just cleaning up the code to meet coding conventions
This commit is contained in:
parent
c5da8fd994
commit
883fdf6bf5
@ -3,58 +3,65 @@
|
|||||||
Created Dec 2014 to Feb 2015
|
Created Dec 2014 to Feb 2015
|
||||||
Implementation of the automated picking algorithms published and described in:
|
Implementation of the automated picking algorithms published and described in:
|
||||||
|
|
||||||
Kueperkoch, L., Meier, T., Lee, J., Friederich, W., & Egelados Working Group, 2010:
|
Kueperkoch, L., Meier, T., Lee, J., Friederich, W., & Egelados Working Group,
|
||||||
Automated determination of P-phase arrival times at regional and local distances
|
2010: Automated determination of P-phase arrival times at regional and local
|
||||||
using higher order statistics, Geophys. J. Int., 181, 1159-1170
|
distances using higher order statistics, Geophys. J. Int., 181, 1159-1170
|
||||||
|
|
||||||
Kueperkoch, L., Meier, T., Bruestle, A., Lee, J., Friederich, W., & Egelados
|
Kueperkoch, L., Meier, T., Bruestle, A., Lee, J., Friederich, W., & Egelados
|
||||||
Working Group, 2012: Automated determination of S-phase arrival times using
|
Working Group, 2012: Automated determination of S-phase arrival times using
|
||||||
autoregressive prediction: application ot local and regional distances, Geophys. J. Int.,
|
autoregressive prediction: application ot local and regional distances,
|
||||||
188, 687-702.
|
Geophys. J. Int., 188, 687-702.
|
||||||
|
|
||||||
The picks with the above described algorithms are assumed to be the most likely picks.
|
The picks with the above described algorithms are assumed to be the most likely
|
||||||
For each most likely pick the corresponding earliest and latest possible picks are
|
picks. For each most likely pick the corresponding earliest and latest possible
|
||||||
calculated after Diehl & Kissling (2009).
|
picks are calculated after Diehl & Kissling (2009).
|
||||||
|
|
||||||
:author: MAGS2 EP3 working group / Ludger Kueperkoch
|
:author: MAGS2 EP3 working group / Ludger Kueperkoch
|
||||||
"""
|
"""
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
from pylot.core.pick.utils import *
|
from pylot.core.pick.utils import *
|
||||||
from pylot.core.pick.CharFuns import CharacteristicFunction
|
from pylot.core.pick.CharFuns import CharacteristicFunction
|
||||||
|
|
||||||
|
|
||||||
class AutoPicking(object):
|
class AutoPicking(object):
|
||||||
'''
|
'''
|
||||||
Superclass of different, automated picking algorithms applied on a CF determined
|
Superclass of different, automated picking algorithms applied on a CF
|
||||||
using AIC, HOS, or AR prediction.
|
determined using AIC, HOS, or AR prediction.
|
||||||
'''
|
'''
|
||||||
def __init__(self, cf, TSNR, PickWindow, iplot=None, aus=None, Tsmooth=None, Pick1=None):
|
|
||||||
|
def __init__(self, cf, TSNR, PickWindow, iplot=None, aus=None, Tsmooth=None,
|
||||||
|
Pick1=None):
|
||||||
'''
|
'''
|
||||||
:param: cf, characteristic function, on which the picking algorithm is applied
|
:param cf: characteristic function, on which the picking algorithm is
|
||||||
:type: `~pylot.core.pick.CharFuns.CharacteristicFunction` object
|
applied
|
||||||
|
:type cf: `~pylot.core.pick.CharFuns.CharacteristicFunction` object
|
||||||
|
|
||||||
:param: TSNR, length of time windows around pick used to determine SNR [s]
|
:param TSNR: length of time windows for SNR determination - [s]
|
||||||
:type: tuple (T_noise, T_gap, T_signal)
|
:type TSNR: tuple (T_noise, T_gap, T_signal)
|
||||||
|
|
||||||
:param: PickWindow, length of pick window [s]
|
:param PickWindow: length of pick window - [s]
|
||||||
:type: float
|
:type PickWindow: float
|
||||||
|
|
||||||
:param: iplot, no. of figure window for plotting interims results
|
:param iplot: no. of figure window for plotting interims results
|
||||||
:type: integer
|
:type iplot: integer
|
||||||
|
|
||||||
:param: aus ("artificial uplift of samples"), find local minimum at i if aic(i-1)*(1+aus) >= aic(i)
|
:param aus: aus ("artificial uplift of samples"), find local minimum at
|
||||||
:type: float
|
i if aic(i-1)*(1+aus) >= aic(i)
|
||||||
|
:type aus: float
|
||||||
|
|
||||||
:param: Tsmooth, length of moving smoothing window to calculate smoothed CF [s]
|
:param Tsmooth: length of moving window to calculate smoothed CF - [s]
|
||||||
:type: float
|
:type Tsmooth: float
|
||||||
|
|
||||||
:param: Pick1, initial (prelimenary) onset time, starting point for PragPicker and
|
:param Pick1: initial (prelimenary) onset time, starting point for
|
||||||
EarlLatePicker
|
PragPicker
|
||||||
:type: float
|
:type Pick1: float
|
||||||
|
|
||||||
'''
|
'''
|
||||||
|
|
||||||
assert isinstance(cf, CharacteristicFunction), "%s is not a CharacteristicFunction object" % str(cf)
|
assert isinstance(cf,
|
||||||
|
CharacteristicFunction), "%s is of wrong type" % str(
|
||||||
|
cf)
|
||||||
|
|
||||||
self.cf = cf.getCF()
|
self.cf = cf.getCF()
|
||||||
self.Tcf = cf.getTimeArray()
|
self.Tcf = cf.getTimeArray()
|
||||||
@ -80,9 +87,8 @@ class AutoPicking(object):
|
|||||||
PickWindow=self.getPickWindow(),
|
PickWindow=self.getPickWindow(),
|
||||||
aus=self.getaus(),
|
aus=self.getaus(),
|
||||||
Tsmooth=self.getTsmooth(),
|
Tsmooth=self.getTsmooth(),
|
||||||
Pick1=self.getpick1())
|
Pick1=self.getpick1())
|
||||||
|
|
||||||
|
|
||||||
def getTSNR(self):
|
def getTSNR(self):
|
||||||
return self.TSNR
|
return self.TSNR
|
||||||
|
|
||||||
@ -112,7 +118,7 @@ class AutoPicking(object):
|
|||||||
|
|
||||||
def getSNR(self):
|
def getSNR(self):
|
||||||
return self.SNR
|
return self.SNR
|
||||||
|
|
||||||
def getSlope(self):
|
def getSlope(self):
|
||||||
return self.slope
|
return self.slope
|
||||||
|
|
||||||
@ -136,144 +142,156 @@ class AICPicker(AutoPicking):
|
|||||||
'''
|
'''
|
||||||
Method to derive the onset time of an arriving phase based on CF
|
Method to derive the onset time of an arriving phase based on CF
|
||||||
derived from AIC. In order to get an impression of the quality of this inital pick,
|
derived from AIC. In order to get an impression of the quality of this inital pick,
|
||||||
a quality assessment is applied based on SNR and slope determination derived from the CF,
|
a quality assessment is applied based on SNR and slope determination derived from the CF,
|
||||||
from which the AIC has been calculated.
|
from which the AIC has been calculated.
|
||||||
'''
|
'''
|
||||||
|
|
||||||
def calcPick(self):
|
def calcPick(self):
|
||||||
|
|
||||||
print 'AICPicker: Get initial onset time (pick) from AIC-CF ...'
|
print 'AICPicker: Get initial onset time (pick) from AIC-CF ...'
|
||||||
|
|
||||||
self.Pick = None
|
self.Pick = None
|
||||||
self.slope = None
|
self.slope = None
|
||||||
self.SNR = None
|
self.SNR = None
|
||||||
#find NaN's
|
# find NaN's
|
||||||
nn = np.isnan(self.cf)
|
nn = np.isnan(self.cf)
|
||||||
if len(nn) > 1:
|
if len(nn) > 1:
|
||||||
self.cf[nn] = 0
|
self.cf[nn] = 0
|
||||||
#taper AIC-CF to get rid off side maxima
|
# taper AIC-CF to get rid off side maxima
|
||||||
tap = np.hanning(len(self.cf))
|
tap = np.hanning(len(self.cf))
|
||||||
aic = tap * self.cf + max(abs(self.cf))
|
aic = tap * self.cf + max(abs(self.cf))
|
||||||
#smooth AIC-CF
|
# smooth AIC-CF
|
||||||
ismooth = int(round(self.Tsmooth / self.dt))
|
ismooth = int(round(self.Tsmooth / self.dt))
|
||||||
aicsmooth = np.zeros(len(aic))
|
aicsmooth = np.zeros(len(aic))
|
||||||
if len(aic) < ismooth:
|
if len(aic) < ismooth:
|
||||||
print 'AICPicker: Tsmooth larger than CF!'
|
print 'AICPicker: Tsmooth larger than CF!'
|
||||||
return
|
return
|
||||||
else:
|
else:
|
||||||
for i in range(1, len(aic)):
|
for i in range(1, len(aic)):
|
||||||
if i > ismooth:
|
if i > ismooth:
|
||||||
ii1 = i - ismooth
|
ii1 = i - ismooth
|
||||||
aicsmooth[i] = aicsmooth[i - 1] + (aic[i] - aic[ii1]) / ismooth
|
aicsmooth[i] = aicsmooth[i - 1] + (aic[i] - aic[
|
||||||
else:
|
ii1]) / ismooth
|
||||||
aicsmooth[i] = np.mean(aic[1 : i])
|
else:
|
||||||
#remove offset
|
aicsmooth[i] = np.mean(aic[1: i])
|
||||||
|
# remove offset
|
||||||
offset = abs(min(aic) - min(aicsmooth))
|
offset = abs(min(aic) - min(aicsmooth))
|
||||||
aicsmooth = aicsmooth - offset
|
aicsmooth = aicsmooth - offset
|
||||||
#get maximum of 1st derivative of AIC-CF (more stable!) as starting point
|
# get maximum of 1st derivative of AIC-CF (more stable!) as starting
|
||||||
|
# point
|
||||||
diffcf = np.diff(aicsmooth)
|
diffcf = np.diff(aicsmooth)
|
||||||
#find NaN's
|
# find NaN's
|
||||||
nn = np.isnan(diffcf)
|
nn = np.isnan(diffcf)
|
||||||
if len(nn) > 1:
|
if len(nn) > 1:
|
||||||
diffcf[nn] = 0
|
diffcf[nn] = 0
|
||||||
#taper CF to get rid off side maxima
|
# taper CF to get rid off side maxima
|
||||||
tap = np.hanning(len(diffcf))
|
tap = np.hanning(len(diffcf))
|
||||||
diffcf = tap * diffcf * max(abs(aicsmooth))
|
diffcf = tap * diffcf * max(abs(aicsmooth))
|
||||||
icfmax = np.argmax(diffcf)
|
icfmax = np.argmax(diffcf)
|
||||||
|
|
||||||
#find minimum in AIC-CF front of maximum
|
|
||||||
lpickwindow = int(round(self.PickWindow / self.dt))
|
|
||||||
for i in range(icfmax - 1, max([icfmax - lpickwindow, 2]), -1):
|
|
||||||
if aicsmooth[i - 1] >= aicsmooth[i]:
|
|
||||||
self.Pick = self.Tcf[i]
|
|
||||||
break
|
|
||||||
#if no minimum could be found:
|
|
||||||
#search in 1st derivative of AIC-CF
|
|
||||||
if self.Pick is None:
|
|
||||||
for i in range(icfmax -1, max([icfmax -lpickwindow, 2]), -1):
|
|
||||||
if diffcf[i -1] >= diffcf[i]:
|
|
||||||
self.Pick = self.Tcf[i]
|
|
||||||
break
|
|
||||||
|
|
||||||
#quality assessment using SNR and slope from CF
|
|
||||||
if self.Pick is not None:
|
|
||||||
#get noise window
|
|
||||||
inoise = getnoisewin(self.Tcf, self.Pick, self.TSNR[0], self.TSNR[1])
|
|
||||||
#check, if these are counts or m/s, important for slope estimation!
|
|
||||||
#this is quick and dirty, better solution?
|
|
||||||
if max(self.Data[0].data < 1e-3):
|
|
||||||
self.Data[0].data = self.Data[0].data * 1000000
|
|
||||||
#get signal window
|
|
||||||
isignal = getsignalwin(self.Tcf, self.Pick, self.TSNR[2])
|
|
||||||
#calculate SNR from CF
|
|
||||||
self.SNR = max(abs(aic[isignal] - np.mean(aic[isignal]))) / max(abs(aic[inoise] \
|
|
||||||
- np.mean(aic[inoise])))
|
|
||||||
#calculate slope from CF after initial pick
|
|
||||||
#get slope window
|
|
||||||
tslope = self.TSNR[3] #slope determination window
|
|
||||||
islope = np.where((self.Tcf <= min([self.Pick + tslope, len(self.Data[0].data)])) \
|
|
||||||
& (self.Tcf >= self.Pick))
|
|
||||||
#find maximum within slope determination window
|
|
||||||
#'cause slope should be calculated up to first local minimum only!
|
|
||||||
imax = np.argmax(self.Data[0].data[islope])
|
|
||||||
if imax == 0:
|
|
||||||
print 'AICPicker: Maximum for slope determination right at the beginning of the window!'
|
|
||||||
print 'Choose longer slope determination window!'
|
|
||||||
return
|
|
||||||
islope = islope[0][0 :imax]
|
|
||||||
dataslope = self.Data[0].data[islope]
|
|
||||||
#calculate slope as polynomal fit of order 1
|
|
||||||
xslope = np.arange(0, len(dataslope), 1)
|
|
||||||
P = np.polyfit(xslope, dataslope, 1)
|
|
||||||
datafit = np.polyval(P, xslope)
|
|
||||||
if datafit[0] >= datafit[len(datafit) - 1]:
|
|
||||||
print 'AICPicker: Negative slope, bad onset skipped!'
|
|
||||||
return
|
|
||||||
|
|
||||||
self.slope = 1 / tslope * datafit[len(dataslope) - 1] - datafit[0]
|
# find minimum in AIC-CF front of maximum
|
||||||
|
lpickwindow = int(round(self.PickWindow / self.dt))
|
||||||
|
for i in range(icfmax - 1, max([icfmax - lpickwindow, 2]), -1):
|
||||||
|
if aicsmooth[i - 1] >= aicsmooth[i]:
|
||||||
|
self.Pick = self.Tcf[i]
|
||||||
|
break
|
||||||
|
# if no minimum could be found:
|
||||||
|
# search in 1st derivative of AIC-CF
|
||||||
|
if self.Pick is None:
|
||||||
|
for i in range(icfmax - 1, max([icfmax - lpickwindow, 2]), -1):
|
||||||
|
if diffcf[i - 1] >= diffcf[i]:
|
||||||
|
self.Pick = self.Tcf[i]
|
||||||
|
break
|
||||||
|
|
||||||
|
# quality assessment using SNR and slope from CF
|
||||||
|
if self.Pick is not None:
|
||||||
|
# get noise window
|
||||||
|
inoise = getnoisewin(self.Tcf, self.Pick, self.TSNR[0],
|
||||||
|
self.TSNR[1])
|
||||||
|
# check, if these are counts or m/s, important for slope estimation!
|
||||||
|
# this is quick and dirty, better solution?
|
||||||
|
if max(self.Data[0].data < 1e-3):
|
||||||
|
self.Data[0].data *= 1000000
|
||||||
|
# get signal window
|
||||||
|
isignal = getsignalwin(self.Tcf, self.Pick, self.TSNR[2])
|
||||||
|
# calculate SNR from CF
|
||||||
|
self.SNR = max(abs(aic[isignal] - np.mean(aic[isignal]))) / \
|
||||||
|
max(abs(aic[inoise] - np.mean(aic[inoise])))
|
||||||
|
# calculate slope from CF after initial pick
|
||||||
|
# get slope window
|
||||||
|
tslope = self.TSNR[3] # slope determination window
|
||||||
|
islope = np.where(
|
||||||
|
(self.Tcf <= min([self.Pick + tslope, len(self.Data[0].data)]))
|
||||||
|
and (self.Tcf >= self.Pick))
|
||||||
|
# find maximum within slope determination window
|
||||||
|
# 'cause slope should be calculated up to first local minimum only!
|
||||||
|
imax = np.argmax(self.Data[0].data[islope])
|
||||||
|
if imax == 0:
|
||||||
|
print 'AICPicker: Maximum for slope determination right at ' \
|
||||||
|
'the beginning of the window!'
|
||||||
|
print 'Choose longer slope determination window!'
|
||||||
|
return
|
||||||
|
islope = islope[0][0:imax]
|
||||||
|
dataslope = self.Data[0].data[islope]
|
||||||
|
# calculate slope as polynomal fit of order 1
|
||||||
|
xslope = np.arange(0, len(dataslope), 1)
|
||||||
|
P = np.polyfit(xslope, dataslope, 1)
|
||||||
|
datafit = np.polyval(P, xslope)
|
||||||
|
if datafit[0] >= datafit[len(datafit) - 1]:
|
||||||
|
print 'AICPicker: Negative slope, bad onset skipped!'
|
||||||
|
return
|
||||||
|
|
||||||
|
self.slope = 1 / tslope * datafit[len(dataslope) - 1] - datafit[0]
|
||||||
|
|
||||||
else:
|
else:
|
||||||
self.SNR = None
|
self.SNR = None
|
||||||
self.slope = None
|
self.slope = None
|
||||||
|
|
||||||
if self.iplot > 1:
|
if self.iplot > 1:
|
||||||
p = plt.figure(self.iplot)
|
p = plt.figure(self.iplot)
|
||||||
x = self.Data[0].data
|
x = self.Data[0].data
|
||||||
p1, = plt.plot(self.Tcf, x / max(x), 'k')
|
p1, = plt.plot(self.Tcf, x / max(x), 'k')
|
||||||
p2, = plt.plot(self.Tcf, aicsmooth / max(aicsmooth), 'r')
|
p2, = plt.plot(self.Tcf, aicsmooth / max(aicsmooth), 'r')
|
||||||
if self.Pick is not None:
|
if self.Pick is not None:
|
||||||
p3, = plt.plot([self.Pick, self.Pick], [-0.1 , 0.5], 'b', linewidth=2)
|
p3, = plt.plot([self.Pick, self.Pick], [-0.1, 0.5], 'b',
|
||||||
plt.legend([p1, p2, p3], ['(HOS-/AR-) Data', 'Smoothed AIC-CF', 'AIC-Pick'])
|
linewidth=2)
|
||||||
else:
|
plt.legend([p1, p2, p3],
|
||||||
plt.legend([p1, p2], ['(HOS-/AR-) Data', 'Smoothed AIC-CF'])
|
['(HOS-/AR-) Data', 'Smoothed AIC-CF', 'AIC-Pick'])
|
||||||
plt.xlabel('Time [s] since %s' % self.Data[0].stats.starttime)
|
else:
|
||||||
plt.yticks([])
|
plt.legend([p1, p2], ['(HOS-/AR-) Data', 'Smoothed AIC-CF'])
|
||||||
plt.title(self.Data[0].stats.station)
|
plt.xlabel('Time [s] since %s' % self.Data[0].stats.starttime)
|
||||||
|
plt.yticks([])
|
||||||
|
plt.title(self.Data[0].stats.station)
|
||||||
|
|
||||||
if self.Pick is not None:
|
if self.Pick is not None:
|
||||||
plt.figure(self.iplot + 1)
|
plt.figure(self.iplot + 1)
|
||||||
p11, = plt.plot(self.Tcf, x, 'k')
|
p11, = plt.plot(self.Tcf, x, 'k')
|
||||||
p12, = plt.plot(self.Tcf[inoise], self.Data[0].data[inoise])
|
p12, = plt.plot(self.Tcf[inoise], self.Data[0].data[inoise])
|
||||||
p13, = plt.plot(self.Tcf[isignal], self.Data[0].data[isignal], 'r')
|
p13, = plt.plot(self.Tcf[isignal], self.Data[0].data[isignal],
|
||||||
p14, = plt.plot(self.Tcf[islope], dataslope, 'g--')
|
'r')
|
||||||
p15, = plt.plot(self.Tcf[islope], datafit, 'g', linewidth=2)
|
p14, = plt.plot(self.Tcf[islope], dataslope, 'g--')
|
||||||
plt.legend([p11, p12, p13, p14, p15], ['Data', 'Noise Window', 'Signal Window', 'Slope Window', 'Slope'], \
|
p15, = plt.plot(self.Tcf[islope], datafit, 'g', linewidth=2)
|
||||||
loc='best')
|
plt.legend([p11, p12, p13, p14, p15],
|
||||||
plt.title('Station %s, SNR=%7.2f, Slope= %12.2f counts/s' % (self.Data[0].stats.station, \
|
['Data', 'Noise Window', 'Signal Window',
|
||||||
self.SNR, self.slope))
|
'Slope Window', 'Slope'],
|
||||||
plt.xlabel('Time [s] since %s' % self.Data[0].stats.starttime)
|
loc='best')
|
||||||
plt.ylabel('Counts')
|
plt.title('Station %s, SNR=%7.2f, Slope= %12.2f counts/s' % (
|
||||||
ax = plt.gca()
|
self.Data[0].stats.station,
|
||||||
plt.yticks([])
|
self.SNR, self.slope))
|
||||||
ax.set_xlim([self.Tcf[inoise[0][0]] - 5, self.Tcf[isignal[0][len(isignal) - 1]] + 5])
|
plt.xlabel('Time [s] since %s' % self.Data[0].stats.starttime)
|
||||||
|
plt.ylabel('Counts')
|
||||||
|
ax = plt.gca()
|
||||||
|
plt.yticks([])
|
||||||
|
ax.set_xlim([self.Tcf[inoise[0][0]] - 5,
|
||||||
|
self.Tcf[isignal[0][len(isignal) - 1]] + 5])
|
||||||
|
|
||||||
plt.show()
|
plt.show()
|
||||||
raw_input()
|
raw_input()
|
||||||
plt.close(p)
|
plt.close(p)
|
||||||
|
|
||||||
|
if self.Pick is None:
|
||||||
|
print 'AICPicker: Could not find minimum, picking window too short?'
|
||||||
|
|
||||||
if self.Pick == None:
|
|
||||||
print 'AICPicker: Could not find minimum, picking window too short?'
|
|
||||||
|
|
||||||
|
|
||||||
class PragPicker(AutoPicking):
|
class PragPicker(AutoPicking):
|
||||||
'''
|
'''
|
||||||
@ -283,90 +301,95 @@ class PragPicker(AutoPicking):
|
|||||||
def calcPick(self):
|
def calcPick(self):
|
||||||
|
|
||||||
if self.getpick1() is not None:
|
if self.getpick1() is not None:
|
||||||
print 'PragPicker: Get most likely pick from HOS- or AR-CF using pragmatic picking algorithm ...'
|
print 'PragPicker: Get most likely pick from HOS- or AR-CF using ' \
|
||||||
|
'pragmatic picking algorithm ...'
|
||||||
|
|
||||||
self.Pick = None
|
self.Pick = None
|
||||||
self.SNR = None
|
self.SNR = None
|
||||||
self.slope = None
|
self.slope = None
|
||||||
#smooth CF
|
# smooth CF
|
||||||
ismooth = int(round(self.Tsmooth / self.dt))
|
ismooth = int(round(self.Tsmooth / self.dt))
|
||||||
cfsmooth = np.zeros(len(self.cf))
|
cfsmooth = np.zeros(len(self.cf))
|
||||||
if len(self.cf) < ismooth:
|
if len(self.cf) < ismooth:
|
||||||
print 'PragPicker: Tsmooth larger than CF!'
|
print 'PragPicker: Tsmooth larger than CF!'
|
||||||
return
|
return
|
||||||
else:
|
else:
|
||||||
for i in range(1, len(self.cf)):
|
for i in range(1, len(self.cf)):
|
||||||
if i > ismooth:
|
if i > ismooth:
|
||||||
ii1 = i - ismooth;
|
ii1 = i - ismooth
|
||||||
cfsmooth[i] = cfsmooth[i - 1] + (self.cf[i] - self.cf[ii1]) / ismooth
|
cfsmooth[i] = cfsmooth[i - 1] + (self.cf[i] - self.cf[
|
||||||
else:
|
ii1]) / ismooth
|
||||||
cfsmooth[i] = np.mean(self.cf[1 : i])
|
else:
|
||||||
|
cfsmooth[i] = np.mean(self.cf[1: i])
|
||||||
|
|
||||||
#select picking window
|
# select picking window
|
||||||
#which is centered around tpick1
|
# which is centered around tpick1
|
||||||
ipick = np.where((self.Tcf >= self.getpick1() - self.PickWindow / 2) \
|
ipick = np.where((self.Tcf >=
|
||||||
& (self.Tcf <= self.getpick1() + self.PickWindow / 2))
|
(self.getpick1() - self.PickWindow / 2)) and
|
||||||
cfipick = self.cf[ipick] - np.mean(self.cf[ipick])
|
(self.Tcf <=
|
||||||
Tcfpick = self.Tcf[ipick]
|
(self.getpick1() + self.PickWindow / 2)))
|
||||||
cfsmoothipick = cfsmooth[ipick]- np.mean(self.cf[ipick])
|
cfipick = self.cf[ipick] - np.mean(self.cf[ipick])
|
||||||
ipick1 = np.argmin(abs(self.Tcf - self.getpick1()))
|
Tcfpick = self.Tcf[ipick]
|
||||||
cfpick1 = 2 * self.cf[ipick1]
|
cfsmoothipick = cfsmooth[ipick] - np.mean(self.cf[ipick])
|
||||||
|
ipick1 = np.argmin(abs(self.Tcf - self.getpick1()))
|
||||||
|
cfpick1 = 2 * self.cf[ipick1]
|
||||||
|
|
||||||
#check trend of CF, i.e. differences of CF and adjust aus regarding this trend
|
# check trend of CF, i.e. differences of CF and adjust aus regarding this trend
|
||||||
#prominent trend: decrease aus
|
# prominent trend: decrease aus
|
||||||
#flat: use given aus
|
# flat: use given aus
|
||||||
cfdiff = np.diff(cfipick);
|
cfdiff = np.diff(cfipick)
|
||||||
i0diff = np.where(cfdiff > 0)
|
i0diff = np.where(cfdiff > 0)
|
||||||
cfdiff = cfdiff[i0diff]
|
cfdiff = cfdiff[i0diff]
|
||||||
minaus = min(cfdiff * (1 + self.aus));
|
minaus = min(cfdiff * (1 + self.aus))
|
||||||
aus1 = max([minaus, self.aus]);
|
aus1 = max([minaus, self.aus])
|
||||||
|
|
||||||
#at first we look to the right until the end of the pick window is reached
|
# at first we look to the right until the end of the pick window is reached
|
||||||
flagpick_r = 0
|
flagpick_r = 0
|
||||||
flagpick_l = 0
|
flagpick_l = 0
|
||||||
flagpick = 0
|
flagpick = 0
|
||||||
lpickwindow = int(round(self.PickWindow / self.dt))
|
lpickwindow = int(round(self.PickWindow / self.dt))
|
||||||
for i in range(max(np.insert(ipick, 0, 2)), min([ipick1 + lpickwindow + 1, len(self.cf) - 1])):
|
for i in range(max(np.insert(ipick, 0, 2)),
|
||||||
if self.cf[i + 1] > self.cf[i] and self.cf[i - 1] >= self.cf[i]:
|
min([ipick1 + lpickwindow + 1, len(self.cf) - 1])):
|
||||||
if cfsmooth[i - 1] * (1 + aus1) >= cfsmooth[i]:
|
if self.cf[i + 1] > self.cf[i] and self.cf[i - 1] >= self.cf[i]:
|
||||||
if cfpick1 >= self.cf[i]:
|
if cfsmooth[i - 1] * (1 + aus1) >= cfsmooth[i]:
|
||||||
pick_r = self.Tcf[i]
|
if cfpick1 >= self.cf[i]:
|
||||||
self.Pick = pick_r
|
pick_r = self.Tcf[i]
|
||||||
flagpick_l = 1
|
self.Pick = pick_r
|
||||||
cfpick_r = self.cf[i]
|
flagpick_l = 1
|
||||||
break
|
cfpick_r = self.cf[i]
|
||||||
|
break
|
||||||
|
|
||||||
#now we look to the left
|
# now we look to the left
|
||||||
for i in range(ipick1, max([ipick1 - lpickwindow + 1, 2]), -1):
|
for i in range(ipick1, max([ipick1 - lpickwindow + 1, 2]), -1):
|
||||||
if self.cf[i + 1] > self.cf[i] and self.cf[i - 1] >= self.cf[i]:
|
if self.cf[i + 1] > self.cf[i] and self.cf[i - 1] >= self.cf[i]:
|
||||||
if cfsmooth[i - 1] * (1 + aus1) >= cfsmooth[i]:
|
if cfsmooth[i - 1] * (1 + aus1) >= cfsmooth[i]:
|
||||||
if cfpick1 >= self.cf[i]:
|
if cfpick1 >= self.cf[i]:
|
||||||
pick_l = self.Tcf[i]
|
pick_l = self.Tcf[i]
|
||||||
self.Pick = pick_l
|
self.Pick = pick_l
|
||||||
flagpick_r = 1
|
flagpick_r = 1
|
||||||
cfpick_l = self.cf[i]
|
cfpick_l = self.cf[i]
|
||||||
break
|
break
|
||||||
|
|
||||||
#now decide which pick: left or right?
|
# now decide which pick: left or right?
|
||||||
if flagpick_l > 0 and flagpick_r > 0 and cfpick_l <= cfpick_r:
|
if flagpick_l > 0 and flagpick_r > 0 and cfpick_l <= cfpick_r:
|
||||||
self.Pick = pick_l
|
self.Pick = pick_l
|
||||||
elif flagpick_l > 0 and flagpick_r > 0 and cfpick_l >= cfpick_r:
|
elif flagpick_l > 0 and flagpick_r > 0 and cfpick_l >= cfpick_r:
|
||||||
self.Pick = pick_r
|
self.Pick = pick_r
|
||||||
|
|
||||||
if self.getiplot() > 1:
|
if self.getiplot() > 1:
|
||||||
p = plt.figure(self.getiplot())
|
p = plt.figure(self.getiplot())
|
||||||
p1, = plt.plot(Tcfpick,cfipick, 'k')
|
p1, = plt.plot(Tcfpick, cfipick, 'k')
|
||||||
p2, = plt.plot(Tcfpick,cfsmoothipick, 'r')
|
p2, = plt.plot(Tcfpick, cfsmoothipick, 'r')
|
||||||
p3, = plt.plot([self.Pick, self.Pick], [min(cfipick), max(cfipick)], 'b', linewidth=2)
|
p3, = plt.plot([self.Pick, self.Pick],
|
||||||
plt.legend([p1, p2, p3], ['CF', 'Smoothed CF', 'Pick'])
|
[min(cfipick), max(cfipick)], 'b', linewidth=2)
|
||||||
plt.xlabel('Time [s] since %s' % self.Data[0].stats.starttime)
|
plt.legend([p1, p2, p3], ['CF', 'Smoothed CF', 'Pick'])
|
||||||
plt.yticks([])
|
plt.xlabel('Time [s] since %s' % self.Data[0].stats.starttime)
|
||||||
plt.title(self.Data[0].stats.station)
|
plt.yticks([])
|
||||||
plt.show()
|
plt.title(self.Data[0].stats.station)
|
||||||
raw_input()
|
plt.show()
|
||||||
plt.close(p)
|
raw_input()
|
||||||
|
plt.close(p)
|
||||||
|
|
||||||
else:
|
else:
|
||||||
self.Pick = None
|
self.Pick = None
|
||||||
print 'PragPicker: No initial onset time given! Check input!'
|
print 'PragPicker: No initial onset time given! Check input!'
|
||||||
return
|
|
||||||
|
@ -3,43 +3,38 @@
|
|||||||
|
|
||||||
"""
|
"""
|
||||||
Function to run automated picking algorithms using AIC,
|
Function to run automated picking algorithms using AIC,
|
||||||
HOS and AR prediction. Uses object CharFuns and Picker and
|
HOS and AR prediction. Uses object CharFuns and Picker and
|
||||||
function conglomerate utils.
|
function conglomerate utils.
|
||||||
|
|
||||||
:author: MAGS2 EP3 working group / Ludger Kueperkoch
|
:author: MAGS2 EP3 working group / Ludger Kueperkoch
|
||||||
"""
|
"""
|
||||||
|
|
||||||
from obspy.core import read
|
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from pylot.core.pick.CharFuns import *
|
|
||||||
from pylot.core.pick.Picker import *
|
from pylot.core.pick.Picker import *
|
||||||
from pylot.core.pick.CharFuns import *
|
from pylot.core.pick.CharFuns import *
|
||||||
from pylot.core.pick import utils
|
|
||||||
|
|
||||||
|
|
||||||
def run_autopicking(wfstream, pickparam):
|
def run_autopicking(wfstream, pickparam):
|
||||||
|
"""
|
||||||
'''
|
|
||||||
param: wfstream
|
param: wfstream
|
||||||
:type: `~obspy.core.stream.Stream`
|
:type: `~obspy.core.stream.Stream`
|
||||||
|
|
||||||
param: pickparam
|
param: pickparam
|
||||||
:type: container of picking parameters from input file,
|
:type: container of picking parameters from input file,
|
||||||
usually autoPyLoT.in
|
usually autoPyLoT.in
|
||||||
'''
|
"""
|
||||||
|
|
||||||
# declaring pickparam variables (only for convenience)
|
# declaring pickparam variables (only for convenience)
|
||||||
# read your autoPyLoT.in for details!
|
# read your autoPyLoT.in for details!
|
||||||
|
|
||||||
#special parameters for P picking
|
# special parameters for P picking
|
||||||
algoP = pickparam.getParam('algoP')
|
algoP = pickparam.getParam('algoP')
|
||||||
iplot = pickparam.getParam('iplot')
|
iplot = pickparam.getParam('iplot')
|
||||||
pstart = pickparam.getParam('pstart')
|
pstart = pickparam.getParam('pstart')
|
||||||
pstop = pickparam.getParam('pstop')
|
pstop = pickparam.getParam('pstop')
|
||||||
thosmw = pickparam.getParam('tlta')
|
thosmw = pickparam.getParam('tlta')
|
||||||
hosorder = pickparam.getParam('hosorder')
|
tsnrz = pickparam.getParam('tsnrz')
|
||||||
tsnrz = pickparam.getParam('tsnrz')
|
|
||||||
hosorder = pickparam.getParam('hosorder')
|
hosorder = pickparam.getParam('hosorder')
|
||||||
bpz1 = pickparam.getParam('bpz1')
|
bpz1 = pickparam.getParam('bpz1')
|
||||||
bpz2 = pickparam.getParam('bpz2')
|
bpz2 = pickparam.getParam('bpz2')
|
||||||
@ -55,13 +50,13 @@ def run_autopicking(wfstream, pickparam):
|
|||||||
minAICPslope = pickparam.getParam('minAICPslope')
|
minAICPslope = pickparam.getParam('minAICPslope')
|
||||||
minAICPSNR = pickparam.getParam('minAICPSNR')
|
minAICPSNR = pickparam.getParam('minAICPSNR')
|
||||||
timeerrorsP = pickparam.getParam('timeerrorsP')
|
timeerrorsP = pickparam.getParam('timeerrorsP')
|
||||||
#special parameters for S picking
|
# special parameters for S picking
|
||||||
algoS = pickparam.getParam('algoS')
|
algoS = pickparam.getParam('algoS')
|
||||||
sstart = pickparam.getParam('sstart')
|
sstart = pickparam.getParam('sstart')
|
||||||
sstop = pickparam.getParam('sstop')
|
sstop = pickparam.getParam('sstop')
|
||||||
bph1 = pickparam.getParam('bph1')
|
bph1 = pickparam.getParam('bph1')
|
||||||
bph2 = pickparam.getParam('bph2')
|
bph2 = pickparam.getParam('bph2')
|
||||||
tsnrh = pickparam.getParam('tsnrh')
|
tsnrh = pickparam.getParam('tsnrh')
|
||||||
pickwinS = pickparam.getParam('pickwinS')
|
pickwinS = pickparam.getParam('pickwinS')
|
||||||
tpred1h = pickparam.getParam('tpred1h')
|
tpred1h = pickparam.getParam('tpred1h')
|
||||||
tdet1h = pickparam.getParam('tdet1h')
|
tdet1h = pickparam.getParam('tdet1h')
|
||||||
@ -76,7 +71,7 @@ def run_autopicking(wfstream, pickparam):
|
|||||||
Srecalcwin = pickparam.getParam('Srecalcwin')
|
Srecalcwin = pickparam.getParam('Srecalcwin')
|
||||||
nfacS = pickparam.getParam('nfacS')
|
nfacS = pickparam.getParam('nfacS')
|
||||||
timeerrorsS = pickparam.getParam('timeerrorsS')
|
timeerrorsS = pickparam.getParam('timeerrorsS')
|
||||||
#parameters for first-motion determination
|
# parameters for first-motion determination
|
||||||
minFMSNR = pickparam.getParam('minFMSNR')
|
minFMSNR = pickparam.getParam('minFMSNR')
|
||||||
fmpickwin = pickparam.getParam('fmpickwin')
|
fmpickwin = pickparam.getParam('fmpickwin')
|
||||||
minfmweight = pickparam.getParam('minfmweight')
|
minfmweight = pickparam.getParam('minfmweight')
|
||||||
@ -84,164 +79,192 @@ def run_autopicking(wfstream, pickparam):
|
|||||||
# split components
|
# split components
|
||||||
zdat = wfstream.select(component="Z")
|
zdat = wfstream.select(component="Z")
|
||||||
edat = wfstream.select(component="E")
|
edat = wfstream.select(component="E")
|
||||||
if len(edat) == 0: #check for other components
|
if len(edat) == 0: # check for other components
|
||||||
edat = wfstream.select(component="2")
|
edat = wfstream.select(component="2")
|
||||||
ndat = wfstream.select(component="N")
|
ndat = wfstream.select(component="N")
|
||||||
if len(ndat) == 0: #check for other components
|
if len(ndat) == 0: # check for other components
|
||||||
ndat = wfstream.select(component="1")
|
ndat = wfstream.select(component="1")
|
||||||
|
|
||||||
if algoP == 'HOS' or algoP == 'ARZ' and zdat is not None:
|
if algoP == 'HOS' or algoP == 'ARZ' and zdat is not None:
|
||||||
print '##########################################'
|
print '##########################################'
|
||||||
print 'run_autopicking: Working on P onset of station %s' % zdat[0].stats.station
|
print 'run_autopicking: Working on P onset of station %s' % zdat[
|
||||||
|
0].stats.station
|
||||||
print 'Filtering vertical trace ...'
|
print 'Filtering vertical trace ...'
|
||||||
print zdat
|
print zdat
|
||||||
z_copy = zdat.copy()
|
z_copy = zdat.copy()
|
||||||
#filter and taper data
|
# filter and taper data
|
||||||
tr_filt = zdat[0].copy()
|
tr_filt = zdat[0].copy()
|
||||||
tr_filt.filter('bandpass', freqmin=bpz1[0], freqmax=bpz1[1], zerophase=False)
|
tr_filt.filter('bandpass', freqmin=bpz1[0], freqmax=bpz1[1],
|
||||||
|
zerophase=False)
|
||||||
tr_filt.taper(max_percentage=0.05, type='hann')
|
tr_filt.taper(max_percentage=0.05, type='hann')
|
||||||
z_copy[0].data = tr_filt.data
|
z_copy[0].data = tr_filt.data
|
||||||
##############################################################
|
##############################################################
|
||||||
#check length of waveform and compare with cut times
|
# check length of waveform and compare with cut times
|
||||||
Lc = pstop - pstart
|
Lc = pstop - pstart
|
||||||
Lwf = zdat[0].stats.endtime - zdat[0].stats.starttime
|
Lwf = zdat[0].stats.endtime - zdat[0].stats.starttime
|
||||||
Ldiff = Lwf - Lc
|
Ldiff = Lwf - Lc
|
||||||
if Ldiff < 0:
|
if Ldiff < 0:
|
||||||
print 'run_autopicking: Cutting times are too large for actual waveform!'
|
print 'run_autopicking: Cutting times are too large for actual ' \
|
||||||
print 'Use entire waveform instead!'
|
'waveform!'
|
||||||
pstart = 0
|
print 'Use entire waveform instead!'
|
||||||
pstop = len(zdat[0].data) * zdat[0].stats.delta
|
pstart = 0
|
||||||
|
pstop = len(zdat[0].data) * zdat[0].stats.delta
|
||||||
cuttimes = [pstart, pstop]
|
cuttimes = [pstart, pstop]
|
||||||
if algoP == 'HOS':
|
if algoP == 'HOS':
|
||||||
#calculate HOS-CF using subclass HOScf of class CharacteristicFunction
|
# calculate HOS-CF using subclass HOScf of class
|
||||||
cf1 = HOScf(z_copy, cuttimes, thosmw, hosorder) #instance of HOScf
|
# CharacteristicFunction
|
||||||
|
cf1 = HOScf(z_copy, cuttimes, thosmw, hosorder) # instance of HOScf
|
||||||
elif algoP == 'ARZ':
|
elif algoP == 'ARZ':
|
||||||
#calculate ARZ-CF using subclass ARZcf of class CharcteristicFunction
|
# calculate ARZ-CF using subclass ARZcf of class
|
||||||
cf1 = ARZcf(z_copy, cuttimes, tpred1z, Parorder, tdet1z, addnoise) #instance of ARZcf
|
# CharcteristicFunction
|
||||||
|
cf1 = ARZcf(z_copy, cuttimes, tpred1z, Parorder, tdet1z,
|
||||||
|
addnoise) # instance of ARZcf
|
||||||
##############################################################
|
##############################################################
|
||||||
#calculate AIC-HOS-CF using subclass AICcf of class CharacteristicFunction
|
# calculate AIC-HOS-CF using subclass AICcf of class
|
||||||
#class needs stream object => build it
|
# CharacteristicFunction
|
||||||
|
# class needs stream object => build it
|
||||||
tr_aic = tr_filt.copy()
|
tr_aic = tr_filt.copy()
|
||||||
tr_aic.data =cf1.getCF()
|
tr_aic.data = cf1.getCF()
|
||||||
z_copy[0].data = tr_aic.data
|
z_copy[0].data = tr_aic.data
|
||||||
aiccf = AICcf(z_copy, cuttimes) #instance of AICcf
|
aiccf = AICcf(z_copy, cuttimes) # instance of AICcf
|
||||||
##############################################################
|
##############################################################
|
||||||
#get prelimenary onset time from AIC-HOS-CF using subclass AICPicker of class AutoPicking
|
# get prelimenary onset time from AIC-HOS-CF using subclass AICPicker
|
||||||
|
# of class AutoPicking
|
||||||
aicpick = AICPicker(aiccf, tsnrz, pickwinP, iplot, None, tsmoothP)
|
aicpick = AICPicker(aiccf, tsnrz, pickwinP, iplot, None, tsmoothP)
|
||||||
##############################################################
|
##############################################################
|
||||||
#go on with processing if AIC onset passes quality control
|
# go on with processing if AIC onset passes quality control
|
||||||
if aicpick.getSlope() >= minAICPslope and aicpick.getSNR() >= minAICPSNR:
|
if (aicpick.getSlope() >= minAICPslope and
|
||||||
aicPflag = 1
|
aicpick.getSNR() >= minAICPSNR):
|
||||||
print 'AIC P-pick passes quality control: Slope: %f, SNR: %f' % \
|
aicPflag = 1
|
||||||
|
print 'AIC P-pick passes quality control: Slope: %f, SNR: %f' % \
|
||||||
(aicpick.getSlope(), aicpick.getSNR())
|
(aicpick.getSlope(), aicpick.getSNR())
|
||||||
print 'Go on with refined picking ...'
|
print 'Go on with refined picking ...'
|
||||||
#re-filter waveform with larger bandpass
|
# re-filter waveform with larger bandpass
|
||||||
print 'run_autopicking: re-filtering vertical trace ...'
|
print 'run_autopicking: re-filtering vertical trace ...'
|
||||||
z_copy = zdat.copy()
|
z_copy = zdat.copy()
|
||||||
tr_filt = zdat[0].copy()
|
tr_filt = zdat[0].copy()
|
||||||
tr_filt.filter('bandpass', freqmin=bpz2[0], freqmax=bpz2[1], zerophase=False)
|
tr_filt.filter('bandpass', freqmin=bpz2[0], freqmax=bpz2[1],
|
||||||
tr_filt.taper(max_percentage=0.05, type='hann')
|
zerophase=False)
|
||||||
z_copy[0].data = tr_filt.data
|
tr_filt.taper(max_percentage=0.05, type='hann')
|
||||||
#############################################################
|
z_copy[0].data = tr_filt.data
|
||||||
#re-calculate CF from re-filtered trace in vicinity of initial onset
|
#############################################################
|
||||||
cuttimes2 = [round(max([aicpick.getpick() - Precalcwin, 0])), \
|
# re-calculate CF from re-filtered trace in vicinity of initial
|
||||||
round(min([len(zdat[0].data) * zdat[0].stats.delta, \
|
# onset
|
||||||
aicpick.getpick() + Precalcwin]))]
|
cuttimes2 = [round(max([aicpick.getpick() - Precalcwin, 0])),
|
||||||
if algoP == 'HOS':
|
round(min([len(zdat[0].data) * zdat[0].stats.delta,
|
||||||
#calculate HOS-CF using subclass HOScf of class CharacteristicFunction
|
aicpick.getpick() + Precalcwin]))]
|
||||||
cf2 = HOScf(z_copy, cuttimes2, thosmw, hosorder) #instance of HOScf
|
if algoP == 'HOS':
|
||||||
elif algoP == 'ARZ':
|
# calculate HOS-CF using subclass HOScf of class
|
||||||
#calculate ARZ-CF using subclass ARZcf of class CharcteristicFunction
|
# CharacteristicFunction
|
||||||
cf2 = ARZcf(z_copy, cuttimes2, tpred1z, Parorder, tdet1z, addnoise) #instance of ARZcf
|
cf2 = HOScf(z_copy, cuttimes2, thosmw,
|
||||||
##############################################################
|
hosorder) # instance of HOScf
|
||||||
#get refined onset time from CF2 using class Picker
|
elif algoP == 'ARZ':
|
||||||
refPpick = PragPicker(cf2, tsnrz, pickwinP, iplot, ausP, tsmoothP, aicpick.getpick())
|
# calculate ARZ-CF using subclass ARZcf of class
|
||||||
#############################################################
|
# CharcteristicFunction
|
||||||
#quality assessment
|
cf2 = ARZcf(z_copy, cuttimes2, tpred1z, Parorder, tdet1z,
|
||||||
#get earliest and latest possible pick and symmetrized uncertainty
|
addnoise) # instance of ARZcf
|
||||||
[lpickP, epickP, Perror] = earllatepicker(z_copy, nfacP, tsnrz, refPpick.getpick(), iplot)
|
##############################################################
|
||||||
|
# get refined onset time from CF2 using class Picker
|
||||||
|
refPpick = PragPicker(cf2, tsnrz, pickwinP, iplot, ausP, tsmoothP,
|
||||||
|
aicpick.getpick())
|
||||||
|
#############################################################
|
||||||
|
# quality assessment
|
||||||
|
# get earliest and latest possible pick and symmetrized uncertainty
|
||||||
|
[lpickP, epickP, Perror] = earllatepicker(z_copy, nfacP, tsnrz,
|
||||||
|
refPpick.getpick(), iplot)
|
||||||
|
|
||||||
#get SNR
|
# get SNR
|
||||||
[SNRP, SNRPdB, Pnoiselevel] = getSNR(z_copy, tsnrz, refPpick.getpick())
|
[SNRP, SNRPdB, Pnoiselevel] = getSNR(z_copy, tsnrz,
|
||||||
|
refPpick.getpick())
|
||||||
|
|
||||||
#weight P-onset using symmetric error
|
# weight P-onset using symmetric error
|
||||||
if Perror <= timeerrorsP[0]:
|
if Perror <= timeerrorsP[0]:
|
||||||
Pweight = 0
|
Pweight = 0
|
||||||
elif Perror > timeerrorsP[0] and Perror <= timeerrorsP[1]:
|
elif timeerrorsP[0] < Perror <= timeerrorsP[1]:
|
||||||
Pweight = 1
|
Pweight = 1
|
||||||
elif Perror > timeerrorsP[1] and Perror <= timeerrorsP[2]:
|
elif timeerrorsP[1] < Perror <= timeerrorsP[2]:
|
||||||
Pweight = 2
|
Pweight = 2
|
||||||
elif Perror > timeerrorsP[2] and Perror <= timeerrorsP[3]:
|
elif timeerrorsP[2] < Perror <= timeerrorsP[3]:
|
||||||
Pweight = 3
|
Pweight = 3
|
||||||
elif Perror > timeerrorsP[3]:
|
elif Perror > timeerrorsP[3]:
|
||||||
Pweight = 4
|
Pweight = 4
|
||||||
|
|
||||||
|
##############################################################
|
||||||
|
# get first motion of P onset
|
||||||
|
# certain quality required
|
||||||
|
if Pweight <= minfmweight and SNRP >= minFMSNR:
|
||||||
|
FM = fmpicker(zdat, z_copy, fmpickwin, refPpick.getpick(),
|
||||||
|
iplot)
|
||||||
|
else:
|
||||||
|
FM = 'N'
|
||||||
|
|
||||||
|
print 'run_autopicking: P-weight: %d, SNR: %f, SNR[dB]: %f, ' \
|
||||||
|
'Polarity: %s' % (Pweight, SNRP, SNRPdB, FM)
|
||||||
|
|
||||||
##############################################################
|
|
||||||
#get first motion of P onset
|
|
||||||
#certain quality required
|
|
||||||
if Pweight <= minfmweight and SNRP >= minFMSNR:
|
|
||||||
FM = fmpicker(zdat, z_copy, fmpickwin, refPpick.getpick(), iplot)
|
|
||||||
else:
|
|
||||||
FM = 'N'
|
|
||||||
|
|
||||||
print 'run_autopicking: P-weight: %d, SNR: %f, SNR[dB]: %f, Polarity: %s' % (Pweight, SNRP, SNRPdB, FM)
|
|
||||||
|
|
||||||
else:
|
else:
|
||||||
print 'Bad initial (AIC) P-pick, skip this onset!'
|
print 'Bad initial (AIC) P-pick, skip this onset!'
|
||||||
print 'AIC-SNR=', aicpick.getSNR(), 'AIC-Slope=', aicpick.getSlope()
|
print 'AIC-SNR=', aicpick.getSNR(), 'AIC-Slope=', aicpick.getSlope()
|
||||||
Pweight = 4
|
Pweight = 4
|
||||||
Sweight = 4
|
Sweight = 4
|
||||||
FM = 'N'
|
FM = 'N'
|
||||||
SNRP = None
|
SNRP = None
|
||||||
SNRPdB = None
|
SNRPdB = None
|
||||||
SNRS = None
|
SNRS = None
|
||||||
SNRSdB = None
|
SNRSdB = None
|
||||||
aicSflag = 0
|
aicSflag = 0
|
||||||
aicPflag = 0
|
aicPflag = 0
|
||||||
else:
|
else:
|
||||||
print 'run_autopicking: No vertical component data available, skipping station!'
|
print 'run_autopicking: No vertical component data available, ' \
|
||||||
return
|
'skipping station!'
|
||||||
|
return
|
||||||
|
|
||||||
if edat is not None and ndat is not None and len(edat) > 0 and len(ndat) > 0 and Pweight < 4:
|
if edat is not None and ndat is not None and len(edat) > 0 and len(
|
||||||
print 'Go on picking S onset ...'
|
ndat) > 0 and Pweight < 4:
|
||||||
|
print 'Go on picking S onset ...'
|
||||||
print '##################################################'
|
print '##################################################'
|
||||||
print 'Working on S onset of station %s' % edat[0].stats.station
|
print 'Working on S onset of station %s' % edat[0].stats.station
|
||||||
print 'Filtering horizontal traces ...'
|
print 'Filtering horizontal traces ...'
|
||||||
|
|
||||||
#determine time window for calculating CF after P onset
|
# determine time window for calculating CF after P onset
|
||||||
#cuttimesh = [round(refPpick.getpick() + sstart), round(refPpick.getpick() + sstop)]
|
# cuttimesh = [round(refPpick.getpick() + sstart),
|
||||||
cuttimesh = [round(max([refPpick.getpick() + sstart, 0])), \
|
# round(refPpick.getpick() + sstop)]
|
||||||
|
cuttimesh = [round(max([refPpick.getpick() + sstart, 0])),
|
||||||
round(min([refPpick.getpick() + sstop, Lwf]))]
|
round(min([refPpick.getpick() + sstop, Lwf]))]
|
||||||
|
|
||||||
if algoS == 'ARH':
|
if algoS == 'ARH':
|
||||||
print edat, ndat
|
print edat, ndat
|
||||||
#re-create stream object including both horizontal components
|
# re-create stream object including both horizontal components
|
||||||
hdat = edat.copy()
|
hdat = edat.copy()
|
||||||
hdat += ndat
|
hdat += ndat
|
||||||
h_copy = hdat.copy()
|
h_copy = hdat.copy()
|
||||||
#filter and taper data
|
# filter and taper data
|
||||||
trH1_filt = hdat[0].copy()
|
trH1_filt = hdat[0].copy()
|
||||||
trH2_filt = hdat[1].copy()
|
trH2_filt = hdat[1].copy()
|
||||||
trH1_filt.filter('bandpass', freqmin=bph1[0], freqmax=bph1[1], zerophase=False)
|
trH1_filt.filter('bandpass', freqmin=bph1[0], freqmax=bph1[1],
|
||||||
trH2_filt.filter('bandpass', freqmin=bph1[0], freqmax=bph1[1], zerophase=False)
|
zerophase=False)
|
||||||
|
trH2_filt.filter('bandpass', freqmin=bph1[0], freqmax=bph1[1],
|
||||||
|
zerophase=False)
|
||||||
trH1_filt.taper(max_percentage=0.05, type='hann')
|
trH1_filt.taper(max_percentage=0.05, type='hann')
|
||||||
trH2_filt.taper(max_percentage=0.05, type='hann')
|
trH2_filt.taper(max_percentage=0.05, type='hann')
|
||||||
h_copy[0].data = trH1_filt.data
|
h_copy[0].data = trH1_filt.data
|
||||||
h_copy[1].data = trH2_filt.data
|
h_copy[1].data = trH2_filt.data
|
||||||
elif algoS == 'AR3':
|
elif algoS == 'AR3':
|
||||||
print zdat, edat, ndat
|
print zdat, edat, ndat
|
||||||
#re-create stream object including both horizontal components
|
# re-create stream object including both horizontal components
|
||||||
hdat = zdat.copy()
|
hdat = zdat.copy()
|
||||||
hdat += edat
|
hdat += edat
|
||||||
hdat += ndat
|
hdat += ndat
|
||||||
h_copy = hdat.copy()
|
h_copy = hdat.copy()
|
||||||
#filter and taper data
|
# filter and taper data
|
||||||
trH1_filt = hdat[0].copy()
|
trH1_filt = hdat[0].copy()
|
||||||
trH2_filt = hdat[1].copy()
|
trH2_filt = hdat[1].copy()
|
||||||
trH3_filt = hdat[2].copy()
|
trH3_filt = hdat[2].copy()
|
||||||
trH1_filt.filter('bandpass', freqmin=bph1[0], freqmax=bph1[1], zerophase=False)
|
trH1_filt.filter('bandpass', freqmin=bph1[0], freqmax=bph1[1],
|
||||||
trH2_filt.filter('bandpass', freqmin=bph1[0], freqmax=bph1[1], zerophase=False)
|
zerophase=False)
|
||||||
trH3_filt.filter('bandpass', freqmin=bph1[0], freqmax=bph1[1], zerophase=False)
|
trH2_filt.filter('bandpass', freqmin=bph1[0], freqmax=bph1[1],
|
||||||
|
zerophase=False)
|
||||||
|
trH3_filt.filter('bandpass', freqmin=bph1[0], freqmax=bph1[1],
|
||||||
|
zerophase=False)
|
||||||
trH1_filt.taper(max_percentage=0.05, type='hann')
|
trH1_filt.taper(max_percentage=0.05, type='hann')
|
||||||
trH2_filt.taper(max_percentage=0.05, type='hann')
|
trH2_filt.taper(max_percentage=0.05, type='hann')
|
||||||
trH3_filt.taper(max_percentage=0.05, type='hann')
|
trH3_filt.taper(max_percentage=0.05, type='hann')
|
||||||
@ -250,210 +273,289 @@ def run_autopicking(wfstream, pickparam):
|
|||||||
h_copy[2].data = trH3_filt.data
|
h_copy[2].data = trH3_filt.data
|
||||||
##############################################################
|
##############################################################
|
||||||
if algoS == 'ARH':
|
if algoS == 'ARH':
|
||||||
#calculate ARH-CF using subclass ARHcf of class CharcteristicFunction
|
# calculate ARH-CF using subclass ARHcf of class
|
||||||
arhcf1 = ARHcf(h_copy, cuttimesh, tpred1h, Sarorder, tdet1h, addnoise) #instance of ARHcf
|
# CharcteristicFunction
|
||||||
|
arhcf1 = ARHcf(h_copy, cuttimesh, tpred1h, Sarorder, tdet1h,
|
||||||
|
addnoise) # instance of ARHcf
|
||||||
elif algoS == 'AR3':
|
elif algoS == 'AR3':
|
||||||
#calculate ARH-CF using subclass AR3cf of class CharcteristicFunction
|
# calculate ARH-CF using subclass AR3cf of class
|
||||||
arhcf1 = AR3Ccf(h_copy, cuttimesh, tpred1h, Sarorder, tdet1h, addnoise) #instance of ARHcf
|
# CharcteristicFunction
|
||||||
|
arhcf1 = AR3Ccf(h_copy, cuttimesh, tpred1h, Sarorder, tdet1h,
|
||||||
|
addnoise) # instance of ARHcf
|
||||||
##############################################################
|
##############################################################
|
||||||
#calculate AIC-ARH-CF using subclass AICcf of class CharacteristicFunction
|
# calculate AIC-ARH-CF using subclass AICcf of class
|
||||||
#class needs stream object => build it
|
# CharacteristicFunction
|
||||||
|
# class needs stream object => build it
|
||||||
tr_arhaic = trH1_filt.copy()
|
tr_arhaic = trH1_filt.copy()
|
||||||
tr_arhaic.data = arhcf1.getCF()
|
tr_arhaic.data = arhcf1.getCF()
|
||||||
h_copy[0].data = tr_arhaic.data
|
h_copy[0].data = tr_arhaic.data
|
||||||
#calculate ARH-AIC-CF
|
# calculate ARH-AIC-CF
|
||||||
haiccf = AICcf(h_copy, cuttimesh) #instance of AICcf
|
haiccf = AICcf(h_copy, cuttimesh) # instance of AICcf
|
||||||
##############################################################
|
##############################################################
|
||||||
#get prelimenary onset time from AIC-HOS-CF using subclass AICPicker of class AutoPicking
|
# get prelimenary onset time from AIC-HOS-CF using subclass AICPicker
|
||||||
aicarhpick = AICPicker(haiccf, tsnrh, pickwinS, iplot, None, aictsmoothS)
|
# of class AutoPicking
|
||||||
|
aicarhpick = AICPicker(haiccf, tsnrh, pickwinS, iplot, None,
|
||||||
|
aictsmoothS)
|
||||||
###############################################################
|
###############################################################
|
||||||
#go on with processing if AIC onset passes quality control
|
# go on with processing if AIC onset passes quality control
|
||||||
if aicarhpick.getSlope() >= minAICSslope and aicarhpick.getSNR() >= minAICSSNR:
|
if (aicarhpick.getSlope() >= minAICSslope and
|
||||||
aicSflag = 1
|
aicarhpick.getSNR() >= minAICSSNR):
|
||||||
print 'AIC S-pick passes quality control: Slope: %f, SNR: %f' \
|
aicSflag = 1
|
||||||
% (aicarhpick.getSlope(), aicarhpick.getSNR())
|
print 'AIC S-pick passes quality control: Slope: %f, SNR: %f' \
|
||||||
print 'Go on with refined picking ...'
|
% (aicarhpick.getSlope(), aicarhpick.getSNR())
|
||||||
#re-calculate CF from re-filtered trace in vicinity of initial onset
|
print 'Go on with refined picking ...'
|
||||||
cuttimesh2 = [round(aicarhpick.getpick() - Srecalcwin), \
|
# re-calculate CF from re-filtered trace in vicinity of initial
|
||||||
round(aicarhpick.getpick() + Srecalcwin)]
|
# onset
|
||||||
#re-filter waveform with larger bandpass
|
cuttimesh2 = [round(aicarhpick.getpick() - Srecalcwin),
|
||||||
print 'run_autopicking: re-filtering horizontal traces...'
|
round(aicarhpick.getpick() + Srecalcwin)]
|
||||||
h_copy = hdat.copy()
|
# re-filter waveform with larger bandpass
|
||||||
#filter and taper data
|
print 'run_autopicking: re-filtering horizontal traces...'
|
||||||
if algoS == 'ARH':
|
h_copy = hdat.copy()
|
||||||
trH1_filt = hdat[0].copy()
|
# filter and taper data
|
||||||
trH2_filt = hdat[1].copy()
|
if algoS == 'ARH':
|
||||||
trH1_filt.filter('bandpass', freqmin=bph2[0], freqmax=bph2[1], zerophase=False)
|
trH1_filt = hdat[0].copy()
|
||||||
trH2_filt.filter('bandpass', freqmin=bph2[0], freqmax=bph2[1], zerophase=False)
|
trH2_filt = hdat[1].copy()
|
||||||
trH1_filt.taper(max_percentage=0.05, type='hann')
|
trH1_filt.filter('bandpass', freqmin=bph2[0], freqmax=bph2[1],
|
||||||
trH2_filt.taper(max_percentage=0.05, type='hann')
|
zerophase=False)
|
||||||
h_copy[0].data = trH1_filt.data
|
trH2_filt.filter('bandpass', freqmin=bph2[0], freqmax=bph2[1],
|
||||||
h_copy[1].data = trH2_filt.data
|
zerophase=False)
|
||||||
#############################################################
|
trH1_filt.taper(max_percentage=0.05, type='hann')
|
||||||
arhcf2 = ARHcf(h_copy, cuttimesh2, tpred2h, Sarorder, tdet2h, addnoise) #instance of ARHcf
|
trH2_filt.taper(max_percentage=0.05, type='hann')
|
||||||
elif algoS == 'AR3':
|
h_copy[0].data = trH1_filt.data
|
||||||
trH1_filt = hdat[0].copy()
|
h_copy[1].data = trH2_filt.data
|
||||||
trH2_filt = hdat[1].copy()
|
#############################################################
|
||||||
trH3_filt = hdat[2].copy()
|
arhcf2 = ARHcf(h_copy, cuttimesh2, tpred2h, Sarorder, tdet2h,
|
||||||
trH1_filt.filter('bandpass', freqmin=bph2[0], freqmax=bph2[1], zerophase=False)
|
addnoise) # instance of ARHcf
|
||||||
trH2_filt.filter('bandpass', freqmin=bph2[0], freqmax=bph2[1], zerophase=False)
|
elif algoS == 'AR3':
|
||||||
trH3_filt.filter('bandpass', freqmin=bph2[0], freqmax=bph2[1], zerophase=False)
|
trH1_filt = hdat[0].copy()
|
||||||
trH1_filt.taper(max_percentage=0.05, type='hann')
|
trH2_filt = hdat[1].copy()
|
||||||
trH2_filt.taper(max_percentage=0.05, type='hann')
|
trH3_filt = hdat[2].copy()
|
||||||
trH3_filt.taper(max_percentage=0.05, type='hann')
|
trH1_filt.filter('bandpass', freqmin=bph2[0], freqmax=bph2[1],
|
||||||
h_copy[0].data = trH1_filt.data
|
zerophase=False)
|
||||||
h_copy[1].data = trH2_filt.data
|
trH2_filt.filter('bandpass', freqmin=bph2[0], freqmax=bph2[1],
|
||||||
h_copy[2].data = trH3_filt.data
|
zerophase=False)
|
||||||
#############################################################
|
trH3_filt.filter('bandpass', freqmin=bph2[0], freqmax=bph2[1],
|
||||||
arhcf2 = AR3Ccf(h_copy, cuttimesh2, tpred2h, Sarorder, tdet2h, addnoise) #instance of ARHcf
|
zerophase=False)
|
||||||
|
trH1_filt.taper(max_percentage=0.05, type='hann')
|
||||||
|
trH2_filt.taper(max_percentage=0.05, type='hann')
|
||||||
|
trH3_filt.taper(max_percentage=0.05, type='hann')
|
||||||
|
h_copy[0].data = trH1_filt.data
|
||||||
|
h_copy[1].data = trH2_filt.data
|
||||||
|
h_copy[2].data = trH3_filt.data
|
||||||
|
#############################################################
|
||||||
|
arhcf2 = AR3Ccf(h_copy, cuttimesh2, tpred2h, Sarorder, tdet2h,
|
||||||
|
addnoise) # instance of ARHcf
|
||||||
|
|
||||||
#get refined onset time from CF2 using class Picker
|
# get refined onset time from CF2 using class Picker
|
||||||
refSpick = PragPicker(arhcf2, tsnrh, pickwinS, iplot, ausS, tsmoothS, aicarhpick.getpick())
|
refSpick = PragPicker(arhcf2, tsnrh, pickwinS, iplot, ausS,
|
||||||
#############################################################
|
tsmoothS, aicarhpick.getpick())
|
||||||
#quality assessment
|
#############################################################
|
||||||
#get earliest and latest possible pick and symmetrized uncertainty
|
# quality assessment
|
||||||
h_copy[0].data = trH1_filt.data
|
# get earliest and latest possible pick and symmetrized uncertainty
|
||||||
[lpickS1, epickS1, Serror1] = earllatepicker(h_copy, nfacS, tsnrh, refSpick.getpick(), iplot)
|
h_copy[0].data = trH1_filt.data
|
||||||
h_copy[0].data = trH2_filt.data
|
[lpickS1, epickS1, Serror1] = earllatepicker(h_copy, nfacS, tsnrh,
|
||||||
[lpickS2, epickS2, Serror2] = earllatepicker(h_copy, nfacS, tsnrh, refSpick.getpick(), iplot)
|
refSpick.getpick(),
|
||||||
if algoS == 'ARH':
|
iplot)
|
||||||
#get earliest pick of both earliest possible picks
|
h_copy[0].data = trH2_filt.data
|
||||||
epick = [epickS1, epickS2]
|
[lpickS2, epickS2, Serror2] = earllatepicker(h_copy, nfacS, tsnrh,
|
||||||
lpick = [lpickS1, lpickS2]
|
refSpick.getpick(),
|
||||||
pickerr = [Serror1, Serror2]
|
iplot)
|
||||||
ipick =np.argmin([epickS1, epickS2])
|
if algoS == 'ARH':
|
||||||
elif algoS == 'AR3':
|
# get earliest pick of both earliest possible picks
|
||||||
[lpickS3, epickS3, Serror3] = earllatepicker(h_copy, nfacS, tsnrh, refSpick.getpick(), iplot)
|
epick = [epickS1, epickS2]
|
||||||
#get earliest pick of all three picks
|
lpick = [lpickS1, lpickS2]
|
||||||
epick = [epickS1, epickS2, epickS3]
|
pickerr = [Serror1, Serror2]
|
||||||
lpick = [lpickS1, lpickS2, lpickS3]
|
ipick = np.argmin([epickS1, epickS2])
|
||||||
pickerr = [Serror1, Serror2, Serror3]
|
elif algoS == 'AR3':
|
||||||
ipick =np.argmin([epickS1, epickS2, epickS3])
|
[lpickS3, epickS3, Serror3] = earllatepicker(h_copy, nfacS,
|
||||||
epickS = epick[ipick]
|
tsnrh,
|
||||||
lpickS = lpick[ipick]
|
refSpick.getpick(),
|
||||||
Serror = pickerr[ipick]
|
iplot)
|
||||||
|
# get earliest pick of all three picks
|
||||||
|
epick = [epickS1, epickS2, epickS3]
|
||||||
|
lpick = [lpickS1, lpickS2, lpickS3]
|
||||||
|
pickerr = [Serror1, Serror2, Serror3]
|
||||||
|
ipick = np.argmin([epickS1, epickS2, epickS3])
|
||||||
|
epickS = epick[ipick]
|
||||||
|
lpickS = lpick[ipick]
|
||||||
|
Serror = pickerr[ipick]
|
||||||
|
|
||||||
#get SNR
|
# get SNR
|
||||||
[SNRS, SNRSdB, Snoiselevel] = getSNR(h_copy, tsnrh, refSpick.getpick())
|
[SNRS, SNRSdB, Snoiselevel] = getSNR(h_copy, tsnrh,
|
||||||
|
refSpick.getpick())
|
||||||
|
|
||||||
#weight S-onset using symmetric error
|
# weight S-onset using symmetric error
|
||||||
if Serror <= timeerrorsS[0]:
|
if Serror <= timeerrorsS[0]:
|
||||||
Sweight = 0
|
Sweight = 0
|
||||||
elif Serror > timeerrorsS[0] and Serror <= timeerrorsS[1]:
|
elif timeerrorsS[0] < Serror <= timeerrorsS[1]:
|
||||||
Sweight = 1
|
Sweight = 1
|
||||||
elif Perror > timeerrorsS[1] and Serror <= timeerrorsS[2]:
|
elif Perror > timeerrorsS[1] and Serror <= timeerrorsS[2]:
|
||||||
Sweight = 2
|
Sweight = 2
|
||||||
elif Serror > timeerrorsS[2] and Serror <= timeerrorsS[3]:
|
elif timeerrorsS[2] < Serror <= timeerrorsS[3]:
|
||||||
Sweight = 3
|
Sweight = 3
|
||||||
elif Serror > timeerrorsS[3]:
|
elif Serror > timeerrorsS[3]:
|
||||||
Sweight = 4
|
Sweight = 4
|
||||||
|
|
||||||
print 'run_autopicking: S-weight: %d, SNR: %f, SNR[dB]: %f' % (Sweight, SNRS, SNRSdB)
|
print 'run_autopicking: S-weight: %d, SNR: %f, SNR[dB]: %f' % (
|
||||||
|
Sweight, SNRS, SNRSdB)
|
||||||
|
|
||||||
else:
|
else:
|
||||||
print 'Bad initial (AIC) S-pick, skip this onset!'
|
print 'Bad initial (AIC) S-pick, skip this onset!'
|
||||||
print 'AIC-SNR=', aicarhpick.getSNR(), 'AIC-Slope=', aicarhpick.getSlope()
|
print 'AIC-SNR=', aicarhpick.getSNR(), \
|
||||||
Sweight = 4
|
'AIC-Slope=', aicarhpick.getSlope()
|
||||||
SNRS = None
|
Sweight = 4
|
||||||
SNRSdB = None
|
SNRS = None
|
||||||
aicSflag = 0
|
SNRSdB = None
|
||||||
|
aicSflag = 0
|
||||||
|
|
||||||
else:
|
else:
|
||||||
print 'run_autopicking: No horizontal component data available or bad P onset, skipping S picking!'
|
print 'run_autopicking: No horizontal component data available or ' \
|
||||||
return
|
'bad P onset, skipping S picking!'
|
||||||
|
return
|
||||||
|
|
||||||
##############################################################
|
##############################################################
|
||||||
if iplot > 0:
|
if iplot > 0:
|
||||||
#plot vertical trace
|
# plot vertical trace
|
||||||
plt.figure()
|
plt.figure()
|
||||||
plt.subplot(3,1,1)
|
plt.subplot(3, 1, 1)
|
||||||
tdata = np.arange(0, zdat[0].stats.npts / tr_filt.stats.sampling_rate, tr_filt.stats.delta)
|
tdata = np.arange(0, zdat[0].stats.npts / tr_filt.stats.sampling_rate,
|
||||||
#check equal length of arrays, sometimes they are different!?
|
tr_filt.stats.delta)
|
||||||
wfldiff = len(tr_filt.data) - len(tdata)
|
# check equal length of arrays, sometimes they are different!?
|
||||||
if wfldiff < 0:
|
wfldiff = len(tr_filt.data) - len(tdata)
|
||||||
tdata = tdata[0:len(tdata) - abs(wfldiff)]
|
if wfldiff < 0:
|
||||||
p1, = plt.plot(tdata, tr_filt.data/max(tr_filt.data), 'k')
|
tdata = tdata[0:len(tdata) - abs(wfldiff)]
|
||||||
if Pweight < 4:
|
p1, = plt.plot(tdata, tr_filt.data / max(tr_filt.data), 'k')
|
||||||
p2, = plt.plot(cf1.getTimeArray(), cf1.getCF() / max(cf1.getCF()), 'b')
|
if Pweight < 4:
|
||||||
if aicPflag == 1:
|
p2, = plt.plot(cf1.getTimeArray(), cf1.getCF() / max(cf1.getCF()),
|
||||||
p3, = plt.plot(cf2.getTimeArray(), cf2.getCF() / max(cf2.getCF()), 'm')
|
'b')
|
||||||
p4, = plt.plot([aicpick.getpick(), aicpick.getpick()], [-1, 1], 'r')
|
if aicPflag == 1:
|
||||||
plt.plot([aicpick.getpick()-0.5, aicpick.getpick()+0.5], [1, 1], 'r')
|
p3, = plt.plot(cf2.getTimeArray(),
|
||||||
plt.plot([aicpick.getpick()-0.5, aicpick.getpick()+0.5], [-1, -1], 'r')
|
cf2.getCF() / max(cf2.getCF()), 'm')
|
||||||
p5, = plt.plot([refPpick.getpick(), refPpick.getpick()], [-1.3, 1.3], 'r', linewidth=2)
|
p4, = plt.plot([aicpick.getpick(), aicpick.getpick()], [-1, 1],
|
||||||
plt.plot([refPpick.getpick()-0.5, refPpick.getpick()+0.5], [1.3, 1.3], 'r', linewidth=2)
|
'r')
|
||||||
plt.plot([refPpick.getpick()-0.5, refPpick.getpick()+0.5], [-1.3, -1.3], 'r', linewidth=2)
|
plt.plot([aicpick.getpick() - 0.5, aicpick.getpick() + 0.5],
|
||||||
plt.plot([lpickP, lpickP], [-1.1, 1.1], 'r--')
|
[1, 1], 'r')
|
||||||
plt.plot([epickP, epickP], [-1.1, 1.1], 'r--')
|
plt.plot([aicpick.getpick() - 0.5, aicpick.getpick() + 0.5],
|
||||||
plt.legend([p1, p2, p3, p4, p5], ['Data', 'CF1', 'CF2', 'Initial P Onset', 'Final P Pick'])
|
[-1, -1], 'r')
|
||||||
plt.title('%s, %s, P Weight=%d, SNR=%7.2f, SNR[dB]=%7.2f Polarity: %s' % (tr_filt.stats.station, \
|
p5, = plt.plot([refPpick.getpick(), refPpick.getpick()],
|
||||||
tr_filt.stats.channel, Pweight, SNRP, SNRPdB, FM))
|
[-1.3, 1.3], 'r', linewidth=2)
|
||||||
else:
|
plt.plot([refPpick.getpick() - 0.5, refPpick.getpick() + 0.5],
|
||||||
plt.legend([p1, p2], ['Data', 'CF1'])
|
[1.3, 1.3], 'r', linewidth=2)
|
||||||
plt.title('%s, P Weight=%d, SNR=None, SNRdB=None' % (tr_filt.stats.channel, Pweight))
|
plt.plot([refPpick.getpick() - 0.5, refPpick.getpick() + 0.5],
|
||||||
plt.yticks([])
|
[-1.3, -1.3], 'r', linewidth=2)
|
||||||
plt.ylim([-1.5, 1.5])
|
plt.plot([lpickP, lpickP], [-1.1, 1.1], 'r--')
|
||||||
plt.ylabel('Normalized Counts')
|
plt.plot([epickP, epickP], [-1.1, 1.1], 'r--')
|
||||||
plt.suptitle(tr_filt.stats.starttime)
|
plt.legend([p1, p2, p3, p4, p5],
|
||||||
|
['Data', 'CF1', 'CF2', 'Initial P Onset',
|
||||||
|
'Final P Pick'])
|
||||||
|
plt.title('%s, %s, P Weight=%d, SNR=%7.2f, SNR[dB]=%7.2f '
|
||||||
|
'Polarity: %s' % (tr_filt.stats.station,
|
||||||
|
tr_filt.stats.channel,
|
||||||
|
Pweight,
|
||||||
|
SNRP,
|
||||||
|
SNRPdB,
|
||||||
|
FM))
|
||||||
|
else:
|
||||||
|
plt.legend([p1, p2], ['Data', 'CF1'])
|
||||||
|
plt.title('%s, P Weight=%d, SNR=None, '
|
||||||
|
'SNRdB=None' % (tr_filt.stats.channel, Pweight))
|
||||||
|
plt.yticks([])
|
||||||
|
plt.ylim([-1.5, 1.5])
|
||||||
|
plt.ylabel('Normalized Counts')
|
||||||
|
plt.suptitle(tr_filt.stats.starttime)
|
||||||
|
|
||||||
#plot horizontal traces
|
# plot horizontal traces
|
||||||
plt.subplot(3,1,2)
|
plt.subplot(3, 1, 2)
|
||||||
th1data = np.arange(0, trH1_filt.stats.npts / trH1_filt.stats.sampling_rate, trH1_filt.stats.delta)
|
th1data = np.arange(0,
|
||||||
#check equal length of arrays, sometimes they are different!?
|
trH1_filt.stats.npts /
|
||||||
wfldiff = len(trH1_filt.data) - len(th1data)
|
trH1_filt.stats.sampling_rate,
|
||||||
if wfldiff < 0:
|
trH1_filt.stats.delta)
|
||||||
th1data = th1data[0:len(th1data) - abs(wfldiff)]
|
# check equal length of arrays, sometimes they are different!?
|
||||||
p21, = plt.plot(th1data, trH1_filt.data/max(trH1_filt.data), 'k')
|
wfldiff = len(trH1_filt.data) - len(th1data)
|
||||||
if Pweight < 4:
|
if wfldiff < 0:
|
||||||
p22, = plt.plot(arhcf1.getTimeArray(), arhcf1.getCF()/max(arhcf1.getCF()), 'b')
|
th1data = th1data[0:len(th1data) - abs(wfldiff)]
|
||||||
if aicSflag == 1:
|
p21, = plt.plot(th1data, trH1_filt.data / max(trH1_filt.data), 'k')
|
||||||
p23, = plt.plot(arhcf2.getTimeArray(), arhcf2.getCF()/max(arhcf2.getCF()), 'm')
|
if Pweight < 4:
|
||||||
p24, = plt.plot([aicarhpick.getpick(), aicarhpick.getpick()], [-1, 1], 'g')
|
p22, = plt.plot(arhcf1.getTimeArray(),
|
||||||
plt.plot([aicarhpick.getpick() - 0.5, aicarhpick.getpick() + 0.5], [1, 1], 'g')
|
arhcf1.getCF() / max(arhcf1.getCF()), 'b')
|
||||||
plt.plot([aicarhpick.getpick() - 0.5, aicarhpick.getpick() + 0.5], [-1, -1], 'g')
|
if aicSflag == 1:
|
||||||
p25, = plt.plot([refSpick.getpick(), refSpick.getpick()], [-1.3, 1.3], 'g', linewidth=2)
|
p23, = plt.plot(arhcf2.getTimeArray(),
|
||||||
plt.plot([refSpick.getpick() - 0.5, refSpick.getpick() + 0.5], [1.3, 1.3], 'g', linewidth=2)
|
arhcf2.getCF() / max(arhcf2.getCF()), 'm')
|
||||||
plt.plot([refSpick.getpick() - 0.5, refSpick.getpick() + 0.5], [-1.3, -1.3], 'g', linewidth=2)
|
p24, = plt.plot([aicarhpick.getpick(), aicarhpick.getpick()],
|
||||||
plt.plot([lpickS, lpickS], [-1.1, 1.1], 'g--')
|
[-1, 1], 'g')
|
||||||
plt.plot([epickS, epickS], [-1.1, 1.1], 'g--')
|
plt.plot(
|
||||||
plt.legend([p21, p22, p23, p24, p25], ['Data', 'CF1', 'CF2', 'Initial S Onset', 'Final S Pick'])
|
[aicarhpick.getpick() - 0.5, aicarhpick.getpick() + 0.5],
|
||||||
plt.title('%s, S Weight=%d, SNR=%7.2f, SNR[dB]=%7.2f' % (trH1_filt.stats.channel, \
|
[1, 1], 'g')
|
||||||
Sweight, SNRS, SNRSdB))
|
plt.plot(
|
||||||
else:
|
[aicarhpick.getpick() - 0.5, aicarhpick.getpick() + 0.5],
|
||||||
plt.legend([p21, p22], ['Data', 'CF1'])
|
[-1, -1], 'g')
|
||||||
plt.title('%s, S Weight=%d, SNR=None, SNRdB=None' % (trH1_filt.stats.channel, Sweight))
|
p25, = plt.plot([refSpick.getpick(), refSpick.getpick()],
|
||||||
plt.yticks([])
|
[-1.3, 1.3], 'g', linewidth=2)
|
||||||
plt.ylim([-1.5, 1.5])
|
plt.plot([refSpick.getpick() - 0.5, refSpick.getpick() + 0.5],
|
||||||
plt.ylabel('Normalized Counts')
|
[1.3, 1.3], 'g', linewidth=2)
|
||||||
plt.suptitle(trH1_filt.stats.starttime)
|
plt.plot([refSpick.getpick() - 0.5, refSpick.getpick() + 0.5],
|
||||||
|
[-1.3, -1.3], 'g', linewidth=2)
|
||||||
|
plt.plot([lpickS, lpickS], [-1.1, 1.1], 'g--')
|
||||||
|
plt.plot([epickS, epickS], [-1.1, 1.1], 'g--')
|
||||||
|
plt.legend([p21, p22, p23, p24, p25],
|
||||||
|
['Data', 'CF1', 'CF2', 'Initial S Onset',
|
||||||
|
'Final S Pick'])
|
||||||
|
plt.title('%s, S Weight=%d, SNR=%7.2f, SNR[dB]=%7.2f' % (
|
||||||
|
trH1_filt.stats.channel,
|
||||||
|
Sweight, SNRS, SNRSdB))
|
||||||
|
else:
|
||||||
|
plt.legend([p21, p22], ['Data', 'CF1'])
|
||||||
|
plt.title('%s, S Weight=%d, SNR=None, SNRdB=None' % (
|
||||||
|
trH1_filt.stats.channel, Sweight))
|
||||||
|
plt.yticks([])
|
||||||
|
plt.ylim([-1.5, 1.5])
|
||||||
|
plt.ylabel('Normalized Counts')
|
||||||
|
plt.suptitle(trH1_filt.stats.starttime)
|
||||||
|
|
||||||
plt.subplot(3,1,3)
|
plt.subplot(3, 1, 3)
|
||||||
th2data = np.arange(0, trH2_filt.stats.npts / trH2_filt.stats.sampling_rate, trH2_filt.stats.delta)
|
th2data = np.arange(0,
|
||||||
#check equal length of arrays, sometimes they are different!?
|
trH2_filt.stats.npts /
|
||||||
wfldiff = len(trH2_filt.data) - len(th2data)
|
trH2_filt.stats.sampling_rate,
|
||||||
if wfldiff < 0:
|
trH2_filt.stats.delta)
|
||||||
th2data = th2data[0:len(th2data) - abs(wfldiff)]
|
# check equal length of arrays, sometimes they are different!?
|
||||||
plt.plot(th2data, trH2_filt.data/max(trH2_filt.data), 'k')
|
wfldiff = len(trH2_filt.data) - len(th2data)
|
||||||
if Pweight < 4:
|
if wfldiff < 0:
|
||||||
p22, = plt.plot(arhcf1.getTimeArray(), arhcf1.getCF()/max(arhcf1.getCF()), 'b')
|
th2data = th2data[0:len(th2data) - abs(wfldiff)]
|
||||||
if aicSflag == 1:
|
plt.plot(th2data, trH2_filt.data / max(trH2_filt.data), 'k')
|
||||||
p23, = plt.plot(arhcf2.getTimeArray(), arhcf2.getCF()/max(arhcf2.getCF()), 'm')
|
if Pweight < 4:
|
||||||
p24, = plt.plot([aicarhpick.getpick(), aicarhpick.getpick()], [-1, 1], 'g')
|
p22, = plt.plot(arhcf1.getTimeArray(),
|
||||||
plt.plot([aicarhpick.getpick() - 0.5, aicarhpick.getpick() + 0.5], [1, 1], 'g')
|
arhcf1.getCF() / max(arhcf1.getCF()), 'b')
|
||||||
plt.plot([aicarhpick.getpick() - 0.5, aicarhpick.getpick() + 0.5], [-1, -1], 'g')
|
if aicSflag == 1:
|
||||||
p25, = plt.plot([refSpick.getpick(), refSpick.getpick()], [-1.3, 1.3], 'g', linewidth=2)
|
p23, = plt.plot(arhcf2.getTimeArray(),
|
||||||
plt.plot([refSpick.getpick() - 0.5, refSpick.getpick() + 0.5], [1.3, 1.3], 'g', linewidth=2)
|
arhcf2.getCF() / max(arhcf2.getCF()), 'm')
|
||||||
plt.plot([refSpick.getpick() - 0.5, refSpick.getpick() + 0.5], [-1.3, -1.3], 'g', linewidth=2)
|
p24, = plt.plot([aicarhpick.getpick(), aicarhpick.getpick()],
|
||||||
plt.plot([lpickS, lpickS], [-1.1, 1.1], 'g--')
|
[-1, 1], 'g')
|
||||||
plt.plot([epickS, epickS], [-1.1, 1.1], 'g--')
|
plt.plot(
|
||||||
plt.legend([p21, p22, p23, p24, p25], ['Data', 'CF1', 'CF2', 'Initial S Onset', 'Final S Pick'])
|
[aicarhpick.getpick() - 0.5, aicarhpick.getpick() + 0.5],
|
||||||
else:
|
[1, 1], 'g')
|
||||||
plt.legend([p21, p22], ['Data', 'CF1'])
|
plt.plot(
|
||||||
plt.yticks([])
|
[aicarhpick.getpick() - 0.5, aicarhpick.getpick() + 0.5],
|
||||||
plt.ylim([-1.5, 1.5])
|
[-1, -1], 'g')
|
||||||
plt.xlabel('Time [s] after %s' % tr_filt.stats.starttime)
|
p25, = plt.plot([refSpick.getpick(), refSpick.getpick()],
|
||||||
plt.ylabel('Normalized Counts')
|
[-1.3, 1.3], 'g', linewidth=2)
|
||||||
plt.title(trH2_filt.stats.channel)
|
plt.plot([refSpick.getpick() - 0.5, refSpick.getpick() + 0.5],
|
||||||
plt.show()
|
[1.3, 1.3], 'g', linewidth=2)
|
||||||
raw_input()
|
plt.plot([refSpick.getpick() - 0.5, refSpick.getpick() + 0.5],
|
||||||
plt.close()
|
[-1.3, -1.3], 'g', linewidth=2)
|
||||||
|
plt.plot([lpickS, lpickS], [-1.1, 1.1], 'g--')
|
||||||
|
plt.plot([epickS, epickS], [-1.1, 1.1], 'g--')
|
||||||
|
plt.legend([p21, p22, p23, p24, p25],
|
||||||
|
['Data', 'CF1', 'CF2', 'Initial S Onset',
|
||||||
|
'Final S Pick'])
|
||||||
|
else:
|
||||||
|
plt.legend([p21, p22], ['Data', 'CF1'])
|
||||||
|
plt.yticks([])
|
||||||
|
plt.ylim([-1.5, 1.5])
|
||||||
|
plt.xlabel('Time [s] after %s' % tr_filt.stats.starttime)
|
||||||
|
plt.ylabel('Normalized Counts')
|
||||||
|
plt.title(trH2_filt.stats.channel)
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
|
||||||
|
raw_input()
|
||||||
|
plt.close()
|
||||||
|
Loading…
Reference in New Issue
Block a user