': [], 'mpp': None, 'w0': None, 'spe': None, 'epp': None, 'fm': 'N', 'channel': None}}
with HidePrints():
result, station = autopickstation(wfstream=wfstream, pickparam=self.pickparam_taupy_disabled, metadata=(None, None))
self.assertEqual(expected, result)
self.assertEqual('GRA1', station)
def test_autopickstation_a106_taupy_enabled(self):
"""This station has invalid values recorded on both N and E component, but a pick can still be found on Z"""
expected = {'P': {'picker': 'auto', 'snrdb': 12.862128789922826, 'network': u'Z3', 'weight': 0, 'Ao': None, 'Mo': None, 'marked': [], 'lpp': UTCDateTime(2016, 1, 24, 10, 41, 34), 'Mw': None, 'fc': None, 'snr': 19.329155459132608, 'epp': UTCDateTime(2016, 1, 24, 10, 41, 30), 'mpp': UTCDateTime(2016, 1, 24, 10, 41, 33), 'w0': None, 'spe': 1.6666666666666667, 'fm': None, 'channel': u'LHZ'}, 'S': {'picker': 'auto', 'snrdb': None, 'network': u'Z3', 'weight': 4, 'Ao': None, 'Mo': None, 'marked': [], 'lpp': UTCDateTime(2016, 1, 24, 10, 28, 56), 'Mw': None, 'fc': None, 'snr': None, 'epp': UTCDateTime(2016, 1, 24, 10, 28, 24), 'mpp': UTCDateTime(2016, 1, 24, 10, 28, 40), 'w0': None, 'spe': None, 'fm': None, 'channel': u'LHE'}}
with HidePrints():
result, station = autopickstation(wfstream=self.a106, pickparam=self.pickparam_taupy_enabled, metadata=self.metadata, origin=self.origin)
self.assertEqual(expected, result)
def test_autopickstation_station_missing_in_metadata(self):
"""This station is not in the metadata, but Taupy is enabled. Taupy should exit cleanly and modify the starttime
relative to the theoretical onset to one relative to the traces starttime, eg never negative.
"""
self.pickparam_taupy_enabled.setParamKV('pstart', -100) # modify starttime to be relative to theoretical onset
expected = {'P': {'picker': 'auto', 'snrdb': 14.464757855513506, 'network': u'Z3', 'weight': 0, 'Mo': None, 'Ao': None, 'lpp': UTCDateTime(2016, 1, 24, 10, 41, 39, 605000), 'Mw': None, 'fc': None, 'snr': 27.956048519707181, 'marked': [], 'mpp': UTCDateTime(2016, 1, 24, 10, 41, 38, 605000), 'w0': None, 'spe': 1.6666666666666667, 'epp': UTCDateTime(2016, 1, 24, 10, 41, 35, 605000), 'fm': None, 'channel': u'LHZ'}, 'S': {'picker': 'auto', 'snrdb': 10.112844176301248, 'network': u'Z3', 'weight': 1, 'Mo': None, 'Ao': None, 'lpp': UTCDateTime(2016, 1, 24, 10, 50, 51, 605000), 'Mw': None, 'fc': None, 'snr': 10.263238413785425, 'marked': [], 'mpp': UTCDateTime(2016, 1, 24, 10, 50, 48, 605000), 'w0': None, 'spe': 4.666666666666667, 'epp': UTCDateTime(2016, 1, 24, 10, 50, 40, 605000), 'fm': None, 'channel': u'LHE'}}
with HidePrints():
result, station = autopickstation(wfstream = self.a005a, pickparam=self.pickparam_taupy_enabled, metadata=self.metadata, origin=self.origin)
self.assertEqual(expected, result)
if __name__ == '__main__':
unittest.main()

View File

@@ -0,0 +1,56 @@
import unittest
from pylot.core.pick.utils import get_quality_class
class TestQualityClassFromUncertainty(unittest.TestCase):
"""
Test function that assigns a quality value [0...4] to a pick uncertainty.
The pick uncertainty is compared to the error classes.
A pick uncertainty that is below the first error class is assigned the best quality, quality 0.
A pick uncertainty that is above the first error class but below the second is assigned quality 1 and so on.
A pick uncertainty that is larger than the biggest error class is assigned quality 4.
The upper border of a quality class is inclusive, the lower border exclusive. Meaning if a value is exactly on the
border between two classes, it is assigned into the higher quality class (represented by the lower number).
"""
def setUp(self):
# entries hold upper/lower bound of error classes
self.error_classes = [float(x) for x in range(1, 9, 2)]
# [1.0, 3.0, 5.0, 7.0]
def test_out_of_lower_bound(self):
# Error out of lower bound of classes
self.assertEqual(0, get_quality_class(0.5, self.error_classes))
def test_out_of_upper_bound(self):
# Error out of upper bound of error classes
self.assertEqual(4, get_quality_class(14.7, self.error_classes))
def test_on_lower_border(self):
# Error exactly on lower bound
self.assertEqual(0, get_quality_class(1., self.error_classes))
def test_on_upper_border(self):
# Error exactly on upper bound
self.assertEqual(3, get_quality_class(7., self.error_classes))
def test_on_middle_border_inclusive(self):
# Error exactly between two classes, since lower bound is exclusive and upper bound is inclusive it should
# fall into the class with better quality
self.assertEqual(1, get_quality_class(3., self.error_classes))
self.assertNotEqual(2, get_quality_class(3., self.error_classes))
def test_in_class1(self):
# Error exactly in class 1
self.assertEqual(1, get_quality_class(1.5, self.error_classes))
def test_in_class2(self):
# Error exactly in class 2
self.assertEqual(2, get_quality_class(3.5, self.error_classes))
def test_in_class3(self):
# Error exactly in class 3
self.assertEqual(3, get_quality_class(5.6, self.error_classes))
if __name__ == '__main__':
unittest.main()