diff --git a/pylot/core/pick/run_autopicking.py b/pylot/core/pick/run_autopicking.py new file mode 100755 index 00000000..c7b0a436 --- /dev/null +++ b/pylot/core/pick/run_autopicking.py @@ -0,0 +1,401 @@ +#!/usr/bin/env python +# -*- coding: utf-8 -*- + +""" +Function to run automated picking algorithms using AIC, +HOS and AR prediction. Uses object CharFuns and Picker and +function conglomerate utils. + +:author: MAGS2 EP3 working group / Ludger Kueperkoch +""" + +from obspy.core import read +import matplotlib.pyplot as plt +import numpy as np +from pylot.core.pick.CharFuns import * +from pylot.core.pick.Picker import * +from pylot.core.pick.CharFuns import * +from pylot.core.pick import utils + +import pdb + +def run_autopicking(wfstream, pickparam): + + ''' + param: wfstream + :type: `~obspy.core.stream.Stream` + + param: pickparam + :type: container of picking parameters from input file, + usually autoPyLoT.in + ''' + + # declaring pickparam variables (only for convenience) + # read your autoPyLoT.in for details! + + #special parameters for P picking + algoP = pickparam.getParam('algoP') + iplot = pickparam.getParam('iplot') + pstart = pickparam.getParam('pstart') + pstop = pickparam.getParam('pstop') + thosmw = pickparam.getParam('tlta') + hosorder = pickparam.getParam('hosorder') + tsnrz = pickparam.getParam('tsnrz') + hosorder = pickparam.getParam('hosorder') + bpz1 = pickparam.getParam('bpz1') + bpz2 = pickparam.getParam('bpz2') + pickwinP = pickparam.getParam('pickwinP') + tsmoothP = pickparam.getParam('tsmoothP') + ausP = pickparam.getParam('ausP') + nfacP = pickparam.getParam('nfacP') + tpred1z = pickparam.getParam('tpred1z') + tdet1z = pickparam.getParam('tdet1z') + Parorder = pickparam.getParam('Parorder') + addnoise = pickparam.getParam('addnoise') + Precalcwin = pickparam.getParam('Precalcwin') + minAICPslope = pickparam.getParam('minAICPslope') + minAICPSNR = pickparam.getParam('minAICPSNR') + timeerrorsP = pickparam.getParam('timeerrorsP') + #special parameters for S picking + algoS = pickparam.getParam('algoS') + sstart = pickparam.getParam('sstart') + sstop = pickparam.getParam('sstop') + bph1 = pickparam.getParam('bph1') + bph2 = pickparam.getParam('bph2') + tsnrh = pickparam.getParam('tsnrh') + pickwinS = pickparam.getParam('pickwinS') + tpred1h = pickparam.getParam('tpred1h') + tdet1h = pickparam.getParam('tdet1h') + tpred2h = pickparam.getParam('tpred2h') + tdet2h = pickparam.getParam('tdet2h') + Sarorder = pickparam.getParam('Sarorder') + aictsmoothS = pickparam.getParam('aictsmoothS') + tsmoothS = pickparam.getParam('tsmoothS') + ausS = pickparam.getParam('ausS') + minAICSslope = pickparam.getParam('minAICSslope') + minAICSSNR = pickparam.getParam('minAICSSNR') + Srecalcwin = pickparam.getParam('Srecalcwin') + nfacS = pickparam.getParam('nfacS') + timeerrorsS = pickparam.getParam('timeerrorsS') + + + # split components + zdat = wfstream.select(component="Z") + edat = wfstream.select(component="E") + ndat = wfstream.select(component="N") + + if algoP == 'HOS' or algoP == 'ARZ' and zdat is not None: + print '##########################################' + print 'run_autopicking: Working on P onset of station %s' % zdat[0].stats.station + print 'Filtering vertical trace ...' + print zdat + z_copy = zdat.copy() + #filter and taper data + tr_filt = zdat[0].copy() + tr_filt.filter('bandpass', freqmin=bpz1[0], freqmax=bpz1[1], zerophase=False) + tr_filt.taper(max_percentage=0.05, type='hann') + z_copy[0].data = tr_filt.data + ############################################################## + #check length of waveform and compare with cut times + Lc = pstop - pstart + Lwf = zdat[0].stats.endtime - zdat[0].stats.starttime + Ldiff = Lwf - Lc + if Ldiff < 0: + print 'run_autopicking: Cutting times are too large for actual waveform!' + print 'Use entire waveform instead!' + pstart = 0 + pstop = len(zdat[0].data) * zdat[0].stats.delta + cuttimes = [pstart, pstop] + if algoP == 'HOS': + #calculate HOS-CF using subclass HOScf of class CharacteristicFunction + cf1 = HOScf(z_copy, cuttimes, thosmw, hosorder) #instance of HOScf + elif algoP == 'ARZ': + #calculate ARZ-CF using subclass ARZcf of class CharcteristicFunction + cf1 = ARZcf(z_copy, cuttimes, tpred1z, Parorder, tdet1z, addnoise) #instance of ARZcf + ############################################################## + #calculate AIC-HOS-CF using subclass AICcf of class CharacteristicFunction + #class needs stream object => build it + tr_aic = tr_filt.copy() + tr_aic.data =cf1.getCF() + z_copy[0].data = tr_aic.data + aiccf = AICcf(z_copy, cuttimes) #instance of AICcf + ############################################################## + #get prelimenary onset time from AIC-HOS-CF using subclass AICPicker of class AutoPicking + aicpick = AICPicker(aiccf, tsnrz, pickwinP, iplot, None, tsmoothP) + ############################################################## + #go on with processing if AIC onset passes quality control + if aicpick.getSlope() >= minAICPslope and aicpick.getSNR() >= minAICPSNR: + print 'AIC P-pick passes quality control: Slope: %f, SNR: %f' % \ + (aicpick.getSlope(), aicpick.getSNR()) + print 'Go on with refined picking ...' + #re-filter waveform with larger bandpass + print 'run_autopicking: re-filtering vertical trace ...' + z_copy = zdat.copy() + tr_filt = zdat[0].copy() + tr_filt.filter('bandpass', freqmin=bpz2[0], freqmax=bpz2[1], zerophase=False) + tr_filt.taper(max_percentage=0.05, type='hann') + z_copy[0].data = tr_filt.data + ############################################################# + #re-calculate CF from re-filtered trace in vicinity of initial onset + cuttimes2 = [round(max([aicpick.getpick() - Precalcwin, 0])), \ + round(min([len(zdat[0].data) * zdat[0].stats.delta, \ + aicpick.getpick() + Precalcwin]))] + if algoP == 'HOS': + #calculate HOS-CF using subclass HOScf of class CharacteristicFunction + cf2 = HOScf(z_copy, cuttimes2, thosmw, hosorder) #instance of HOScf + elif algoP == 'ARZ': + #calculate ARZ-CF using subclass ARZcf of class CharcteristicFunction + cf2 = ARZcf(z_copy, cuttimes2, tpred1z, Parorder, tdet1z, addnoise) #instance of ARZcf + ############################################################## + #get refined onset time from CF2 using class Picker + refPpick = PragPicker(cf2, tsnrz, pickwinP, iplot, ausP, tsmoothP, aicpick.getpick()) + ############################################################# + #quality assessment + #get earliest and latest possible pick and symmetrized uncertainty + [lpickP, epickP, Perror] = earllatepicker(z_copy, nfacP, tsnrz, refPpick.getpick(), iplot) + + #get SNR + [SNRP, SNRPdB, Pnoiselevel] = getSNR(z_copy, tsnrz, refPpick.getpick()) + + #weight P-onset using symmetric error + if Perror <= timeerrorsP[0]: + Pweight = 0 + elif Perror > timeerrorsP[0] and Perror <= timeerrorsP[1]: + Pweight = 1 + elif Perror > timeerrorsP[1] and Perror <= timeerrorsP[2]: + Pweight = 2 + elif Perror > timeerrorsP[2] and Perror <= timeerrorsP[3]: + Pweight = 3 + elif Perror > timeerrorsP[3]: + Pweight = 4 + + print 'run_autopicking: P-weight: %d, SNR: %f, SNR[dB]: %f' % (Pweight, SNRP, SNRPdB) + + else: + print 'Bad initial (AIC) P-pick, skip this onset!' + Pweight = 4 + else: + print 'run_autopicking: No vertical component data available, skipping station!' + return + + if edat is not None and ndat is not None and Pweight < 4: + print 'Go on picking S onset ...' + print '##################################################' + print 'Working on S onset of station %s' % edat[0].stats.station + print 'Filtering horizontal traces ...' + + #determine time window for calculating CF after P onset + #cuttimesh = [round(refPpick.getpick() + sstart), round(refPpick.getpick() + sstop)] + cuttimesh = [round(max([refPpick.getpick() + sstart, 0])), \ + round(min([refPpick.getpick() + sstop, Lwf]))] + + if algoS == 'ARH': + print edat, ndat + #re-create stream object including both horizontal components + hdat = edat.copy() + hdat += ndat + h_copy = hdat.copy() + #filter and taper data + trH1_filt = hdat[0].copy() + trH2_filt = hdat[1].copy() + trH1_filt.filter('bandpass', freqmin=bph1[0], freqmax=bph1[1], zerophase=False) + trH2_filt.filter('bandpass', freqmin=bph1[0], freqmax=bph1[1], zerophase=False) + trH1_filt.taper(max_percentage=0.05, type='hann') + trH2_filt.taper(max_percentage=0.05, type='hann') + h_copy[0].data = trH1_filt.data + h_copy[1].data = trH2_filt.data + elif algoS == 'AR3': + print zdat, edat, ndat + #re-create stream object including both horizontal components + hdat = zdat.copy() + hdat += edat + hdat += ndat + h_copy = hdat.copy() + #filter and taper data + trH1_filt = hdat[0].copy() + trH2_filt = hdat[1].copy() + trH3_filt = hdat[2].copy() + trH1_filt.filter('bandpass', freqmin=bph1[0], freqmax=bph1[1], zerophase=False) + trH2_filt.filter('bandpass', freqmin=bph1[0], freqmax=bph1[1], zerophase=False) + trH3_filt.filter('bandpass', freqmin=bph1[0], freqmax=bph1[1], zerophase=False) + trH1_filt.taper(max_percentage=0.05, type='hann') + trH2_filt.taper(max_percentage=0.05, type='hann') + trH3_filt.taper(max_percentage=0.05, type='hann') + h_copy[0].data = trH1_filt.data + h_copy[1].data = trH2_filt.data + h_copy[2].data = trH3_filt.data + ############################################################## + if algoS == 'ARH': + #calculate ARH-CF using subclass ARHcf of class CharcteristicFunction + arhcf1 = ARHcf(h_copy, cuttimesh, tpred1h, Sarorder, tdet1h, addnoise) #instance of ARHcf + elif algoS == 'AR3': + #calculate ARH-CF using subclass AR3cf of class CharcteristicFunction + arhcf1 = AR3Ccf(h_copy, cuttimesh, tpred1h, Sarorder, tdet1h, addnoise) #instance of ARHcf + ############################################################## + #calculate AIC-ARH-CF using subclass AICcf of class CharacteristicFunction + #class needs stream object => build it + tr_arhaic = trH1_filt.copy() + tr_arhaic.data = arhcf1.getCF() + h_copy[0].data = tr_arhaic.data + #calculate ARH-AIC-CF + haiccf = AICcf(h_copy, cuttimesh) #instance of AICcf + ############################################################## + #get prelimenary onset time from AIC-HOS-CF using subclass AICPicker of class AutoPicking + aicarhpick = AICPicker(haiccf, tsnrh, pickwinS, iplot, None, aictsmoothS) + ############################################################### + #go on with processing if AIC onset passes quality control + if aicarhpick.getSlope() >= minAICSslope and aicarhpick.getSNR() >= minAICSSNR: + print 'AIC S-pick passes quality control: Slope: %f, SNR: %f' \ + % (aicarhpick.getSlope(), aicarhpick.getSNR()) + print 'Go on with refined picking ...' + #re-calculate CF from re-filtered trace in vicinity of initial onset + cuttimesh2 = [round(aicarhpick.getpick() - Srecalcwin), \ + round(aicarhpick.getpick() + Srecalcwin)] + #re-filter waveform with larger bandpass + print 'run_autopicking: re-filtering horizontal traces...' + h_copy = hdat.copy() + #filter and taper data + if algoS == 'ARH': + trH1_filt = hdat[0].copy() + trH2_filt = hdat[1].copy() + trH1_filt.filter('bandpass', freqmin=bph2[0], freqmax=bph2[1], zerophase=False) + trH2_filt.filter('bandpass', freqmin=bph2[0], freqmax=bph2[1], zerophase=False) + trH1_filt.taper(max_percentage=0.05, type='hann') + trH2_filt.taper(max_percentage=0.05, type='hann') + h_copy[0].data = trH1_filt.data + h_copy[1].data = trH2_filt.data + ############################################################# + arhcf2 = ARHcf(h_copy, cuttimesh2, tpred2h, Sarorder, tdet2h, addnoise) #instance of ARHcf + elif algoS == 'AR3': + trH1_filt = hdat[0].copy() + trH2_filt = hdat[1].copy() + trH3_filt = hdat[2].copy() + trH1_filt.filter('bandpass', freqmin=bph2[0], freqmax=bph2[1], zerophase=False) + trH2_filt.filter('bandpass', freqmin=bph2[0], freqmax=bph2[1], zerophase=False) + trH3_filt.filter('bandpass', freqmin=bph2[0], freqmax=bph2[1], zerophase=False) + trH1_filt.taper(max_percentage=0.05, type='hann') + trH2_filt.taper(max_percentage=0.05, type='hann') + trH3_filt.taper(max_percentage=0.05, type='hann') + h_copy[0].data = trH1_filt.data + h_copy[1].data = trH2_filt.data + h_copy[2].data = trH3_filt.data + ############################################################# + arhcf2 = AR3Ccf(h_copy, cuttimesh2, tpred2h, Sarorder, tdet2h, addnoise) #instance of ARHcf + + #get refined onset time from CF2 using class Picker + refSpick = PragPicker(arhcf2, tsnrh, pickwinS, iplot, ausS, tsmoothS, aicarhpick.getpick()) + ############################################################# + #quality assessment + #get earliest and latest possible pick and symmetrized uncertainty + h_copy[0].data = trH1_filt.data + [lpickS1, epickS1, Serror1] = earllatepicker(h_copy, nfacS, tsnrh, refSpick.getpick(), iplot) + h_copy[0].data = trH2_filt.data + [lpickS2, epickS2, Serror2] = earllatepicker(h_copy, nfacS, tsnrh, refSpick.getpick(), iplot) + if algoS == 'ARH': + #get earliest pick of both earliest possible picks + epick = [epickS1, epickS2] + lpick = [lpickS1, lpickS2] + pickerr = [Serror1, Serror2] + ipick =np.argmin([epickS1, epickS2]) + elif algoS == 'AR3': + [lpickS3, epickS3, Serror3] = earllatepicker(h_copy, nfacS, tsnrh, refSpick.getpick(), iplot) + #get earliest pick of all three picks + epick = [epickS1, epickS2, epickS3] + lpick = [lpickS1, lpickS2, lpickS3] + pickerr = [Serror1, Serror2, Serror3] + ipick =np.argmin([epickS1, epickS2, epickS3]) + epickS = epick[ipick] + lpickS = lpick[ipick] + Serror = pickerr[ipick] + + #get SNR + [SNRS, SNRSdB, Snoiselevel] = getSNR(h_copy, tsnrh, refSpick.getpick()) + + #weight S-onset using symmetric error + if Serror <= timeerrorsS[0]: + Sweight = 0 + elif Serror > timeerrorsS[0] and Serror <= timeerrorsS[1]: + Sweight = 1 + elif Perror > timeerrorsS[1] and Serror <= timeerrorsS[2]: + Sweight = 2 + elif Serror > timeerrorsS[2] and Serror <= timeerrorsS[3]: + Sweight = 3 + elif Serror > timeerrorsS[3]: + Sweight = 4 + + print 'run_autopicking: S-weight: %d, SNR: %f, SNR[dB]: %f' % (Sweight, SNRS, SNRSdB) + + else: + print 'Bad initial (AIC) S-pick, skip this onset!' + Sweight = 4 + + else: + print 'run_autopicking: No horizontal component data available, skipping S picking!' + return + + ############################################################## + if iplot > 0: + #plot vertical trace + plt.figure() + plt.subplot(3,1,1) + tdata = np.arange(0, tr_filt.stats.npts / tr_filt.stats.sampling_rate, tr_filt.stats.delta) + p1, = plt.plot(tdata, tr_filt.data/max(tr_filt.data), 'k') + p2, = plt.plot(cf1.getTimeArray(), cf1.getCF() / max(cf1.getCF()), 'b') + p3, = plt.plot(cf2.getTimeArray(), cf2.getCF() / max(cf2.getCF()), 'm') + p4, = plt.plot([aicpick.getpick(), aicpick.getpick()], [-1, 1], 'r') + plt.plot([aicpick.getpick()-0.5, aicpick.getpick()+0.5], [1, 1], 'r') + plt.plot([aicpick.getpick()-0.5, aicpick.getpick()+0.5], [-1, -1], 'r') + p5, = plt.plot([refPpick.getpick(), refPpick.getpick()], [-1.3, 1.3], 'r', linewidth=2) + plt.plot([refPpick.getpick()-0.5, refPpick.getpick()+0.5], [1.3, 1.3], 'r', linewidth=2) + plt.plot([refPpick.getpick()-0.5, refPpick.getpick()+0.5], [-1.3, -1.3], 'r', linewidth=2) + plt.plot([lpickP, lpickP], [-1.1, 1.1], 'r--') + plt.plot([epickP, epickP], [-1.1, 1.1], 'r--') + plt.yticks([]) + plt.ylim([-1.5, 1.5]) + plt.ylabel('Normalized Counts') + plt.title('%s, %s, P Weight=%d, SNR=%7.2f, SNR[dB]=%7.2f' % (tr_filt.stats.station, \ + tr_filt.stats.channel, Pweight, SNRP, SNRPdB)) + plt.suptitle(tr_filt.stats.starttime) + plt.legend([p1, p2, p3, p4, p5], ['Data', 'CF1', 'CF2', 'Initial P Onset', 'Final P Pick']) + #plot horizontal traces + plt.subplot(3,1,2) + th1data = np.arange(0, trH1_filt.stats.npts / trH1_filt.stats.sampling_rate, trH1_filt.stats.delta) + p21, = plt.plot(th1data, trH1_filt.data/max(trH1_filt.data), 'k') + p22, = plt.plot(arhcf1.getTimeArray(), arhcf1.getCF()/max(arhcf1.getCF()), 'b') + p23, = plt.plot(arhcf2.getTimeArray(), arhcf2.getCF()/max(arhcf2.getCF()), 'm') + p24, = plt.plot([aicarhpick.getpick(), aicarhpick.getpick()], [-1, 1], 'g') + plt.plot([aicarhpick.getpick() - 0.5, aicarhpick.getpick() + 0.5], [1, 1], 'g') + plt.plot([aicarhpick.getpick() - 0.5, aicarhpick.getpick() + 0.5], [-1, -1], 'g') + p25, = plt.plot([refSpick.getpick(), refSpick.getpick()], [-1.3, 1.3], 'g', linewidth=2) + plt.plot([refSpick.getpick() - 0.5, refSpick.getpick() + 0.5], [1.3, 1.3], 'g', linewidth=2) + plt.plot([refSpick.getpick() - 0.5, refSpick.getpick() + 0.5], [-1.3, -1.3], 'g', linewidth=2) + plt.plot([lpickS, lpickS], [-1.1, 1.1], 'g--') + plt.plot([epickS, epickS], [-1.1, 1.1], 'g--') + plt.yticks([]) + plt.ylim([-1.5, 1.5]) + plt.ylabel('Normalized Counts') + plt.title('%s, S Weight=%d, SNR=%7.2f, SNR[dB]=%7.2f' % (trH1_filt.stats.channel, \ + Sweight, SNRS, SNRSdB)) + plt.suptitle(trH1_filt.stats.starttime) + plt.legend([p21, p22, p23, p24, p25], ['Data', 'CF1', 'CF2', 'Initial S Onset', 'Final S Pick']) + plt.subplot(3,1,3) + th2data = np.arange(0, trH2_filt.stats.npts / trH2_filt.stats.sampling_rate, trH2_filt.stats.delta) + plt.plot(th2data, trH2_filt.data/max(trH2_filt.data), 'k') + plt.plot(arhcf1.getTimeArray(), arhcf1.getCF()/max(arhcf1.getCF()), 'b') + plt.plot(arhcf2.getTimeArray(), arhcf2.getCF()/max(arhcf2.getCF()), 'm') + plt.plot([aicarhpick.getpick(), aicarhpick.getpick()], [-1, 1], 'g') + plt.plot([aicarhpick.getpick() - 0.5, aicarhpick.getpick() + 0.5], [1, 1], 'g') + plt.plot([aicarhpick.getpick() - 0.5, aicarhpick.getpick() + 0.5], [-1, -1], 'g') + plt.plot([refSpick.getpick(), refSpick.getpick()], [-1.3, 1.3], 'g', linewidth=2) + plt.plot([refSpick.getpick() - 0.5, refSpick.getpick() + 0.5], [1.3, 1.3], 'g', linewidth=2) + plt.plot([refSpick.getpick() - 0.5, refSpick.getpick() + 0.5], [-1.3, -1.3], 'g', linewidth=2) + plt.plot([lpickS, lpickS], [-1.1, 1.1], 'g--') + plt.plot([epickS, epickS], [-1.1, 1.1], 'g--') + plt.yticks([]) + plt.ylim([-1.5, 1.5]) + plt.xlabel('Time [s] after %s' % tr_filt.stats.starttime) + plt.ylabel('Normalized Counts') + plt.title(trH2_filt.stats.channel) + plt.show() + raw_input() + plt.close()