[new] first use of Metadata class in autoPyLoT, largely increasing read performance using obspyDMT (single DATALESS-Seed files)
This commit is contained in:
parent
27ea20fa47
commit
6c162fc94a
18
autoPyLoT.py
18
autoPyLoT.py
@ -22,7 +22,7 @@ from pylot.core.analysis.magnitude import MomentMagnitude, LocalMagnitude
|
|||||||
from pylot.core.io.data import Data
|
from pylot.core.io.data import Data
|
||||||
from pylot.core.io.inputs import PylotParameter
|
from pylot.core.io.inputs import PylotParameter
|
||||||
from pylot.core.pick.autopick import autopickevent, iteratepicker
|
from pylot.core.pick.autopick import autopickevent, iteratepicker
|
||||||
from pylot.core.util.dataprocessing import restitute_data, read_metadata
|
from pylot.core.util.dataprocessing import restitute_data, read_metadata, Metadata
|
||||||
from pylot.core.util.defaults import SEPARATOR
|
from pylot.core.util.defaults import SEPARATOR
|
||||||
from pylot.core.util.event import Event
|
from pylot.core.util.event import Event
|
||||||
from pylot.core.util.structure import DATASTRUCTURE
|
from pylot.core.util.structure import DATASTRUCTURE
|
||||||
@ -276,7 +276,11 @@ def autoPyLoT(input_dict=None, parameter=None, inputfile=None, fnames=None, even
|
|||||||
wfdat = check4gaps(wfdat)
|
wfdat = check4gaps(wfdat)
|
||||||
wfdat = check4doubled(wfdat)
|
wfdat = check4doubled(wfdat)
|
||||||
wfdat = trim_station_components(wfdat, trim_start=True, trim_end=False)
|
wfdat = trim_station_components(wfdat, trim_start=True, trim_end=False)
|
||||||
metadata = read_metadata(parameter.get('invdir'))
|
if not wfpath_extension:
|
||||||
|
metadata = Metadata(parameter.get('invdir'))
|
||||||
|
else:
|
||||||
|
metadata = Metadata(os.path.join(eventpath, 'resp'))
|
||||||
|
# metadata = read_metadata(parameter.get('invdir'))
|
||||||
# TODO: (idea) read metadata from obspy_dmt database
|
# TODO: (idea) read metadata from obspy_dmt database
|
||||||
# if not wfpath_extension:
|
# if not wfpath_extension:
|
||||||
# metadata = read_metadata(parameter.get('invdir'))
|
# metadata = read_metadata(parameter.get('invdir'))
|
||||||
@ -285,10 +289,10 @@ def autoPyLoT(input_dict=None, parameter=None, inputfile=None, fnames=None, even
|
|||||||
corr_dat = None
|
corr_dat = None
|
||||||
if metadata:
|
if metadata:
|
||||||
# rotate stations to ZNE
|
# rotate stations to ZNE
|
||||||
wfdat = check4rotated(wfdat, metadata)
|
#wfdat = check4rotated(wfdat, metadata) # MP MP TEMPORARILY DISABLED !!!!!!!!!!!
|
||||||
if locflag:
|
if locflag:
|
||||||
print("Restitute data ...")
|
print("Restitute data ...")
|
||||||
corr_dat = restitute_data(wfdat.copy(), *metadata, ncores=ncores)
|
corr_dat = restitute_data(wfdat.copy(), metadata, ncores=ncores)
|
||||||
if not corr_dat and locflag:
|
if not corr_dat and locflag:
|
||||||
locflag = 2
|
locflag = 2
|
||||||
print('Working on event %s. Stations: %s' % (eventpath, station))
|
print('Working on event %s. Stations: %s' % (eventpath, station))
|
||||||
@ -363,7 +367,8 @@ def autoPyLoT(input_dict=None, parameter=None, inputfile=None, fnames=None, even
|
|||||||
WAscaling[2]))
|
WAscaling[2]))
|
||||||
evt = local_mag.updated_event(magscaling)
|
evt = local_mag.updated_event(magscaling)
|
||||||
net_ml = local_mag.net_magnitude(magscaling)
|
net_ml = local_mag.net_magnitude(magscaling)
|
||||||
print("Network local magnitude: %4.1f" % net_ml.mag)
|
if net_ml:
|
||||||
|
print("Network local magnitude: %4.1f" % net_ml.mag)
|
||||||
if magscaling == None:
|
if magscaling == None:
|
||||||
scaling = False
|
scaling = False
|
||||||
elif magscaling[0] != 0 and magscaling[1] != 0:
|
elif magscaling[0] != 0 and magscaling[1] != 0:
|
||||||
@ -447,7 +452,8 @@ def autoPyLoT(input_dict=None, parameter=None, inputfile=None, fnames=None, even
|
|||||||
WAscaling[2]))
|
WAscaling[2]))
|
||||||
evt = local_mag.updated_event(magscaling)
|
evt = local_mag.updated_event(magscaling)
|
||||||
net_ml = local_mag.net_magnitude(magscaling)
|
net_ml = local_mag.net_magnitude(magscaling)
|
||||||
print("Network local magnitude: %4.1f" % net_ml.mag)
|
if net_ml:
|
||||||
|
print("Network local magnitude: %4.1f" % net_ml.mag)
|
||||||
if magscaling == None:
|
if magscaling == None:
|
||||||
scaling = False
|
scaling = False
|
||||||
elif magscaling[0] != 0 and magscaling[1] != 0:
|
elif magscaling[0] != 0 and magscaling[1] != 0:
|
||||||
|
@ -88,9 +88,9 @@ def autopickevent(data, param, iplot=0, fig_dict=None, fig_dict_wadatijack=None,
|
|||||||
print('Autopickstation: Distribute autopicking for {} '
|
print('Autopickstation: Distribute autopicking for {} '
|
||||||
'stations on {} cores.'.format(len(input_tuples), ncores_str))
|
'stations on {} cores.'.format(len(input_tuples), ncores_str))
|
||||||
|
|
||||||
pool = gen_Pool(ncores)
|
|
||||||
result = pool.map(call_autopickstation, input_tuples)
|
result = parallel_picking(input_tuples, ncores)
|
||||||
pool.close()
|
#result = serial_picking(input_tuples)
|
||||||
|
|
||||||
if ncores == 1:
|
if ncores == 1:
|
||||||
results = serial_picking(input_tuples)
|
results = serial_picking(input_tuples)
|
||||||
@ -120,6 +120,20 @@ def autopickevent(data, param, iplot=0, fig_dict=None, fig_dict_wadatijack=None,
|
|||||||
return wadationsets
|
return wadationsets
|
||||||
|
|
||||||
|
|
||||||
|
def serial_picking(input_tuples):
|
||||||
|
result = []
|
||||||
|
for input_tuple in input_tuples:
|
||||||
|
result.append(call_autopickstation(input_tuple))
|
||||||
|
return result
|
||||||
|
|
||||||
|
|
||||||
|
def parallel_picking(input_tuples, ncores):
|
||||||
|
pool = gen_Pool(ncores)
|
||||||
|
result = pool.imap_unordered(call_autopickstation, input_tuples)
|
||||||
|
pool.close()
|
||||||
|
return result
|
||||||
|
|
||||||
|
|
||||||
def call_autopickstation(input_tuple):
|
def call_autopickstation(input_tuple):
|
||||||
"""
|
"""
|
||||||
helper function used for multiprocessing
|
helper function used for multiprocessing
|
||||||
@ -303,13 +317,10 @@ def autopickstation(wfstream, pickparam, verbose=False,
|
|||||||
Lc = np.inf
|
Lc = np.inf
|
||||||
print('autopickstation: use_taup flag active.')
|
print('autopickstation: use_taup flag active.')
|
||||||
if not metadata:
|
if not metadata:
|
||||||
metadata = [None, None]
|
|
||||||
if not metadata[1]:
|
|
||||||
print('Warning: Could not use TauPy to estimate onsets as there are no metadata given.')
|
print('Warning: Could not use TauPy to estimate onsets as there are no metadata given.')
|
||||||
else:
|
else:
|
||||||
station_id = wfstream[0].get_id()
|
station_id = wfstream[0].get_id()
|
||||||
parser = metadata[1]
|
station_coords = metadata.get_coordinates(station_id)
|
||||||
station_coords = get_source_coords(parser, station_id)
|
|
||||||
if station_coords and origin:
|
if station_coords and origin:
|
||||||
source_origin = origin[0]
|
source_origin = origin[0]
|
||||||
model = TauPyModel(taup_model)
|
model = TauPyModel(taup_model)
|
||||||
|
@ -191,9 +191,24 @@ class AICPicker(AutoPicker):
|
|||||||
# remove offset in AIC function
|
# remove offset in AIC function
|
||||||
offset = abs(min(aic) - min(aicsmooth))
|
offset = abs(min(aic) - min(aicsmooth))
|
||||||
aicsmooth = aicsmooth - offset
|
aicsmooth = aicsmooth - offset
|
||||||
|
cf = self.Data[0].data
|
||||||
# get maximum of HOS/AR-CF as startimg point for searching
|
# get maximum of HOS/AR-CF as startimg point for searching
|
||||||
# minimum in AIC function
|
# minimum in AIC function
|
||||||
icfmax = np.argmax(self.Data[0].data)
|
icfmax = np.argmax(cf)
|
||||||
|
|
||||||
|
# MP MP testing threshold
|
||||||
|
thresh_hit = False
|
||||||
|
thresh_factor = 0.6
|
||||||
|
thresh = thresh_factor * cf[icfmax]
|
||||||
|
for index, sample in enumerate(cf):
|
||||||
|
if sample >= thresh:
|
||||||
|
thresh_hit = True
|
||||||
|
# go on searching for the following maximum
|
||||||
|
if index > 0 and thresh_hit:
|
||||||
|
if sample <= cf[index - 1]:
|
||||||
|
icfmax = index - 1
|
||||||
|
break
|
||||||
|
# MP MP ---
|
||||||
|
|
||||||
# find minimum in AIC-CF front of maximum of HOS/AR-CF
|
# find minimum in AIC-CF front of maximum of HOS/AR-CF
|
||||||
lpickwindow = int(round(self.PickWindow / self.dt))
|
lpickwindow = int(round(self.PickWindow / self.dt))
|
||||||
@ -233,14 +248,14 @@ class AICPicker(AutoPicker):
|
|||||||
ii = min([isignal[len(isignal) - 1], len(self.Tcf)])
|
ii = min([isignal[len(isignal) - 1], len(self.Tcf)])
|
||||||
isignal = isignal[0:ii]
|
isignal = isignal[0:ii]
|
||||||
try:
|
try:
|
||||||
self.Data[0].data[isignal]
|
cf[isignal]
|
||||||
except IndexError as e:
|
except IndexError as e:
|
||||||
msg = "Time series out of bounds! {}".format(e)
|
msg = "Time series out of bounds! {}".format(e)
|
||||||
print(msg)
|
print(msg)
|
||||||
return
|
return
|
||||||
# calculate SNR from CF
|
# calculate SNR from CF
|
||||||
self.SNR = max(abs(self.Data[0].data[isignal])) / \
|
self.SNR = max(abs(cf[isignal])) / \
|
||||||
abs(np.mean(self.Data[0].data[inoise]))
|
abs(np.mean(cf[inoise]))
|
||||||
# calculate slope from CF after initial pick
|
# calculate slope from CF after initial pick
|
||||||
# get slope window
|
# get slope window
|
||||||
tslope = self.TSNR[3] # slope determination window
|
tslope = self.TSNR[3] # slope determination window
|
||||||
@ -253,7 +268,7 @@ class AICPicker(AutoPicker):
|
|||||||
# find maximum within slope determination window
|
# find maximum within slope determination window
|
||||||
# 'cause slope should be calculated up to first local minimum only!
|
# 'cause slope should be calculated up to first local minimum only!
|
||||||
try:
|
try:
|
||||||
dataslope = self.Data[0].data[islope[0][0:-1]]
|
dataslope = cf[islope[0][0:-1]]
|
||||||
except IndexError:
|
except IndexError:
|
||||||
print("Slope Calculation: empty array islope, check signal window")
|
print("Slope Calculation: empty array islope, check signal window")
|
||||||
return
|
return
|
||||||
@ -282,8 +297,8 @@ class AICPicker(AutoPicker):
|
|||||||
else:
|
else:
|
||||||
fig = self.fig
|
fig = self.fig
|
||||||
ax = fig.add_subplot(111)
|
ax = fig.add_subplot(111)
|
||||||
x = self.Data[0].data
|
cf = cf
|
||||||
ax.plot(self.Tcf, x / max(x), color=self._linecolor, linewidth=0.7, label='(HOS-/AR-) Data')
|
ax.plot(self.Tcf, cf / max(cf), color=self._linecolor, linewidth=0.7, label='(HOS-/AR-) Data')
|
||||||
ax.plot(self.Tcf, aicsmooth / max(aicsmooth), 'r', label='Smoothed AIC-CF')
|
ax.plot(self.Tcf, aicsmooth / max(aicsmooth), 'r', label='Smoothed AIC-CF')
|
||||||
ax.legend(loc=1)
|
ax.legend(loc=1)
|
||||||
ax.set_xlabel('Time [s] since %s' % self.Data[0].stats.starttime)
|
ax.set_xlabel('Time [s] since %s' % self.Data[0].stats.starttime)
|
||||||
@ -296,7 +311,16 @@ class AICPicker(AutoPicker):
|
|||||||
plt.close(fig)
|
plt.close(fig)
|
||||||
return
|
return
|
||||||
iislope = islope[0][0:imax+1]
|
iislope = islope[0][0:imax+1]
|
||||||
dataslope = self.Data[0].data[iislope]
|
# MP MP change slope calculation
|
||||||
|
# get all maxima of aicsmooth
|
||||||
|
iaicmaxima = argrelmax(aicsmooth)[0]
|
||||||
|
# get first index of maximum after pickindex (indices saved in iaicmaxima)
|
||||||
|
aicmax = iaicmaxima[np.where(iaicmaxima > pickindex)[0]]
|
||||||
|
if len(aicmax) > 0:
|
||||||
|
iaicmax = aicmax[0]
|
||||||
|
else:
|
||||||
|
iaicmax = -1
|
||||||
|
dataslope = aicsmooth[pickindex : iaicmax]
|
||||||
# calculate slope as polynomal fit of order 1
|
# calculate slope as polynomal fit of order 1
|
||||||
xslope = np.arange(0, len(dataslope), 1)
|
xslope = np.arange(0, len(dataslope), 1)
|
||||||
P = np.polyfit(xslope, dataslope, 1)
|
P = np.polyfit(xslope, dataslope, 1)
|
||||||
@ -306,7 +330,7 @@ class AICPicker(AutoPicker):
|
|||||||
else:
|
else:
|
||||||
self.slope = 1 / (len(dataslope) * self.Data[0].stats.delta) * (datafit[-1] - datafit[0])
|
self.slope = 1 / (len(dataslope) * self.Data[0].stats.delta) * (datafit[-1] - datafit[0])
|
||||||
# normalize slope to maximum of cf to make it unit independent
|
# normalize slope to maximum of cf to make it unit independent
|
||||||
self.slope /= self.Data[0].data[icfmax]
|
self.slope /= aicsmooth[iaicmax]
|
||||||
|
|
||||||
else:
|
else:
|
||||||
self.SNR = None
|
self.SNR = None
|
||||||
@ -320,10 +344,9 @@ class AICPicker(AutoPicker):
|
|||||||
fig = self.fig
|
fig = self.fig
|
||||||
fig._tight = True
|
fig._tight = True
|
||||||
ax1 = fig.add_subplot(211)
|
ax1 = fig.add_subplot(211)
|
||||||
x = self.Data[0].data
|
if len(self.Tcf) > len(cf): # why? LK
|
||||||
if len(self.Tcf) > len(self.Data[0].data): # why? LK
|
|
||||||
self.Tcf = self.Tcf[0:len(self.Tcf)-1]
|
self.Tcf = self.Tcf[0:len(self.Tcf)-1]
|
||||||
ax1.plot(self.Tcf, x / max(x), color=self._linecolor, linewidth=0.7, label='(HOS-/AR-) Data')
|
ax1.plot(self.Tcf, cf / max(cf), color=self._linecolor, linewidth=0.7, label='(HOS-/AR-) Data')
|
||||||
ax1.plot(self.Tcf, aicsmooth / max(aicsmooth), 'r', label='Smoothed AIC-CF')
|
ax1.plot(self.Tcf, aicsmooth / max(aicsmooth), 'r', label='Smoothed AIC-CF')
|
||||||
if self.Pick is not None:
|
if self.Pick is not None:
|
||||||
ax1.plot([self.Pick, self.Pick], [-0.1, 0.5], 'b', linewidth=2, label='AIC-Pick')
|
ax1.plot([self.Pick, self.Pick], [-0.1, 0.5], 'b', linewidth=2, label='AIC-Pick')
|
||||||
@ -333,7 +356,7 @@ class AICPicker(AutoPicker):
|
|||||||
|
|
||||||
if self.Pick is not None:
|
if self.Pick is not None:
|
||||||
ax2 = fig.add_subplot(2, 1, 2, sharex=ax1)
|
ax2 = fig.add_subplot(2, 1, 2, sharex=ax1)
|
||||||
ax2.plot(self.Tcf, x, color=self._linecolor, linewidth=0.7, label='Data')
|
ax2.plot(self.Tcf, aicsmooth, color='r', linewidth=0.7, label='Data')
|
||||||
ax1.axvspan(self.Tcf[inoise[0]], self.Tcf[inoise[-1]], color='y', alpha=0.2, lw=0, label='Noise Window')
|
ax1.axvspan(self.Tcf[inoise[0]], self.Tcf[inoise[-1]], color='y', alpha=0.2, lw=0, label='Noise Window')
|
||||||
ax1.axvspan(self.Tcf[isignal[0]], self.Tcf[isignal[-1]], color='b', alpha=0.2, lw=0,
|
ax1.axvspan(self.Tcf[isignal[0]], self.Tcf[isignal[-1]], color='b', alpha=0.2, lw=0,
|
||||||
label='Signal Window')
|
label='Signal Window')
|
||||||
@ -345,7 +368,7 @@ class AICPicker(AutoPicker):
|
|||||||
label='Signal Window')
|
label='Signal Window')
|
||||||
ax2.axvspan(self.Tcf[iislope[0]], self.Tcf[iislope[-1]], color='g', alpha=0.2, lw=0,
|
ax2.axvspan(self.Tcf[iislope[0]], self.Tcf[iislope[-1]], color='g', alpha=0.2, lw=0,
|
||||||
label='Slope Window')
|
label='Slope Window')
|
||||||
ax2.plot(self.Tcf[iislope], datafit, 'g', linewidth=2, label='Slope')
|
ax2.plot(self.Tcf[pickindex : iaicmax], datafit, 'g', linewidth=2, label='Slope') # MP MP changed temporarily!
|
||||||
|
|
||||||
if self.slope is not None:
|
if self.slope is not None:
|
||||||
ax1.set_title('Station %s, SNR=%7.2f, Slope= %12.2f counts/s' % (self.Data[0].stats.station,
|
ax1.set_title('Station %s, SNR=%7.2f, Slope= %12.2f counts/s' % (self.Data[0].stats.station,
|
||||||
|
@ -100,12 +100,13 @@ class Metadata(object):
|
|||||||
if not seed_id in self.seed_ids.keys():
|
if not seed_id in self.seed_ids.keys():
|
||||||
print('No data found for seed id {}. Trying to find it in all known inventories...'.format(seed_id))
|
print('No data found for seed id {}. Trying to find it in all known inventories...'.format(seed_id))
|
||||||
self.read_all()
|
self.read_all()
|
||||||
for inv_fname, metadata in self.inventory_files.items():
|
for inv_fname, metadata_dict in self.inventory_files.items():
|
||||||
# use get_coordinates to check for seed_id
|
# use get_coordinates to check for seed_id
|
||||||
try:
|
try:
|
||||||
metadata['data'].get_coordinates(seed_id)
|
metadata_dict['data'].get_coordinates(seed_id)
|
||||||
self.seed_ids[seed_id] = inv_fname
|
self.seed_ids[seed_id] = inv_fname
|
||||||
return metadata
|
print('Found metadata for station {}!'.format(seed_id))
|
||||||
|
return metadata_dict
|
||||||
except Exception as e:
|
except Exception as e:
|
||||||
continue
|
continue
|
||||||
print('Could not find metadata for station {}'.format(seed_id))
|
print('Could not find metadata for station {}'.format(seed_id))
|
||||||
@ -127,6 +128,7 @@ class Metadata(object):
|
|||||||
|
|
||||||
|
|
||||||
def read_single_file(self, inv_fname):
|
def read_single_file(self, inv_fname):
|
||||||
|
# try to read a single file as Parser/Inventory if it was not already read before
|
||||||
if not inv_fname in self.inventory_files.keys():
|
if not inv_fname in self.inventory_files.keys():
|
||||||
pass
|
pass
|
||||||
else:
|
else:
|
||||||
@ -460,6 +462,11 @@ def read_metadata(path_to_inventory):
|
|||||||
|
|
||||||
|
|
||||||
def restitute_trace(input_tuple):
|
def restitute_trace(input_tuple):
|
||||||
|
def no_metadata(tr, seed_id):
|
||||||
|
print('no metadata file found '
|
||||||
|
'for trace {0}'.format(seed_id))
|
||||||
|
return tr, True
|
||||||
|
|
||||||
tr, metadata, unit, force = input_tuple
|
tr, metadata, unit, force = input_tuple
|
||||||
|
|
||||||
remove_trace = False
|
remove_trace = False
|
||||||
@ -467,6 +474,9 @@ def restitute_trace(input_tuple):
|
|||||||
seed_id = tr.get_id()
|
seed_id = tr.get_id()
|
||||||
|
|
||||||
mdata = metadata.get_metadata(seed_id)
|
mdata = metadata.get_metadata(seed_id)
|
||||||
|
if not mdata:
|
||||||
|
return no_metadata(tr, seed_id)
|
||||||
|
|
||||||
invtype = mdata['invtype']
|
invtype = mdata['invtype']
|
||||||
inobj = mdata['data']
|
inobj = mdata['data']
|
||||||
|
|
||||||
@ -481,8 +491,7 @@ def restitute_trace(input_tuple):
|
|||||||
if invtype == 'resp':
|
if invtype == 'resp':
|
||||||
fresp = find_in_list(inobj, seed_id)
|
fresp = find_in_list(inobj, seed_id)
|
||||||
if not fresp:
|
if not fresp:
|
||||||
raise IOError('no response file found '
|
return no_metadata(tr, seed_id)
|
||||||
'for trace {0}'.format(seed_id))
|
|
||||||
fname = fresp
|
fname = fresp
|
||||||
seedresp = dict(filename=fname,
|
seedresp = dict(filename=fname,
|
||||||
date=stime,
|
date=stime,
|
||||||
@ -505,8 +514,7 @@ def restitute_trace(input_tuple):
|
|||||||
finv = invlist[0]
|
finv = invlist[0]
|
||||||
inventory = read_inventory(finv, format='STATIONXML')
|
inventory = read_inventory(finv, format='STATIONXML')
|
||||||
elif invtype == None:
|
elif invtype == None:
|
||||||
print("No restitution possible, as there are no station-meta data available!")
|
return no_metadata(tr, seed_id)
|
||||||
return tr, True
|
|
||||||
else:
|
else:
|
||||||
remove_trace = True
|
remove_trace = True
|
||||||
# apply restitution to data
|
# apply restitution to data
|
||||||
@ -562,7 +570,7 @@ def restitute_data(data, metadata, unit='VEL', force=False, ncores=0):
|
|||||||
data.remove(tr)
|
data.remove(tr)
|
||||||
|
|
||||||
pool = gen_Pool(ncores)
|
pool = gen_Pool(ncores)
|
||||||
result = pool.map(restitute_trace, input_tuples)
|
result = pool.imap_unordered(restitute_trace, input_tuples)
|
||||||
pool.close()
|
pool.close()
|
||||||
|
|
||||||
for tr, remove_trace in result:
|
for tr, remove_trace in result:
|
||||||
|
Loading…
Reference in New Issue
Block a user