release version 0.2

release notes:
==============
Features:
- centralize all functionalities of PyLoT and control them from within the main GUI
- handling multiple events inside GUI with project files (save and load work progress)
- GUI based adjustments of pick parameters and I/O
- interactive tuning of parameters from within the GUI
- call automatic picking algorithm from within the GUI
- comparison of automatic with manual picks for multiple events using clear differentiation of manual picks into 'tune' and 'test-set' (beta)
- manual picking of different (user defined) phase types
- phase onset estimation with ObsPy TauPy

- interactive zoom/scale functionalities in all plots (mousewheel, pan, pan-zoom)
- array map to visualize stations and control onsets (beta feature, switch to manual picks not implemented)

Platform support:
- python 3 support
- Windows support

Performance:
- multiprocessing for automatic picking and restitution of multiple stations
- use pyqtgraph library for better performance on main waveform plot

Visualization:
- pick uncertainty (quality classes) visualization with gradients
- pick color unification for all plots
- new icons and stylesheets

Known Issues:
This commit is contained in:
Marcel Paffrath 2017-09-25 12:19:47 +02:00
parent 503ea419c4
commit 8aaad643ec
124 changed files with 221801 additions and 4217 deletions

3287
PyLoT.py Normal file

File diff suppressed because it is too large Load Diff

1177
QtPyLoT.py

File diff suppressed because it is too large Load Diff

View File

@ -1,6 +1,6 @@
# PyLoT # PyLoT
version: 0.1a version: 0.2
The Python picking and Localisation Tool The Python picking and Localisation Tool
@ -14,79 +14,97 @@ to redevelop the software package in Python. The great work of the ObsPy
group allows easy handling of a bunch of seismic data and PyLoT will group allows easy handling of a bunch of seismic data and PyLoT will
benefit a lot compared to the former MatLab version. benefit a lot compared to the former MatLab version.
The development of PyLoT is part of the joint research project MAGS2. The development of PyLoT is part of the joint research project MAGS2 and AlpArray.
## Installation ## Installation
At the moment there is no automatic installation procedure available for PyLoT. At the moment there is no automatic installation procedure available for PyLoT.
Best way to install is to clone the repository and add the path to your Python path. Best way to install is to clone the repository and add the path to your Python path.
####prerequisites: #### Prerequisites:
In order to run PyLoT you need to install: In order to run PyLoT you need to install:
- python - python 2 or 3
- scipy - scipy
- numpy - numpy
- matplotlib - matplotlib
- obspy - obspy
- pyside - pyside
####some handwork #### Some handwork:
PyLoT needs a properties folder on your system to work. It should be situated in your home directory: PyLoT needs a properties folder on your system to work. It should be situated in your home directory
(on Windows usually C:/Users/*username*):
mkdir ~/.pylot mkdir ~/.pylot
In the next step you have to copy some files to this directory: In the next step you have to copy some files to this directory:
cp path-to-pylot/inputs/pylot.in ~/.pylot/ *for local distance seismicity*
for local distance seismicity cp path-to-pylot/inputs/pylot_local.in ~/.pylot/pylot.in
cp path-to-pylot/inputs/autoPyLoT_local.in ~/.pylot/autoPyLoT.in *for regional distance seismicity*
for regional distance seismicity cp path-to-pylot/inputs/pylot_regional.in ~/.pylot/pylot.in
cp path-to-pylot/inputs/autoPyLoT_regional.in ~/.pylot/autoPyLoT.in *for global distance seismicity*
and some extra information on filtering, error estimates (just needed for reading old PILOT data) and the Richter magnitude scaling relation cp path-to-pylot/inputs/pylot_global.in ~/.pylot/pylot.in
cp path-to-pylot/inputs/filter.in path-to-pylot/inputs/PILOT_TimeErrors.in path-to-pylot/inputs/richter_scaling.data ~/.pylot/ and some extra information on error estimates (just needed for reading old PILOT data) and the Richter magnitude scaling relation
cp path-to-pylot/inputs/PILOT_TimeErrors.in path-to-pylot/inputs/richter_scaling.data ~/.pylot/
You may need to do some modifications to these files. Especially folder names should be reviewed. You may need to do some modifications to these files. Especially folder names should be reviewed.
PyLoT has been tested on Mac OSX (10.11) and Debian Linux 8. PyLoT has been tested on Mac OSX (10.11), Debian Linux 8 and on Windows 10.
##release notes: ## Release notes
==============
#### Features #### Features:
- consistent manual phase picking through predefined SNR dependant zoom level - centralize all functionalities of PyLoT and control them from within the main GUI
- uniform uncertainty estimation from waveform's properties for automatic and manual picks - handling multiple events inside GUI with project files (save and load work progress)
- pdf representation and comparison of picks taking the uncertainty intrinsically into account - GUI based adjustments of pick parameters and I/O
- Richter and moment magnitude estimation - interactive tuning of parameters from within the GUI
- location determination with external installation of [NonLinLoc](http://alomax.free.fr/nlloc/index.html) - call automatic picking algorithm from within the GUI
- comparison of automatic with manual picks for multiple events using clear differentiation of manual picks into 'tune' and 'test-set' (beta)
- manual picking of different (user defined) phase types
- phase onset estimation with ObsPy TauPy
- interactive zoom/scale functionalities in all plots (mousewheel, pan, pan-zoom)
- array map to visualize stations and control onsets (beta feature, switch to manual picks not implemented)
#### Known issues ##### Platform support:
- Python 3 support
- Windows support
- Magnitude estimation from manual PyLoT takes some time (instrument correction) ##### Performance:
- multiprocessing for automatic picking and restitution of multiple stations
- use pyqtgraph library for better performance on main waveform plot
We hope to solve these with the next release. ##### Visualization:
- pick uncertainty (quality classes) visualization with gradients
- pick color unification for all plots
- new icons and stylesheets
####staff: #### Known Issues:
====== - some Qt related errors might occur at runtime
- filter toggle not working in pickDlg
- PyLoT data structure requires at least three parent directories for waveform data directory
original author(s): L. Kueperkoch, S. Wehling-Benatelli, M. Bischoff (PILOT) ## Staff
developer(s): S. Wehling-Benatelli, L. Kueperkoch, K. Olbert, M. Bischoff, Original author(s): L. Kueperkoch, S. Wehling-Benatelli, M. Bischoff (PILOT)
C. Wollin, M. Rische, M. Paffrath
others: A. Bruestle, T. Meier, W. Friederich Developer(s): S. Wehling-Benatelli, L. Kueperkoch, M. Paffrath, K. Olbert,
M. Bischoff, C. Wollin, M. Rische
Others: A. Bruestle, T. Meier, W. Friederich
[ObsPy]: http://github.com/obspy/obspy/wiki [ObsPy]: http://github.com/obspy/obspy/wiki
October 2016 September 2017

View File

@ -4,61 +4,125 @@
from __future__ import print_function from __future__ import print_function
import argparse import argparse
import datetime
import glob import glob
import os import os
from obspy import read_events import pylot.core.loc.focmec as focmec
import pylot.core.loc.hash as hash
import pylot.core.loc.hsat as hsat import pylot.core.loc.hypo71 as hypo71
import pylot.core.loc.hypodd as hypodd
import pylot.core.loc.hyposat as hyposat
import pylot.core.loc.nll as nll import pylot.core.loc.nll as nll
from pylot.core.analysis.magnitude import MomentMagnitude, RichterMagnitude import pylot.core.loc.velest as velest
from obspy import read_events
from obspy.core.event import ResourceIdentifier
# from PySide.QtGui import QWidget, QInputDialog
from pylot.core.analysis.magnitude import MomentMagnitude, LocalMagnitude
from pylot.core.io.data import Data from pylot.core.io.data import Data
from pylot.core.io.inputs import AutoPickParameter from pylot.core.io.inputs import PylotParameter
from pylot.core.pick.autopick import autopickevent, iteratepicker from pylot.core.pick.autopick import autopickevent, iteratepicker
from pylot.core.util.dataprocessing import restitute_data, read_metadata, \ from pylot.core.util.dataprocessing import restitute_data, read_metadata
remove_underscores from pylot.core.util.defaults import SEPARATOR
from pylot.core.util.event import Event
from pylot.core.util.structure import DATASTRUCTURE from pylot.core.util.structure import DATASTRUCTURE
from pylot.core.util.utils import real_None, remove_underscores, trim_station_components, check4gaps, check4doubled, \
check4rotated
from pylot.core.util.version import get_git_version as _getVersionString from pylot.core.util.version import get_git_version as _getVersionString
__version__ = _getVersionString() __version__ = _getVersionString()
def autoPyLoT(inputfile): def autoPyLoT(input_dict=None, parameter=None, inputfile=None, fnames=None, eventid=None, savepath=None,
savexml=True, station='all', iplot=0, ncores=0):
""" """
Determine phase onsets automatically utilizing the automatic picking Determine phase onsets automatically utilizing the automatic picking
algorithms by Kueperkoch et al. 2010/2012. algorithms by Kueperkoch et al. 2010/2012.
:param inputfile: path to the input file containing all parameter :param inputfile: path to the input file containing all parameter
information for automatic picking (for formatting details, see. information for automatic picking (for formatting details, see.
`~pylot.core.io.inputs.AutoPickParameter` `~pylot.core.io.inputs.PylotParameter`
:type inputfile: str :type inputfile: str
:return: :return:
.. rubric:: Example .. rubric:: Example
""" """
if ncores == 1:
sp_info = 'autoPyLoT is running serial on 1 cores.'
else:
if ncores == 0:
ncores_readable = 'all available'
else:
ncores_readable = ncores
sp_info = 'autoPyLoT is running in parallel on {} cores.'.format(ncores_readable)
splash = '''************************************\n splash = '''************************************\n
*********autoPyLoT starting*********\n *********autoPyLoT starting*********\n
The Python picking and Location Tool\n The Python picking and Location Tool\n
Version {version} 2015\n Version {version} 2017\n
\n \n
Authors:\n Authors:\n
S. Wehling-Benatelli (Ruhr-Universität Bochum)\n L. Kueperkoch (BESTEC GmbH, Landau i. d. Pfalz)\n
L. Küperkoch (BESTEC GmbH, Landau i. d. Pfalz)\n M. Paffrath (Ruhr-Universitaet Bochum)\n
K. Olbert (Christian-Albrechts Universität zu Kiel)\n S. Wehling-Benatelli (Ruhr-Universitaet Bochum)\n
***********************************'''.format(version=_getVersionString())
{sp}
***********************************'''.format(version=_getVersionString(),
sp=sp_info)
print(splash) print(splash)
# reading parameter file
parameter = AutoPickParameter(inputfile) parameter = real_None(parameter)
inputfile = real_None(inputfile)
eventid = real_None(eventid)
data = Data() fig_dict = None
fig_dict_wadatijack = None
locflag = 1
if input_dict and isinstance(input_dict, dict):
if 'parameter' in input_dict:
parameter = input_dict['parameter']
if 'fig_dict' in input_dict:
fig_dict = input_dict['fig_dict']
if 'fig_dict_wadatijack' in input_dict:
fig_dict_wadatijack = input_dict['fig_dict_wadatijack']
if 'station' in input_dict:
station = input_dict['station']
if 'fnames' in input_dict:
fnames = input_dict['fnames']
if 'eventid' in input_dict:
eventid = input_dict['eventid']
if 'iplot' in input_dict:
iplot = input_dict['iplot']
if 'locflag' in input_dict:
locflag = input_dict['locflag']
if 'savexml' in input_dict:
savexml = input_dict['savexml']
if not parameter:
if inputfile:
parameter = PylotParameter(inputfile)
#iplot = parameter['iplot']
else:
infile = os.path.join(os.path.expanduser('~'), '.pylot', 'pylot.in')
print('Using default input file {}'.format(infile))
parameter = PylotParameter(infile)
else:
if not type(parameter) == PylotParameter:
print('Wrong input type for parameter: {}'.format(type(parameter)))
return
if inputfile:
print('Parameters set and input file given. Choose either of both.')
return
evt = None evt = None
# getting information on data structure
# reading parameter file
if parameter.hasParam('datastructure'): if parameter.hasParam('datastructure'):
# getting information on data structure
datastructure = DATASTRUCTURE[parameter.get('datastructure')]() datastructure = DATASTRUCTURE[parameter.get('datastructure')]()
dsfields = {'root': parameter.get('rootpath'), dsfields = {'root': parameter.get('rootpath'),
'dpath': parameter.get('datapath'), 'dpath': parameter.get('datapath'),
@ -66,16 +130,15 @@ def autoPyLoT(inputfile):
exf = ['root', 'dpath', 'dbase'] exf = ['root', 'dpath', 'dbase']
if parameter.hasParam('eventID'): if parameter['eventID'] is not '*' and fnames == 'None':
dsfields['eventID'] = parameter.get('eventID') dsfields['eventID'] = parameter['eventID']
exf.append('eventID') exf.append('eventID')
datastructure.modifyFields(**dsfields) datastructure.modifyFields(**dsfields)
datastructure.setExpandFields(exf) datastructure.setExpandFields(exf)
# check if default location routine NLLoc is available # check if default location routine NLLoc is available
if parameter.hasParam('nllocbin'): if real_None(parameter['nllocbin']) and locflag:
locflag = 1
# get NLLoc-root path # get NLLoc-root path
nllocroot = parameter.get('nllocroot') nllocroot = parameter.get('nllocroot')
# get path to NLLoc executable # get path to NLLoc executable
@ -99,31 +162,122 @@ def autoPyLoT(inputfile):
print("!!No source parameter estimation possible!!") print("!!No source parameter estimation possible!!")
print(" !!! ") print(" !!! ")
if not input_dict:
# started in production mode
datapath = datastructure.expandDataPath() datapath = datastructure.expandDataPath()
if not parameter.hasParam('eventID'): if fnames == 'None' and parameter['eventID'] is '*':
# multiple event processing # multiple event processing
# read each event in database # read each event in database
events = [events for events in glob.glob(os.path.join(datapath, '*')) if os.path.isdir(events)] events = [events for events in glob.glob(os.path.join(datapath, '*')) if os.path.isdir(events)]
else: elif fnames == 'None' and parameter['eventID'] is not '*' and not type(parameter['eventID']) == list:
# single event processing # single event processing
events = glob.glob(os.path.join(datapath, parameter.get('eventID'))) events = glob.glob(os.path.join(datapath, parameter['eventID']))
for event in events: elif fnames == 'None' and type(parameter['eventID']) == list:
data.setWFData(glob.glob(os.path.join(datapath, event, '*'))) # multiple event processing
evID = os.path.split(event)[-1] events = []
print('Working on event %s' % event) for eventID in parameter['eventID']:
print(data) events.append(os.path.join(datapath, eventID))
else:
# autoPyLoT was initialized from GUI
events = []
events.append(eventid)
evID = os.path.split(eventid)[-1]
locflag = 2
else:
# started in tune or interactive mode
datapath = os.path.join(parameter['rootpath'],
parameter['datapath'])
events = []
for eventID in eventid:
events.append(os.path.join(datapath,
parameter['database'],
eventID))
if not events:
print('autoPyLoT: No events given. Return!')
return
# transform system path separator to '/'
for index, eventpath in enumerate(events):
eventpath = eventpath.replace(SEPARATOR, '/')
events[index] = eventpath
allpicks = {}
glocflag = locflag
for eventpath in events:
evID = os.path.split(eventpath)[-1]
fext = '.xml'
filename = os.path.join(eventpath, 'PyLoT_' + evID + fext)
try:
data = Data(evtdata=filename)
data.get_evt_data().path = eventpath
print('Reading event data from filename {}...'.format(filename))
except Exception as e:
print('Could not read event from file {}: {}'.format(filename, e))
data = Data()
pylot_event = Event(eventpath) # event should be path to event directory
data.setEvtData(pylot_event)
if fnames == 'None':
data.setWFData(glob.glob(os.path.join(datapath, eventpath, '*')))
# the following is necessary because within
# multiple event processing no event ID is provided
# in autopylot.in
try:
parameter.get('eventID')
except:
now = datetime.datetime.now()
eventID = '%d%02d%02d%02d%02d' % (now.year,
now.month,
now.day,
now.hour,
now.minute)
parameter.setParam(eventID=eventID)
else:
data.setWFData(fnames)
eventpath = events[0]
# now = datetime.datetime.now()
# evID = '%d%02d%02d%02d%02d' % (now.year,
# now.month,
# now.day,
# now.hour,
# now.minute)
parameter.setParam(eventID=eventid)
wfdat = data.getWFData() # all available streams wfdat = data.getWFData() # all available streams
if not station == 'all':
wfdat = wfdat.select(station=station)
if not wfdat:
print('Could not find station {}. STOP!'.format(station))
return
wfdat = remove_underscores(wfdat) wfdat = remove_underscores(wfdat)
# trim components for each station to avoid problems with different trace starttimes for one station
wfdat = check4gaps(wfdat)
wfdat = check4doubled(wfdat)
wfdat = trim_station_components(wfdat, trim_start=True, trim_end=False)
metadata = read_metadata(parameter.get('invdir')) metadata = read_metadata(parameter.get('invdir'))
corr_dat, rest_flag = restitute_data(wfdat.copy(), *metadata) # rotate stations to ZNE
wfdat = check4rotated(wfdat, metadata)
corr_dat = None
if locflag:
print("Restitute data ...")
corr_dat = restitute_data(wfdat.copy(), *metadata, ncores=ncores)
if not corr_dat and locflag:
locflag = 2
print('Working on event %s. Stations: %s' % (eventpath, station))
print(wfdat)
########################################################## ##########################################################
# !automated picking starts here! # !automated picking starts here!
picks = autopickevent(wfdat, parameter) fdwj = None
if fig_dict_wadatijack:
fdwj = fig_dict_wadatijack[evID]
picks = autopickevent(wfdat, parameter, iplot=iplot, fig_dict=fig_dict,
fig_dict_wadatijack=fdwj,
ncores=ncores, metadata=metadata, origin=data.get_evt_data().origins)
########################################################## ##########################################################
# locating # locating
if locflag == 1: if locflag > 0:
# write phases to NLLoc-phase file # write phases to NLLoc-phase file
nll.export(picks, phasefile) nll.export(picks, phasefile, parameter)
# For locating the event the NLLoc-control file has to be modified! # For locating the event the NLLoc-control file has to be modified!
nllocout = '%s_%s' % (evID, nllocoutpatter) nllocout = '%s_%s' % (evID, nllocoutpatter)
@ -132,7 +286,7 @@ def autoPyLoT(inputfile):
ttpat) ttpat)
# locate the event # locate the event
nll.locate(ctrfile) nll.locate(ctrfile, inputfile)
# !iterative picking if traces remained unpicked or occupied with bad picks! # !iterative picking if traces remained unpicked or occupied with bad picks!
# get theoretical onset times for picks with weights >= 4 # get theoretical onset times for picks with weights >= 4
@ -154,22 +308,38 @@ def autoPyLoT(inputfile):
# get latest NLLoc-location file if several are available # get latest NLLoc-location file if several are available
nllocfile = max(glob.glob(locsearch), key=os.path.getctime) nllocfile = max(glob.glob(locsearch), key=os.path.getctime)
evt = read_events(nllocfile)[0] evt = read_events(nllocfile)[0]
# calculating seismic moment Mo and moment magnitude Mw # calculate seismic moment Mo and moment magnitude Mw
moment_mag = MomentMagnitude(corr_dat, evt, parameter.get('vp'), moment_mag = MomentMagnitude(corr_dat, evt, parameter.get('vp'),
parameter.get('Qp'), parameter.get('Qp'),
parameter.get('rho'), True, 0) parameter.get('rho'), True,
iplot)
# update pick with moment property values (w0, fc, Mo) # update pick with moment property values (w0, fc, Mo)
for station, props in moment_mag.moment_props.items(): for stats, props in moment_mag.moment_props.items():
picks[station]['P'].update(props) picks[stats]['P'].update(props)
evt = moment_mag.updated_event() evt = moment_mag.updated_event()
local_mag = RichterMagnitude(corr_dat, evt, net_mw = moment_mag.net_magnitude()
parameter.get('sstop'), True, 0) print("Network moment magnitude: %4.1f" % net_mw.mag)
for station, amplitude in local_mag.amplitudes.items(): # calculate local (Richter) magntiude
picks[station]['S']['Ao'] = amplitude.generic_amplitude WAscaling = parameter.get('WAscaling')
evt = local_mag.updated_event() magscaling = parameter.get('magscaling')
local_mag = LocalMagnitude(corr_dat, evt,
parameter.get('sstop'),
WAscaling, True, iplot)
for stats, amplitude in local_mag.amplitudes.items():
picks[stats]['S']['Ao'] = amplitude.generic_amplitude
print("Local station magnitudes scaled with:")
print("log(Ao) + %f * log(r) + %f * r + %f" % (WAscaling[0],
WAscaling[1],
WAscaling[2]))
evt = local_mag.updated_event(magscaling)
net_ml = local_mag.net_magnitude(magscaling)
print("Network local magnitude: %4.1f" % net_ml.mag)
print("Network local magnitude scaled with:")
print("%f * Ml + %f" % (magscaling[0], magscaling[1]))
else: else:
print("autoPyLoT: No NLLoc-location file available!") print("autoPyLoT: No NLLoc-location file available!")
print("No source parameter estimation possible!") print("No source parameter estimation possible!")
locflag = 9
else: else:
# get theoretical P-onset times from NLLoc-location file # get theoretical P-onset times from NLLoc-location file
locsearch = '%s/loc/%s.????????.??????.grid?.loc.hyp' % (nllocroot, nllocout) locsearch = '%s/loc/%s.????????.??????.grid?.loc.hyp' % (nllocroot, nllocout)
@ -183,13 +353,19 @@ def autoPyLoT(inputfile):
print("autoPyLoT: Number of maximum iterations reached, stop iterative picking!") print("autoPyLoT: Number of maximum iterations reached, stop iterative picking!")
break break
print("autoPyLoT: Starting with iteration No. %d ..." % nlloccounter) print("autoPyLoT: Starting with iteration No. %d ..." % nlloccounter)
if input_dict:
if 'fig_dict' in input_dict:
fig_dict = input_dict['fig_dict']
picks = iteratepicker(wfdat, nllocfile, picks, badpicks, parameter,
fig_dict=fig_dict)
else:
picks = iteratepicker(wfdat, nllocfile, picks, badpicks, parameter) picks = iteratepicker(wfdat, nllocfile, picks, badpicks, parameter)
# write phases to NLLoc-phase file # write phases to NLLoc-phase file
nll.export(picks, phasefile) nll.export(picks, phasefile, parameter)
# remove actual NLLoc-location file to keep only the last # remove actual NLLoc-location file to keep only the last
os.remove(nllocfile) os.remove(nllocfile)
# locate the event # locate the event
nll.locate(ctrfile) nll.locate(ctrfile, inputfile)
print("autoPyLoT: Iteration No. %d finished." % nlloccounter) print("autoPyLoT: Iteration No. %d finished." % nlloccounter)
# get updated NLLoc-location file # get updated NLLoc-location file
nllocfile = max(glob.glob(locsearch), key=os.path.getctime) nllocfile = max(glob.glob(locsearch), key=os.path.getctime)
@ -198,73 +374,132 @@ def autoPyLoT(inputfile):
for key in picks: for key in picks:
if picks[key]['P']['weight'] >= 4 or picks[key]['S']['weight'] >= 4: if picks[key]['P']['weight'] >= 4 or picks[key]['S']['weight'] >= 4:
badpicks.append([key, picks[key]['P']['mpp']]) badpicks.append([key, picks[key]['P']['mpp']])
print("autoPyLoT: After iteration No. %d: %d bad onsets found ..." % (nlloccounter, \ print("autoPyLoT: After iteration No. %d: %d bad onsets found ..." % (nlloccounter,
len(badpicks))) len(badpicks)))
if len(badpicks) == 0: if len(badpicks) == 0:
print("autoPyLoT: No more bad onsets found, stop iterative picking!") print("autoPyLoT: No more bad onsets found, stop iterative picking!")
nlloccounter = maxnumit nlloccounter = maxnumit
evt = read_events(nllocfile)[0] evt = read_events(nllocfile)[0]
# calculating seismic moment Mo and moment magnitude Mw if locflag < 2:
# calculate seismic moment Mo and moment magnitude Mw
moment_mag = MomentMagnitude(corr_dat, evt, parameter.get('vp'), moment_mag = MomentMagnitude(corr_dat, evt, parameter.get('vp'),
parameter.get('Qp'), parameter.get('Qp'),
parameter.get('rho'), True, 0) parameter.get('rho'), True,
iplot)
# update pick with moment property values (w0, fc, Mo) # update pick with moment property values (w0, fc, Mo)
for station, props in moment_mag.moment_props.items(): for stats, props in moment_mag.moment_props.items():
picks[station]['P'].update(props) if picks.has_key(stats):
picks[stats]['P'].update(props)
evt = moment_mag.updated_event() evt = moment_mag.updated_event()
local_mag = RichterMagnitude(corr_dat, evt,
parameter.get('sstop'), True, 0)
for station, amplitude in local_mag.amplitudes.items():
picks[station]['S']['Ao'] = amplitude.generic_amplitude
evt = local_mag.updated_event()
net_mw = moment_mag.net_magnitude() net_mw = moment_mag.net_magnitude()
print("Network moment magnitude: %4.1f" % net_mw.mag) print("Network moment magnitude: %4.1f" % net_mw.mag)
# calculate local (Richter) magntiude
WAscaling = parameter.get('WAscaling')
magscaling = parameter.get('magscaling')
local_mag = LocalMagnitude(corr_dat, evt,
parameter.get('sstop'),
WAscaling, True, iplot)
for stats, amplitude in local_mag.amplitudes.items():
if picks.has_key(stats):
picks[stats]['S']['Ao'] = amplitude.generic_amplitude
print("Local station magnitudes scaled with:")
print("log(Ao) + %f * log(r) + %f * r + %f" % (WAscaling[0],
WAscaling[1],
WAscaling[2]))
evt = local_mag.updated_event(magscaling)
net_ml = local_mag.net_magnitude(magscaling)
print("Network local magnitude: %4.1f" % net_ml.mag)
print("Network local magnitude scaled with:")
print("%f * Ml + %f" % (magscaling[0], magscaling[1]))
else: else:
print("autoPyLoT: No NLLoc-location file available! Stop iteration!") print("autoPyLoT: No NLLoc-location file available! Stop iteration!")
locflag = 9
########################################################## ##########################################################
# write phase files for various location routines # write phase files for various location
# HYPO71 # and fault mechanism calculation routines
hypo71file = '%s/autoPyLoT_HYPO71.pha' % event # ObsPy event object
hsat.export(picks, hypo71file)
data.applyEVTData(picks)
if evt is not None: if evt is not None:
event_id = eventpath.split('/')[-1]
evt.resource_id = ResourceIdentifier('smi:local/' + event_id)
data.applyEVTData(evt, 'event') data.applyEVTData(evt, 'event')
fnqml = '%s/autoPyLoT' % event data.applyEVTData(picks)
data.exportEvent(fnqml) if savexml:
if savepath == 'None' or savepath == None:
saveEvtPath = eventpath
else:
saveEvtPath = savepath
fnqml = '%s/PyLoT_%s' % (saveEvtPath, evID)
data.exportEvent(fnqml, fnext='.xml', fcheck=['auto', 'magnitude', 'origin'])
if locflag == 1:
# HYPO71
hypo71file = '%s/PyLoT_%s_HYPO71_phases' % (eventpath, evID)
hypo71.export(picks, hypo71file, parameter)
# HYPOSAT
hyposatfile = '%s/PyLoT_%s_HYPOSAT_phases' % (eventpath, evID)
hyposat.export(picks, hyposatfile, parameter)
# VELEST
velestfile = '%s/PyLoT_%s_VELEST_phases.cnv' % (eventpath, evID)
velest.export(picks, velestfile, evt, parameter)
# hypoDD
hypoddfile = '%s/PyLoT_%s_hypoDD_phases.pha' % (eventpath, evID)
hypodd.export(picks, hypoddfile, parameter, evt)
# FOCMEC
focmecfile = '%s/PyLoT_%s_FOCMEC.in' % (eventpath, evID)
focmec.export(picks, focmecfile, parameter, evt)
# HASH
hashfile = '%s/PyLoT_%s_HASH' % (eventpath, evID)
hash.export(picks, hashfile, parameter, evt)
endsplash = '''------------------------------------------\n' endsplash = '''------------------------------------------\n'
-----Finished event %s!-----\n' -----Finished event %s!-----\n'
------------------------------------------'''.format \ ------------------------------------------'''.format \
(version=_getVersionString()) % evID (version=_getVersionString()) % evID
print(endsplash) print(endsplash)
locflag = glocflag
if locflag == 0: if locflag == 0:
print("autoPyLoT was running in non-location mode!") print("autoPyLoT was running in non-location mode!")
# save picks for current event ID to dictionary with ALL picks
allpicks[evID] = picks
endsp = '''####################################\n endsp = '''####################################\n
************************************\n ************************************\n
*********autoPyLoT terminates*******\n *********autoPyLoT terminates*******\n
The Python picking and Location Tool\n The Python picking and Location Tool\n
************************************'''.format(version=_getVersionString()) ************************************'''.format(version=_getVersionString())
print(endsp) print(endsp)
return allpicks
if __name__ == "__main__": if __name__ == "__main__":
from pylot.core.util.defaults import AUTOMATIC_DEFAULTS
# parse arguments # parse arguments
parser = argparse.ArgumentParser( parser = argparse.ArgumentParser(
description='''autoPyLoT automatically picks phase onset times using higher order statistics, description='''autoPyLoT automatically picks phase onset times using higher order statistics,
autoregressive prediction and AIC''') autoregressive prediction and AIC followed by locating the seismic events using
NLLoc''')
parser.add_argument('-i', '-I', '--inputfile', type=str, parser.add_argument('-i', '-I', '--inputfile', type=str,
action='store', action='store',
help='''full path to the file containing the input help='''full path to the file containing the input
parameters for autoPyLoT''', parameters for autoPyLoT''')
default=AUTOMATIC_DEFAULTS parser.add_argument('-p', '-P', '--iplot', type=int,
) action='store',
parser.add_argument('-v', '-V', '--version', action='version', help='''optional, logical variable for plotting: 0=none, 1=partial, 2=all''')
version='autoPyLoT ' + __version__, parser.add_argument('-f', '-F', '--fnames', type=str,
help='show version information and exit') action='store',
help='''optional, list of data file names''')
parser.add_argument('-e', '--eventid', type=str,
action='store',
help='''optional, event path incl. event ID''')
parser.add_argument('-s', '-S', '--spath', type=str,
action='store',
help='''optional, save path for autoPyLoT output''')
parser.add_argument('-c', '-C', '--ncores', type=int,
action='store', default=0,
help='''optional, number of CPU cores used for parallel processing (default: all available(=0))''')
cla = parser.parse_args() cla = parser.parse_args()
autoPyLoT(str(cla.inputfile)) picks = autoPyLoT(inputfile=str(cla.inputfile), fnames=str(cla.fnames),
eventid=str(cla.eventid), savepath=str(cla.spath),
ncores=cla.ncores, iplot=int(cla.iplot))

View File

@ -1,4 +1,5 @@
<html><head><title>PyLoT - the Python picking and Localisation Tool</title></head> <html>
<head><title>PyLoT - the Python picking and Localisation Tool</title></head>
<body> <body>
<p><b>PyLoT</b> is a program which is capable of picking seismic phases, <p><b>PyLoT</b> is a program which is capable of picking seismic phases,
exporting these as numerous standard phase format and localize the corresponding exporting these as numerous standard phase format and localize the corresponding
@ -14,4 +15,5 @@ seismic event with external software as, e.g.:</p>
<p>Bug reports are very much appreciated and can also be delivered on our <p>Bug reports are very much appreciated and can also be delivered on our
<a href="https://ariadne.geophysik.rub.de/trac/PyLoT">PyLoT TracPage</a> after <a href="https://ariadne.geophysik.rub.de/trac/PyLoT">PyLoT TracPage</a> after
successful registration.</p> successful registration.</p>
</body></html> </body>
</html>

View File

@ -2,10 +2,37 @@
<qresource> <qresource>
<file>icons/pylot.ico</file> <file>icons/pylot.ico</file>
<file>icons/pylot.png</file> <file>icons/pylot.png</file>
<file>icons/locate.png</file> <file>icons/back.png</file>
<file>icons/home.png</file>
<file>icons/newfile.png</file>
<file>icons/open.png</file>
<file>icons/openproject.png</file>
<file>icons/add.png</file>
<file>icons/save.png</file>
<file>icons/saveas.png</file>
<file>icons/saveproject.png</file>
<file>icons/saveprojectas.png</file>
<file>icons/manupicksicon_small.png</file>
<file>icons/autopicksicon_small.png</file>
<file>icons/tune.png</file>
<file>icons/autopylot_button.png</file>
<file>icons/pick.png</file>
<file>icons/waveform.png</file>
<file>icons/openpick.png</file>
<file>icons/openpicks.png</file>
<file>icons/openpick.png</file>
<file>icons/openpicks.png</file>
<file>icons/savepicks.png</file>
<file>icons/preferences.png</file>
<file>icons/parameter.png</file>
<file>icons/inventory.png</file>
<file>icons/map.png</file>
<file>icons/openloc.png</file>
<file>icons/compare_button.png</file>
<file>icons/locate_button.png</file>
<file>icons/Matlab_PILOT_icon.png</file>
<file>icons/printer.png</file> <file>icons/printer.png</file>
<file>icons/delete.png</file> <file>icons/delete.png</file>
<file>icons/compare.png</file>
<file>icons/key_E.png</file> <file>icons/key_E.png</file>
<file>icons/key_N.png</file> <file>icons/key_N.png</file>
<file>icons/key_P.png</file> <file>icons/key_P.png</file>

BIN
icons/Matlab_PILOT_icon.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 50 KiB

BIN
icons/add.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 44 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 26 KiB

BIN
icons/autopicsicon.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 7.1 KiB

BIN
icons/autopylot_button.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 30 KiB

BIN
icons/back.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 3.0 KiB

BIN
icons/compare_button.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 18 KiB

0
icons/delete.png Executable file → Normal file
View File

Before

Width:  |  Height:  |  Size: 5.0 KiB

After

Width:  |  Height:  |  Size: 5.0 KiB

BIN
icons/home.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 23 KiB

BIN
icons/inventory.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 24 KiB

BIN
icons/key_E.png Executable file → Normal file

Binary file not shown.

Before

Width:  |  Height:  |  Size: 3.9 KiB

After

Width:  |  Height:  |  Size: 37 KiB

BIN
icons/key_N.png Executable file → Normal file

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.0 KiB

After

Width:  |  Height:  |  Size: 44 KiB

BIN
icons/key_P.png Executable file → Normal file

Binary file not shown.

Before

Width:  |  Height:  |  Size: 3.9 KiB

After

Width:  |  Height:  |  Size: 43 KiB

BIN
icons/key_Q.png Executable file → Normal file

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.1 KiB

After

Width:  |  Height:  |  Size: 59 KiB

BIN
icons/key_R.png Executable file → Normal file

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.0 KiB

After

Width:  |  Height:  |  Size: 47 KiB

BIN
icons/key_S.png Executable file → Normal file

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.0 KiB

After

Width:  |  Height:  |  Size: 55 KiB

BIN
icons/key_T.png Executable file → Normal file

Binary file not shown.

Before

Width:  |  Height:  |  Size: 3.8 KiB

After

Width:  |  Height:  |  Size: 36 KiB

BIN
icons/key_U.png Executable file → Normal file

Binary file not shown.

Before

Width:  |  Height:  |  Size: 3.9 KiB

After

Width:  |  Height:  |  Size: 44 KiB

BIN
icons/key_V.png Executable file → Normal file

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.0 KiB

After

Width:  |  Height:  |  Size: 48 KiB

BIN
icons/key_W.png Executable file → Normal file

Binary file not shown.

Before

Width:  |  Height:  |  Size: 4.1 KiB

After

Width:  |  Height:  |  Size: 54 KiB

BIN
icons/key_Z.png Executable file → Normal file

Binary file not shown.

Before

Width:  |  Height:  |  Size: 3.9 KiB

After

Width:  |  Height:  |  Size: 45 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 7.1 KiB

BIN
icons/locate_button.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 14 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 22 KiB

BIN
icons/manupicsicon.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 7.5 KiB

BIN
icons/map.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 56 KiB

BIN
icons/newfile.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 19 KiB

BIN
icons/open.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 37 KiB

BIN
icons/openfile.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 50 KiB

BIN
icons/openloc.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 57 KiB

BIN
icons/openpick.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 50 KiB

BIN
icons/openpicks.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 52 KiB

BIN
icons/openproject.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 58 KiB

BIN
icons/parameter.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 38 KiB

BIN
icons/pick.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 23 KiB

BIN
icons/preferences.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 38 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 22 KiB

After

Width:  |  Height:  |  Size: 39 KiB

BIN
icons/save.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 19 KiB

BIN
icons/saveas.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 25 KiB

BIN
icons/savepicks.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 28 KiB

BIN
icons/saveproject.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 35 KiB

BIN
icons/saveprojectas.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 41 KiB

0
icons/sync.png Executable file → Normal file
View File

Before

Width:  |  Height:  |  Size: 4.2 KiB

After

Width:  |  Height:  |  Size: 4.2 KiB

BIN
icons/tune.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 37 KiB

BIN
icons/waveform.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 16 KiB

0
icons/zoom_0.png Executable file → Normal file
View File

Before

Width:  |  Height:  |  Size: 6.9 KiB

After

Width:  |  Height:  |  Size: 6.9 KiB

0
icons/zoom_in.png Executable file → Normal file
View File

Before

Width:  |  Height:  |  Size: 7.0 KiB

After

Width:  |  Height:  |  Size: 7.0 KiB

0
icons/zoom_out.png Executable file → Normal file
View File

Before

Width:  |  Height:  |  Size: 6.9 KiB

After

Width:  |  Height:  |  Size: 6.9 KiB

File diff suppressed because one or more lines are too long

104841
icons_rc_2.py Normal file

File diff suppressed because it is too large Load Diff

104841
icons_rc_3.py Normal file

File diff suppressed because it is too large Load Diff

View File

@ -1,100 +0,0 @@
%This is a parameter input file for autoPyLoT.
%All main and special settings regarding data handling
%and picking are to be set here!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#main settings#
/DATA/Insheim #rootpath# %project path
EVENT_DATA/LOCAL #datapath# %data path
2013.02_Insheim #database# %name of data base
e0019.048.13 #eventID# %certain evnt ID for processing
True #apverbose#
PILOT #datastructure# %choose data structure
0 #iplot# %flag for plotting: 0 none, 1, partly, >1 everything
AUTOPHASES_AIC_HOS4_ARH #phasefile# %name of autoPILOT output phase file
AUTOLOC_AIC_HOS4_ARH #locfile# %name of autoPILOT output location file
AUTOFOCMEC_AIC_HOS4_ARH.in #focmecin# %name of focmec input file containing polarities
HYPOSAT #locrt# %location routine used ("HYPOINVERSE" or "HYPOSAT")
6 #pmin# %minimum required P picks for location
4 #p0min# %minimum required P picks for location if at least
%3 excellent P picks are found
2 #smin# %minimum required S picks for location
/home/ludger/bin/run_HYPOSAT4autoPILOT.csh #cshellp# %path and name of c-shell script to run location routine
7.6 8.5 #blon# %longitude bounding for location map
49 49.4 #blat# %lattitude bounding for location map
#parameters for moment magnitude estimation#
5000 #vp# %average P-wave velocity
2800 #vs# %average S-wave velocity
2200 #rho# %rock density [kg/m^3]
300 #Qp# %quality factor for P waves
100 #Qs# %quality factor for S waves
#common settings picker#
15 #pstart# %start time [s] for calculating CF for P-picking
40 #pstop# %end time [s] for calculating CF for P-picking
-1.0 #sstart# %start time [s] after or before(-) P-onset for calculating CF for S-picking
7 #sstop# %end time [s] after P-onset for calculating CF for S-picking
2 20 #bpz1# %lower/upper corner freq. of first band pass filter Z-comp. [Hz]
2 30 #bpz2# %lower/upper corner freq. of second band pass filter Z-comp. [Hz]
2 15 #bph1# %lower/upper corner freq. of first band pass filter H-comp. [Hz]
2 20 #bph2# %lower/upper corner freq. of second band pass filter z-comp. [Hz]
#special settings for calculating CF#
%!!Be careful when editing the following!!
#Z-component#
HOS #algoP# %choose algorithm for P-onset determination (HOS, ARZ, or AR3)
7 #tlta# %for HOS-/AR-AIC-picker, length of LTA window [s]
4 #hosorder# %for HOS-picker, order of Higher Order Statistics
2 #Parorder# %for AR-picker, order of AR process of Z-component
1.2 #tdet1z# %for AR-picker, length of AR determination window [s] for Z-component, 1st pick
0.4 #tpred1z# %for AR-picker, length of AR prediction window [s] for Z-component, 1st pick
0.6 #tdet2z# %for AR-picker, length of AR determination window [s] for Z-component, 2nd pick
0.2 #tpred2z# %for AR-picker, length of AR prediction window [s] for Z-component, 2nd pick
0.001 #addnoise# %add noise to seismogram for stable AR prediction
3 0.1 0.5 0.1 #tsnrz# %for HOS/AR, window lengths for SNR-and slope estimation [tnoise,tsafetey,tsignal,tslope] [s]
3 #pickwinP# %for initial AIC pick, length of P-pick window [s]
8 #Precalcwin# %for HOS/AR, window length [s] for recalculation of CF (relative to 1st pick)
0 #peps4aic# %for HOS/AR, artificial uplift of samples of AIC-function (P)
0.2 #aictsmooth# %for HOS/AR, take average of samples for smoothing of AIC-function [s]
0.1 #tsmoothP# %for HOS/AR, take average of samples for smoothing CF [s]
0.001 #ausP# %for HOS/AR, artificial uplift of samples (aus) of CF (P)
1.3 #nfacP# %for HOS/AR, noise factor for noise level determination (P)
#H-components#
ARH #algoS# %choose algorithm for S-onset determination (ARH or AR3)
0.8 #tdet1h# %for HOS/AR, length of AR-determination window [s], H-components, 1st pick
0.4 #tpred1h# %for HOS/AR, length of AR-prediction window [s], H-components, 1st pick
0.6 #tdet2h# %for HOS/AR, length of AR-determinaton window [s], H-components, 2nd pick
0.3 #tpred2h# %for HOS/AR, length of AR-prediction window [s], H-components, 2nd pick
4 #Sarorder# %for AR-picker, order of AR process of H-components
6 #Srecalcwin# %for AR-picker, window length [s] for recalculation of CF (2nd pick) (H)
3 #pickwinS# %for initial AIC pick, length of S-pick window [s]
2 0.2 1.5 0.5 #tsnrh# %for ARH/AR3, window lengths for SNR-and slope estimation [tnoise,tsafetey,tsignal,tslope] [s]
0.05 #aictsmoothS# %for AIC-picker, take average of samples for smoothing of AIC-function [s]
0.02 #tsmoothS# %for AR-picker, take average of samples for smoothing CF [s] (S)
0.2 #pepsS# %for AR-picker, artificial uplift of samples of CF (S)
0.4 #ausS# %for HOS/AR, artificial uplift of samples (aus) of CF (S)
1.5 #nfacS# %for AR-picker, noise factor for noise level determination (S)
%first-motion picker%
1 #minfmweight# %minimum required p weight for first-motion determination
2 #minFMSNR# %miniumum required SNR for first-motion determination
0.2 #fmpickwin# %pick window around P onset for calculating zero crossings
%quality assessment%
#inital AIC onset#
0.01 0.02 0.04 0.08 #timeerrorsP# %discrete time errors [s] corresponding to picking weights [0 1 2 3] for P
0.04 0.08 0.16 0.32 #timeerrorsS# %discrete time errors [s] corresponding to picking weights [0 1 2 3] for S
80 #minAICPslope# %below this slope [counts/s] the initial P pick is rejected
1.2 #minAICPSNR# %below this SNR the initial P pick is rejected
50 #minAICSslope# %below this slope [counts/s] the initial S pick is rejected
1.5 #minAICSSNR# %below this SNR the initial S pick is rejected
#check duration of signal using envelope function#
1.5 #prepickwin# %pre-signal window length [s] for noise level estimation
0.7 #minsiglength# %minimum required length of signal [s]
0.2 #sgap# %safety gap between noise and signal window [s]
2 #noisefactor# %noiselevel*noisefactor=threshold
60 #minpercent# %per cent of samples required higher than threshold
#check for spuriously picked S-onsets#
3.0 #zfac# %P-amplitude must exceed zfac times RMS-S amplitude
#jackknife-processing for P-picks#
3 #thresholdweight#%minimum required weight of picks
3 #dttolerance# %maximum allowed deviation of P picks from median [s]
4 #minstats# %minimum number of stations with reliable P picks
3 #Sdttolerance# %maximum allowed deviation from Wadati-diagram

View File

@ -1,99 +0,0 @@
%This is a parameter input file for autoPyLoT.
%All main and special settings regarding data handling
%and picking are to be set here!
%Parameters are optimized for local data sets!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#main settings#
/DATA/Insheim #rootpath# %project path
EVENT_DATA/LOCAL #datapath# %data path
2016.08_Insheim #database# %name of data base
e0007.224.16 #eventID# %event ID for single event processing
/DATA/Insheim/STAT_INFO #invdir# %full path to inventory or dataless-seed file
PILOT #datastructure#%choose data structure
0 #iplot# %flag for plotting: 0 none, 1 partly, >1 everything
True #apverbose# %choose 'True' or 'False' for terminal output
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#NLLoc settings#
/home/ludger/NLLOC #nllocbin# %path to NLLoc executable
/home/ludger/NLLOC/Insheim #nllocroot# %root of NLLoc-processing directory
AUTOPHASES.obs #phasefile# %name of autoPyLoT-output phase file for NLLoc
%(in nllocroot/obs)
Insheim_min1d032016_auto.in #ctrfile# %name of autoPyLoT-output control file for NLLoc
%(in nllocroot/run)
ttime #ttpatter# %pattern of NLLoc ttimes from grid
%(in nllocroot/times)
AUTOLOC_nlloc #outpatter# %pattern of NLLoc-output file
%(returns 'eventID_outpatter')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#parameters for seismic moment estimation#
3530 #vp# %average P-wave velocity
2500 #rho# %average rock density [kg/m^3]
300 0.8 #Qp# %quality factor for P waves ([Qp, ap], Qp*f^a)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
AUTOFOCMEC_AIC_HOS4_ARH.in #focmecin# %name of focmec input file containing derived polarities
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#common settings picker#
15.0 #pstart# %start time [s] for calculating CF for P-picking
60.0 #pstop# %end time [s] for calculating CF for P-picking
-1.0 #sstart# %start time [s] relative to P-onset for calculating CF for S-picking
10.0 #sstop# %end time [s] after P-onset for calculating CF for S-picking
2 20 #bpz1# %lower/upper corner freq. of first band pass filter Z-comp. [Hz]
2 30 #bpz2# %lower/upper corner freq. of second band pass filter Z-comp. [Hz]
2 15 #bph1# %lower/upper corner freq. of first band pass filter H-comp. [Hz]
2 20 #bph2# %lower/upper corner freq. of second band pass filter z-comp. [Hz]
#special settings for calculating CF#
%!!Edit the following only if you know what you are doing!!%
#Z-component#
HOS #algoP# %choose algorithm for P-onset determination (HOS, ARZ, or AR3)
7.0 #tlta# %for HOS-/AR-AIC-picker, length of LTA window [s]
4 #hosorder# %for HOS-picker, order of Higher Order Statistics
2 #Parorder# %for AR-picker, order of AR process of Z-component
1.2 #tdet1z# %for AR-picker, length of AR determination window [s] for Z-component, 1st pick
0.4 #tpred1z# %for AR-picker, length of AR prediction window [s] for Z-component, 1st pick
0.6 #tdet2z# %for AR-picker, length of AR determination window [s] for Z-component, 2nd pick
0.2 #tpred2z# %for AR-picker, length of AR prediction window [s] for Z-component, 2nd pick
0.001 #addnoise# %add noise to seismogram for stable AR prediction
3 0.1 0.5 0.5 #tsnrz# %for HOS/AR, window lengths for SNR-and slope estimation [tnoise,tsafetey,tsignal,tslope] [s]
3.0 #pickwinP# %for initial AIC pick, length of P-pick window [s]
6.0 #Precalcwin# %for HOS/AR, window length [s] for recalculation of CF (relative to 1st pick)
0.2 #aictsmooth# %for HOS/AR, take average of samples for smoothing of AIC-function [s]
0.1 #tsmoothP# %for HOS/AR, take average of samples for smoothing CF [s]
0.001 #ausP# %for HOS/AR, artificial uplift of samples (aus) of CF (P)
1.3 #nfacP# %for HOS/AR, noise factor for noise level determination (P)
#H-components#
ARH #algoS# %choose algorithm for S-onset determination (ARH or AR3)
0.8 #tdet1h# %for HOS/AR, length of AR-determination window [s], H-components, 1st pick
0.4 #tpred1h# %for HOS/AR, length of AR-prediction window [s], H-components, 1st pick
0.6 #tdet2h# %for HOS/AR, length of AR-determinaton window [s], H-components, 2nd pick
0.3 #tpred2h# %for HOS/AR, length of AR-prediction window [s], H-components, 2nd pick
4 #Sarorder# %for AR-picker, order of AR process of H-components
5.0 #Srecalcwin# %for AR-picker, window length [s] for recalculation of CF (2nd pick) (H)
3.0 #pickwinS# %for initial AIC pick, length of S-pick window [s]
2 0.2 1.5 0.5 #tsnrh# %for ARH/AR3, window lengths for SNR-and slope estimation [tnoise,tsafetey,tsignal,tslope] [s]
0.5 #aictsmoothS# %for AIC-picker, take average of samples for smoothing of AIC-function [s]
0.7 #tsmoothS# %for AR-picker, take average of samples for smoothing CF [s] (S)
0.9 #ausS# %for HOS/AR, artificial uplift of samples (aus) of CF (S)
1.5 #nfacS# %for AR-picker, noise factor for noise level determination (S)
%first-motion picker%
1 #minfmweight# %minimum required P weight for first-motion determination
2 #minFMSNR# %miniumum required SNR for first-motion determination
0.2 #fmpickwin# %pick window around P onset for calculating zero crossings
%quality assessment%
#inital AIC onset#
0.01 0.02 0.04 0.08 #timeerrorsP# %discrete time errors [s] corresponding to picking weights [0 1 2 3] for P
0.04 0.08 0.16 0.32 #timeerrorsS# %discrete time errors [s] corresponding to picking weights [0 1 2 3] for S
4 #minAICPslope# %below this slope [counts/s] the initial P pick is rejected
1.2 #minAICPSNR# %below this SNR the initial P pick is rejected
2 #minAICSslope# %below this slope [counts/s] the initial S pick is rejected
1.5 #minAICSSNR# %below this SNR the initial S pick is rejected
#check duration of signal using envelope function#
3 #minsiglength# %minimum required length of signal [s]
1.0 #noisefactor# %noiselevel*noisefactor=threshold
40 #minpercent# %required percentage of samples higher than threshold
#check for spuriously picked S-onsets#
2.0 #zfac# %P-amplitude must exceed at least zfac times RMS-S amplitude
#check statistics of P onsets#
2.5 #mdttolerance# %maximum allowed deviation of P picks from median [s]
#wadati check#
1.0 #wdttolerance# %maximum allowed deviation from Wadati-diagram

View File

@ -1,100 +0,0 @@
%This is a parameter input file for autoPyLoT.
%All main and special settings regarding data handling
%and picking are to be set here!
%Parameters are optimized for regional data sets!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#main settings#
/DATA/Egelados #rootpath# %project path
EVENT_DATA/LOCAL #datapath# %data path
2006.01_Nisyros #database# %name of data base
e1412.008.06 #eventID# %event ID for single event processing
/DATA/Egelados/STAT_INFO #invdir# %full path to inventory or dataless-seed file
PILOT #datastructure# %choose data structure
0 #iplot# %flag for plotting: 0 none, 1, partly, >1 everything
True #apverbose# %choose 'True' or 'False' for terminal output
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#NLLoc settings#
/home/ludger/NLLOC #nllocbin# %path to NLLoc executable
/home/ludger/NLLOC/Insheim #nllocroot# %root of NLLoc-processing directory
AUTOPHASES.obs #phasefile# %name of autoPyLoT-output phase file for NLLoc
%(in nllocroot/obs)
Insheim_min1d2015_auto.in #ctrfile# %name of autoPyLoT-output control file for NLLoc
%(in nllocroot/run)
ttime #ttpatter# %pattern of NLLoc ttimes from grid
%(in nllocroot/times)
AUTOLOC_nlloc #outpatter# %pattern of NLLoc-output file
%(returns 'eventID_outpatter')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#parameters for seismic moment estimation#
3530 #vp# %average P-wave velocity
2700 #rho# %average rock density [kg/m^3]
1000f**0.8 #Qp# %quality factor for P waves (Qp*f^a)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
AUTOFOCMEC_AIC_HOS4_ARH.in #focmecin# %name of focmec input file containing derived polarities
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#common settings picker#
20 #pstart# %start time [s] for calculating CF for P-picking
100 #pstop# %end time [s] for calculating CF for P-picking
1.0 #sstart# %start time [s] after or before(-) P-onset for calculating CF for S-picking
100 #sstop# %end time [s] after P-onset for calculating CF for S-picking
3 10 #bpz1# %lower/upper corner freq. of first band pass filter Z-comp. [Hz]
3 12 #bpz2# %lower/upper corner freq. of second band pass filter Z-comp. [Hz]
3 8 #bph1# %lower/upper corner freq. of first band pass filter H-comp. [Hz]
3 6 #bph2# %lower/upper corner freq. of second band pass filter H-comp. [Hz]
#special settings for calculating CF#
%!!Be careful when editing the following!!
#Z-component#
HOS #algoP# %choose algorithm for P-onset determination (HOS, ARZ, or AR3)
7 #tlta# %for HOS-/AR-AIC-picker, length of LTA window [s]
4 #hosorder# %for HOS-picker, order of Higher Order Statistics
2 #Parorder# %for AR-picker, order of AR process of Z-component
1.2 #tdet1z# %for AR-picker, length of AR determination window [s] for Z-component, 1st pick
0.4 #tpred1z# %for AR-picker, length of AR prediction window [s] for Z-component, 1st pick
0.6 #tdet2z# %for AR-picker, length of AR determination window [s] for Z-component, 2nd pick
0.2 #tpred2z# %for AR-picker, length of AR prediction window [s] for Z-component, 2nd pick
0.001 #addnoise# %add noise to seismogram for stable AR prediction
5 0.2 3.0 1.5 #tsnrz# %for HOS/AR, window lengths for SNR-and slope estimation [tnoise,tsafetey,tsignal,tslope] [s]
3 #pickwinP# %for initial AIC and refined pick, length of P-pick window [s]
8 #Precalcwin# %for HOS/AR, window length [s] for recalculation of CF (relative to 1st pick)
1.0 #aictsmooth# %for HOS/AR, take average of samples for smoothing of AIC-function [s]
0.3 #tsmoothP# %for HOS/AR, take average of samples for smoothing CF [s]
0.3 #ausP# %for HOS/AR, artificial uplift of samples (aus) of CF (P)
1.3 #nfacP# %for HOS/AR, noise factor for noise level determination (P)
#H-components#
ARH #algoS# %choose algorithm for S-onset determination (ARH or AR3)
0.8 #tdet1h# %for HOS/AR, length of AR-determination window [s], H-components, 1st pick
0.4 #tpred1h# %for HOS/AR, length of AR-prediction window [s], H-components, 1st pick
0.6 #tdet2h# %for HOS/AR, length of AR-determinaton window [s], H-components, 2nd pick
0.3 #tpred2h# %for HOS/AR, length of AR-prediction window [s], H-components, 2nd pick
4 #Sarorder# %for AR-picker, order of AR process of H-components
10 #Srecalcwin# %for AR-picker, window length [s] for recalculation of CF (2nd pick) (H)
25 #pickwinS# %for initial AIC and refined pick, length of S-pick window [s]
5 0.2 3.0 3.0 #tsnrh# %for ARH/AR3, window lengths for SNR-and slope estimation [tnoise,tsafetey,tsignal,tslope] [s]
3.5 #aictsmoothS# %for AIC-picker, take average of samples for smoothing of AIC-function [s]
1.0 #tsmoothS# %for AR-picker, take average of samples for smoothing CF [s] (S)
0.2 #ausS# %for HOS/AR, artificial uplift of samples (aus) of CF (S)
1.5 #nfacS# %for AR-picker, noise factor for noise level determination (S)
%first-motion picker%
1 #minfmweight# %minimum required p weight for first-motion determination
2 #minFMSNR# %miniumum required SNR for first-motion determination
6.0 #fmpickwin# %pick window around P onset for calculating zero crossings
%quality assessment%
#inital AIC onset#
0.04 0.08 0.16 0.32 #timeerrorsP# %discrete time errors [s] corresponding to picking weights [0 1 2 3] for P
0.04 0.08 0.16 0.32 #timeerrorsS# %discrete time errors [s] corresponding to picking weights [0 1 2 3] for S
3 #minAICPslope# %below this slope [counts/s] the initial P pick is rejected
1.2 #minAICPSNR# %below this SNR the initial P pick is rejected
5 #minAICSslope# %below this slope [counts/s] the initial S pick is rejected
2.5 #minAICSSNR# %below this SNR the initial S pick is rejected
#check duration of signal using envelope function#
30 #minsiglength# %minimum required length of signal [s]
2.5 #noisefactor# %noiselevel*noisefactor=threshold
60 #minpercent# %required percentage of samples higher than threshold
#check for spuriously picked S-onsets#
0.5 #zfac# %P-amplitude must exceed at least zfac times RMS-S amplitude
#check statistics of P onsets#
45 #mdttolerance# %maximum allowed deviation of P picks from median [s]
#wadati check#
3.0 #wdttolerance# %maximum allowed deviation from Wadati-diagram

View File

@ -1,2 +0,0 @@
P bandpass 4 2.0 20.0
S bandpass 4 2.0 15.0

View File

@ -1,98 +0,0 @@
%This is a example parameter input file for PyLoT.
%All main and special settings regarding data handling
%and picking are to be set here!
%Parameters shown here are optimized for local data sets!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#main settings#
/data/Geothermie/Insheim #rootpath# %project path
EVENT_DATA/LOCAL #datapath# %data path
2013.02_Insheim #database# %name of data base
e0019.048.13 #eventID# %event ID for single event processing
/data/Geothermie/Insheim/STAT_INFO #invdir# %full path to inventory or dataless-seed file
PILOT #datastructure# %choose data structure
0 #iplot# %flag for plotting: 0 none, 1 partly, >1 everything
True #apverbose# %choose 'True' or 'False' for terminal output
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#NLLoc settings#
/progs/bin #nllocbin# %path to NLLoc executable
/data/Geothermie/Insheim/LOCALISATION/NLLoc #nllocroot# %root of NLLoc-processing directory
AUTOPHASES.obs #phasefile# %name of autoPyLoT-output phase file for NLLoc
%(in nllocroot/obs)
Insheim_min1d2015.in #ctrfile# %name of PyLoT-output control file for NLLoc
%(in nllocroot/run)
ttime #ttpatter# %pattern of NLLoc ttimes from grid
%(in nllocroot/times)
AUTOLOC_nlloc #outpatter# %pattern of NLLoc-output file
%(returns 'eventID_outpatter')
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#parameters for seismic moment estimation#
3530 #vp# %average P-wave velocity
2500 #rho# %average rock density [kg/m^3]
300 0.8 #Qp# %quality factor for P waves (Qp*f^a); list(Qp, a)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
AUTOFOCMEC_AIC_HOS4_ARH.in #focmecin# %name of focmec input file containing derived polarities
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#common settings picker#
15.0 #pstart# %start time [s] for calculating CF for P-picking
60.0 #pstop# %end time [s] for calculating CF for P-picking
-1.0 #sstart# %start time [s] relative to P-onset for calculating CF for S-picking
10.0 #sstop# %end time [s] after P-onset for calculating CF for S-picking
2 20 #bpz1# %lower/upper corner freq. of first band pass filter Z-comp. [Hz]
2 30 #bpz2# %lower/upper corner freq. of second band pass filter Z-comp. [Hz]
2 15 #bph1# %lower/upper corner freq. of first band pass filter H-comp. [Hz]
2 20 #bph2# %lower/upper corner freq. of second band pass filter z-comp. [Hz]
#special settings for calculating CF#
%!!Edit the following only if you know what you are doing!!%
#Z-component#
HOS #algoP# %choose algorithm for P-onset determination (HOS, ARZ, or AR3)
7.0 #tlta# %for HOS-/AR-AIC-picker, length of LTA window [s]
4 #hosorder# %for HOS-picker, order of Higher Order Statistics
2 #Parorder# %for AR-picker, order of AR process of Z-component
1.2 #tdet1z# %for AR-picker, length of AR determination window [s] for Z-component, 1st pick
0.4 #tpred1z# %for AR-picker, length of AR prediction window [s] for Z-component, 1st pick
0.6 #tdet2z# %for AR-picker, length of AR determination window [s] for Z-component, 2nd pick
0.2 #tpred2z# %for AR-picker, length of AR prediction window [s] for Z-component, 2nd pick
0.001 #addnoise# %add noise to seismogram for stable AR prediction
3 0.1 0.5 0.5 #tsnrz# %for HOS/AR, window lengths for SNR-and slope estimation [tnoise,tsafetey,tsignal,tslope] [s]
3.0 #pickwinP# %for initial AIC pick, length of P-pick window [s]
6.0 #Precalcwin# %for HOS/AR, window length [s] for recalculation of CF (relative to 1st pick)
0.2 #aictsmooth# %for HOS/AR, take average of samples for smoothing of AIC-function [s]
0.1 #tsmoothP# %for HOS/AR, take average of samples for smoothing CF [s]
0.001 #ausP# %for HOS/AR, artificial uplift of samples (aus) of CF (P)
1.3 #nfacP# %for HOS/AR, noise factor for noise level determination (P)
#H-components#
ARH #algoS# %choose algorithm for S-onset determination (ARH or AR3)
0.8 #tdet1h# %for HOS/AR, length of AR-determination window [s], H-components, 1st pick
0.4 #tpred1h# %for HOS/AR, length of AR-prediction window [s], H-components, 1st pick
0.6 #tdet2h# %for HOS/AR, length of AR-determinaton window [s], H-components, 2nd pick
0.3 #tpred2h# %for HOS/AR, length of AR-prediction window [s], H-components, 2nd pick
4 #Sarorder# %for AR-picker, order of AR process of H-components
5.0 #Srecalcwin# %for AR-picker, window length [s] for recalculation of CF (2nd pick) (H)
3.0 #pickwinS# %for initial AIC pick, length of S-pick window [s]
2 0.2 1.5 0.5 #tsnrh# %for ARH/AR3, window lengths for SNR-and slope estimation [tnoise,tsafetey,tsignal,tslope] [s]
0.5 #aictsmoothS# %for AIC-picker, take average of samples for smoothing of AIC-function [s]
0.7 #tsmoothS# %for AR-picker, take average of samples for smoothing CF [s] (S)
0.9 #ausS# %for HOS/AR, artificial uplift of samples (aus) of CF (S)
1.5 #nfacS# %for AR-picker, noise factor for noise level determination (S)
%first-motion picker%
1 #minfmweight# %minimum required P weight for first-motion determination
2 #minFMSNR# %miniumum required SNR for first-motion determination
0.2 #fmpickwin# %pick window around P onset for calculating zero crossings
%quality assessment%
#inital AIC onset#
0.01 0.02 0.04 0.08 #timeerrorsP# %discrete time errors [s] corresponding to picking weights [0 1 2 3] for P
0.04 0.08 0.16 0.32 #timeerrorsS# %discrete time errors [s] corresponding to picking weights [0 1 2 3] for S
4 #minAICPslope# %below this slope [counts/s] the initial P pick is rejected
1.2 #minAICPSNR# %below this SNR the initial P pick is rejected
2 #minAICSslope# %below this slope [counts/s] the initial S pick is rejected
1.5 #minAICSSNR# %below this SNR the initial S pick is rejected
#check duration of signal using envelope function#
3 #minsiglength# %minimum required length of signal [s]
1.0 #noisefactor# %noiselevel*noisefactor=threshold
40 #minpercent# %required percentage of samples higher than threshold
#check for spuriously picked S-onsets#
2.0 #zfac# %P-amplitude must exceed at least zfac times RMS-S amplitude
#check statistics of P onsets#
2.5 #mdttolerance# %maximum allowed deviation of P picks from median [s]
#wadati check#
1.0 #wdttolerance# %maximum allowed deviation from Wadati-diagram

100
inputs/pylot_global.in Normal file
View File

@ -0,0 +1,100 @@
%This is a parameter input file for PyLoT/autoPyLoT.
%All main and special settings regarding data handling
%and picking are to be set here!
%Parameters are optimized for %extent data sets!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#main settings#
#rootpath# %project path
#datapath# %data path
#database# %name of data base
#eventID# %event ID for single event processing (* for all events found in database)
#invdir# %full path to inventory or dataless-seed file
PILOT #datastructure# %choose data structure
True #apverbose# %choose 'True' or 'False' for terminal output
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#NLLoc settings#
None #nllocbin# %path to NLLoc executable
None #nllocroot# %root of NLLoc-processing directory
None #phasefile# %name of autoPyLoT-output phase file for NLLoc
None #ctrfile# %name of autoPyLoT-output control file for NLLoc
ttime #ttpatter# %pattern of NLLoc ttimes from grid
AUTOLOC_nlloc #outpatter# %pattern of NLLoc-output file
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#parameters for seismic moment estimation#
3530.0 #vp# %average P-wave velocity
2500.0 #rho# %average rock density [kg/m^3]
300.0 0.8 #Qp# %quality factor for P waves (Qp*f^a); list(Qp, a)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#settings local magnitude#
1.0 1.0 1.0 #WAscaling# %Scaling relation (log(Ao)+Alog(r)+Br+C) of Wood-Anderson amplitude Ao [nm] If zeros are set, original Richter magnitude is calculated!
1.0 1.0 #magscaling# %Scaling relation for derived local magnitude [a*Ml+b]. If zeros are set, no scaling of network magnitude is applied!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#filter settings#
0.01 0.01 #minfreq# %Lower filter frequency [P, S]
0.3 0.3 #maxfreq# %Upper filter frequency [P, S]
3 3 #filter_order# %filter order [P, S]
bandpass bandpass #filter_type# %filter type (bandpass, bandstop, lowpass, highpass) [P, S]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#common settings picker#
global #extent# %extent of array ("local", "regional" or "global")
-150.0 #pstart# %start time [s] for calculating CF for P-picking (if TauPy: seconds relative to estimated onset)
600.0 #pstop# %end time [s] for calculating CF for P-picking (if TauPy: seconds relative to estimated onset)
200.0 #sstart# %start time [s] relative to P-onset for calculating CF for S-picking
1150.0 #sstop# %end time [s] after P-onset for calculating CF for S-picking
True #use_taup# %use estimated traveltimes from TauPy for calculating windows for CF
iasp91 #taup_model# %define TauPy model for traveltime estimation. Possible values: 1066a, 1066b, ak135, ak135f, herrin, iasp91, jb, prem, pwdk, sp6
0.05 0.5 #bpz1# %lower/upper corner freq. of first band pass filter Z-comp. [Hz]
0.001 0.5 #bpz2# %lower/upper corner freq. of second band pass filter Z-comp. [Hz]
0.05 0.5 #bph1# %lower/upper corner freq. of first band pass filter H-comp. [Hz]
0.001 0.5 #bph2# %lower/upper corner freq. of second band pass filter z-comp. [Hz]
#special settings for calculating CF#
%!!Edit the following only if you know what you are doing!!%
#Z-component#
HOS #algoP# %choose algorithm for P-onset determination (HOS, ARZ, or AR3)
150.0 #tlta# %for HOS-/AR-AIC-picker, length of LTA window [s]
4 #hosorder# %for HOS-picker, order of Higher Order Statistics
2 #Parorder# %for AR-picker, order of AR process of Z-component
16.0 #tdet1z# %for AR-picker, length of AR determination window [s] for Z-component, 1st pick
10.0 #tpred1z# %for AR-picker, length of AR prediction window [s] for Z-component, 1st pick
12.0 #tdet2z# %for AR-picker, length of AR determination window [s] for Z-component, 2nd pick
6.0 #tpred2z# %for AR-picker, length of AR prediction window [s] for Z-component, 2nd pick
0.001 #addnoise# %add noise to seismogram for stable AR prediction
60.0 10.0 40.0 10.0 #tsnrz# %for HOS/AR, window lengths for SNR-and slope estimation [tnoise, tsafetey, tsignal, tslope] [s]
150.0 #pickwinP# %for initial AIC pick, length of P-pick window [s]
35.0 #Precalcwin# %for HOS/AR, window length [s] for recalculation of CF (relative to 1st pick)
6.0 #aictsmooth# %for HOS/AR, take average of samples for smoothing of AIC-function [s]
4.0 #tsmoothP# %for HOS/AR, take average of samples for smoothing CF [s]
0.001 #ausP# %for HOS/AR, artificial uplift of samples (aus) of CF (P)
1.1 #nfacP# %for HOS/AR, noise factor for noise level determination (P)
#H-components#
ARH #algoS# %choose algorithm for S-onset determination (ARH or AR3)
12.0 #tdet1h# %for HOS/AR, length of AR-determination window [s], H-components, 1st pick
6.0 #tpred1h# %for HOS/AR, length of AR-prediction window [s], H-components, 1st pick
8.0 #tdet2h# %for HOS/AR, length of AR-determinaton window [s], H-components, 2nd pick
4.0 #tpred2h# %for HOS/AR, length of AR-prediction window [s], H-components, 2nd pick
4 #Sarorder# %for AR-picker, order of AR process of H-components
30.0 #Srecalcwin# %for AR-picker, window length [s] for recalculation of CF (2nd pick) (H)
195.0 #pickwinS# %for initial AIC pick, length of S-pick window [s]
100.0 10.0 45.0 10.0 #tsnrh# %for ARH/AR3, window lengths for SNR-and slope estimation [tnoise, tsafetey, tsignal, tslope] [s]
22.0 #aictsmoothS# %for AIC-picker, take average of samples for smoothing of AIC-function [s]
10.0 #tsmoothS# %for AR-picker, take average of samples for smoothing CF [s] (S)
0.001 #ausS# %for HOS/AR, artificial uplift of samples (aus) of CF (S)
1.2 #nfacS# %for AR-picker, noise factor for noise level determination (S)
#first-motion picker#
1 #minfmweight# %minimum required P weight for first-motion determination
3.0 #minFMSNR# %miniumum required SNR for first-motion determination
10.0 #fmpickwin# %pick window around P onset for calculating zero crossings
#quality assessment#
1.0 2.0 4.0 8.0 #timeerrorsP# %discrete time errors [s] corresponding to picking weights [0 1 2 3] for P
4.0 8.0 16.0 32.0 #timeerrorsS# %discrete time errors [s] corresponding to picking weights [0 1 2 3] for S
0.5 #minAICPslope# %below this slope [counts/s] the initial P pick is rejected
1.1 #minAICPSNR# %below this SNR the initial P pick is rejected
1.0 #minAICSslope# %below this slope [counts/s] the initial S pick is rejected
1.3 #minAICSSNR# %below this SNR the initial S pick is rejected
5.0 #minsiglength# %length of signal part for which amplitudes must exceed noiselevel [s]
1.0 #noisefactor# %noiselevel*noisefactor=threshold
10.0 #minpercent# %required percentage of amplitudes exceeding threshold
1.2 #zfac# %P-amplitude must exceed at least zfac times RMS-S amplitude
25.0 #mdttolerance# %maximum allowed deviation of P picks from median [s]
50.0 #wdttolerance# %maximum allowed deviation from Wadati-diagram
5.0 #jackfactor# %pick is removed if the variance of the subgroup with the pick removed is larger than the mean variance of all subgroups times safety factor

100
inputs/pylot_local.in Normal file
View File

@ -0,0 +1,100 @@
%This is a parameter input file for PyLoT/autoPyLoT.
%All main and special settings regarding data handling
%and picking are to be set here!
%Parameters are optimized for %extent data sets!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#main settings#
#rootpath# %project path
#datapath# %data path
#database# %name of data base
#eventID# %event ID for single event processing (* for all events found in database)
#invdir# %full path to inventory or dataless-seed file
PILOT #datastructure# %choose data structure
True #apverbose# %choose 'True' or 'False' for terminal output
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#NLLoc settings#
None #nllocbin# %path to NLLoc executable
None #nllocroot# %root of NLLoc-processing directory
None #phasefile# %name of autoPyLoT-output phase file for NLLoc
None #ctrfile# %name of autoPyLoT-output control file for NLLoc
ttime #ttpatter# %pattern of NLLoc ttimes from grid
AUTOLOC_nlloc #outpatter# %pattern of NLLoc-output file
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#parameters for seismic moment estimation#
3530.0 #vp# %average P-wave velocity
2500.0 #rho# %average rock density [kg/m^3]
300.0 0.8 #Qp# %quality factor for P waves (Qp*f^a); list(Qp, a)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#settings local magnitude#
1.11 0.0009 -2.0 #WAscaling# %Scaling relation (log(Ao)+Alog(r)+Br+C) of Wood-Anderson amplitude Ao [nm] If zeros are set, original Richter magnitude is calculated!
1.0382 -0.447 #magscaling# %Scaling relation for derived local magnitude [a*Ml+b]. If zeros are set, no scaling of network magnitude is applied!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#filter settings#
1.0 1.0 #minfreq# %Lower filter frequency [P, S]
10.0 10.0 #maxfreq# %Upper filter frequency [P, S]
2 2 #filter_order# %filter order [P, S]
bandpass bandpass #filter_type# %filter type (bandpass, bandstop, lowpass, highpass) [P, S]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#common settings picker#
local #extent# %extent of array ("local", "regional" or "global")
15.0 #pstart# %start time [s] for calculating CF for P-picking
60.0 #pstop# %end time [s] for calculating CF for P-picking
-1.0 #sstart# %start time [s] relative to P-onset for calculating CF for S-picking
10.0 #sstop# %end time [s] after P-onset for calculating CF for S-picking
True #use_taup# %use estimated traveltimes from TauPy for calculating windows for CF
iasp91 #taup_model# %define TauPy model for traveltime estimation
2.0 10.0 #bpz1# %lower/upper corner freq. of first band pass filter Z-comp. [Hz]
2.0 12.0 #bpz2# %lower/upper corner freq. of second band pass filter Z-comp. [Hz]
2.0 8.0 #bph1# %lower/upper corner freq. of first band pass filter H-comp. [Hz]
2.0 10.0 #bph2# %lower/upper corner freq. of second band pass filter z-comp. [Hz]
#special settings for calculating CF#
%!!Edit the following only if you know what you are doing!!%
#Z-component#
HOS #algoP# %choose algorithm for P-onset determination (HOS, ARZ, or AR3)
7.0 #tlta# %for HOS-/AR-AIC-picker, length of LTA window [s]
4 #hosorder# %for HOS-picker, order of Higher Order Statistics
2 #Parorder# %for AR-picker, order of AR process of Z-component
1.2 #tdet1z# %for AR-picker, length of AR determination window [s] for Z-component, 1st pick
0.4 #tpred1z# %for AR-picker, length of AR prediction window [s] for Z-component, 1st pick
0.6 #tdet2z# %for AR-picker, length of AR determination window [s] for Z-component, 2nd pick
0.2 #tpred2z# %for AR-picker, length of AR prediction window [s] for Z-component, 2nd pick
0.001 #addnoise# %add noise to seismogram for stable AR prediction
3.0 0.1 0.5 1.0 #tsnrz# %for HOS/AR, window lengths for SNR-and slope estimation [tnoise, tsafetey, tsignal, tslope] [s]
3.0 #pickwinP# %for initial AIC pick, length of P-pick window [s]
6.0 #Precalcwin# %for HOS/AR, window length [s] for recalculation of CF (relative to 1st pick)
0.2 #aictsmooth# %for HOS/AR, take average of samples for smoothing of AIC-function [s]
0.1 #tsmoothP# %for HOS/AR, take average of samples for smoothing CF [s]
0.001 #ausP# %for HOS/AR, artificial uplift of samples (aus) of CF (P)
1.3 #nfacP# %for HOS/AR, noise factor for noise level determination (P)
#H-components#
ARH #algoS# %choose algorithm for S-onset determination (ARH or AR3)
0.8 #tdet1h# %for HOS/AR, length of AR-determination window [s], H-components, 1st pick
0.4 #tpred1h# %for HOS/AR, length of AR-prediction window [s], H-components, 1st pick
0.6 #tdet2h# %for HOS/AR, length of AR-determinaton window [s], H-components, 2nd pick
0.3 #tpred2h# %for HOS/AR, length of AR-prediction window [s], H-components, 2nd pick
4 #Sarorder# %for AR-picker, order of AR process of H-components
5.0 #Srecalcwin# %for AR-picker, window length [s] for recalculation of CF (2nd pick) (H)
4.0 #pickwinS# %for initial AIC pick, length of S-pick window [s]
2.0 0.3 1.5 1.0 #tsnrh# %for ARH/AR3, window lengths for SNR-and slope estimation [tnoise, tsafetey, tsignal, tslope] [s]
1.0 #aictsmoothS# %for AIC-picker, take average of samples for smoothing of AIC-function [s]
0.7 #tsmoothS# %for AR-picker, take average of samples for smoothing CF [s] (S)
0.9 #ausS# %for HOS/AR, artificial uplift of samples (aus) of CF (S)
1.5 #nfacS# %for AR-picker, noise factor for noise level determination (S)
#first-motion picker#
1 #minfmweight# %minimum required P weight for first-motion determination
2.0 #minFMSNR# %miniumum required SNR for first-motion determination
0.2 #fmpickwin# %pick window around P onset for calculating zero crossings
#quality assessment#
0.02 0.04 0.08 0.16 #timeerrorsP# %discrete time errors [s] corresponding to picking weights [0 1 2 3] for P
0.04 0.08 0.16 0.32 #timeerrorsS# %discrete time errors [s] corresponding to picking weights [0 1 2 3] for S
0.8 #minAICPslope# %below this slope [counts/s] the initial P pick is rejected
1.1 #minAICPSNR# %below this SNR the initial P pick is rejected
1.0 #minAICSslope# %below this slope [counts/s] the initial S pick is rejected
1.5 #minAICSSNR# %below this SNR the initial S pick is rejected
1.0 #minsiglength# %length of signal part for which amplitudes must exceed noiselevel [s]
1.0 #noisefactor# %noiselevel*noisefactor=threshold
10.0 #minpercent# %required percentage of amplitudes exceeding threshold
1.5 #zfac# %P-amplitude must exceed at least zfac times RMS-S amplitude
6.0 #mdttolerance# %maximum allowed deviation of P picks from median [s]
1.0 #wdttolerance# %maximum allowed deviation from Wadati-diagram
5.0 #jackfactor# %pick is removed if the variance of the subgroup with the pick removed is larger than the mean variance of all subgroups times safety factor

100
inputs/pylot_regional.in Normal file
View File

@ -0,0 +1,100 @@
%This is a parameter input file for PyLoT/autoPyLoT.
%All main and special settings regarding data handling
%and picking are to be set here!
%Parameters are optimized for %extent data sets!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#main settings#
#rootpath# %project path
#datapath# %data path
#database# %name of data base
#eventID# %event ID for single event processing (* for all events found in database)
#invdir# %full path to inventory or dataless-seed file
PILOT #datastructure# %choose data structure
True #apverbose# %choose 'True' or 'False' for terminal output
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#NLLoc settings#
None #nllocbin# %path to NLLoc executable
None #nllocroot# %root of NLLoc-processing directory
None #phasefile# %name of autoPyLoT-output phase file for NLLoc
None #ctrfile# %name of autoPyLoT-output control file for NLLoc
ttime #ttpatter# %pattern of NLLoc ttimes from grid
AUTOLOC_nlloc #outpatter# %pattern of NLLoc-output file
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#parameters for seismic moment estimation#
3530.0 #vp# %average P-wave velocity
2500.0 #rho# %average rock density [kg/m^3]
300.0 0.8 #Qp# %quality factor for P waves (Qp*f^a); list(Qp, a)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#settings local magnitude#
1.11 0.0009 -2.0 #WAscaling# %Scaling relation (log(Ao)+Alog(r)+Br+C) of Wood-Anderson amplitude Ao [nm] If zeros are set, original Richter magnitude is calculated!
1.0382 -0.447 #magscaling# %Scaling relation for derived local magnitude [a*Ml+b]. If zeros are set, no scaling of network magnitude is applied!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#filter settings#
1.0 1.0 #minfreq# %Lower filter frequency [P, S]
10.0 10.0 #maxfreq# %Upper filter frequency [P, S]
2 2 #filter_order# %filter order [P, S]
bandpass bandpass #filter_type# %filter type (bandpass, bandstop, lowpass, highpass) [P, S]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
#common settings picker#
local #extent# %extent of array ("local", "regional" or "global")
15.0 #pstart# %start time [s] for calculating CF for P-picking
60.0 #pstop# %end time [s] for calculating CF for P-picking
-1.0 #sstart# %start time [s] relative to P-onset for calculating CF for S-picking
10.0 #sstop# %end time [s] after P-onset for calculating CF for S-picking
True #use_taup# %use estimated traveltimes from TauPy for calculating windows for CF
iasp91 #taup_model# %define TauPy model for traveltime estimation
2.0 10.0 #bpz1# %lower/upper corner freq. of first band pass filter Z-comp. [Hz]
2.0 12.0 #bpz2# %lower/upper corner freq. of second band pass filter Z-comp. [Hz]
2.0 8.0 #bph1# %lower/upper corner freq. of first band pass filter H-comp. [Hz]
2.0 10.0 #bph2# %lower/upper corner freq. of second band pass filter z-comp. [Hz]
#special settings for calculating CF#
%!!Edit the following only if you know what you are doing!!%
#Z-component#
HOS #algoP# %choose algorithm for P-onset determination (HOS, ARZ, or AR3)
7.0 #tlta# %for HOS-/AR-AIC-picker, length of LTA window [s]
4 #hosorder# %for HOS-picker, order of Higher Order Statistics
2 #Parorder# %for AR-picker, order of AR process of Z-component
1.2 #tdet1z# %for AR-picker, length of AR determination window [s] for Z-component, 1st pick
0.4 #tpred1z# %for AR-picker, length of AR prediction window [s] for Z-component, 1st pick
0.6 #tdet2z# %for AR-picker, length of AR determination window [s] for Z-component, 2nd pick
0.2 #tpred2z# %for AR-picker, length of AR prediction window [s] for Z-component, 2nd pick
0.001 #addnoise# %add noise to seismogram for stable AR prediction
3.0 0.1 0.5 1.0 #tsnrz# %for HOS/AR, window lengths for SNR-and slope estimation [tnoise, tsafetey, tsignal, tslope] [s]
3.0 #pickwinP# %for initial AIC pick, length of P-pick window [s]
6.0 #Precalcwin# %for HOS/AR, window length [s] for recalculation of CF (relative to 1st pick)
0.2 #aictsmooth# %for HOS/AR, take average of samples for smoothing of AIC-function [s]
0.1 #tsmoothP# %for HOS/AR, take average of samples for smoothing CF [s]
0.001 #ausP# %for HOS/AR, artificial uplift of samples (aus) of CF (P)
1.3 #nfacP# %for HOS/AR, noise factor for noise level determination (P)
#H-components#
ARH #algoS# %choose algorithm for S-onset determination (ARH or AR3)
0.8 #tdet1h# %for HOS/AR, length of AR-determination window [s], H-components, 1st pick
0.4 #tpred1h# %for HOS/AR, length of AR-prediction window [s], H-components, 1st pick
0.6 #tdet2h# %for HOS/AR, length of AR-determinaton window [s], H-components, 2nd pick
0.3 #tpred2h# %for HOS/AR, length of AR-prediction window [s], H-components, 2nd pick
4 #Sarorder# %for AR-picker, order of AR process of H-components
5.0 #Srecalcwin# %for AR-picker, window length [s] for recalculation of CF (2nd pick) (H)
4.0 #pickwinS# %for initial AIC pick, length of S-pick window [s]
2.0 0.3 1.5 1.0 #tsnrh# %for ARH/AR3, window lengths for SNR-and slope estimation [tnoise, tsafetey, tsignal, tslope] [s]
1.0 #aictsmoothS# %for AIC-picker, take average of samples for smoothing of AIC-function [s]
0.7 #tsmoothS# %for AR-picker, take average of samples for smoothing CF [s] (S)
0.9 #ausS# %for HOS/AR, artificial uplift of samples (aus) of CF (S)
1.5 #nfacS# %for AR-picker, noise factor for noise level determination (S)
#first-motion picker#
1 #minfmweight# %minimum required P weight for first-motion determination
2.0 #minFMSNR# %miniumum required SNR for first-motion determination
0.2 #fmpickwin# %pick window around P onset for calculating zero crossings
#quality assessment#
0.02 0.04 0.08 0.16 #timeerrorsP# %discrete time errors [s] corresponding to picking weights [0 1 2 3] for P
0.04 0.08 0.16 0.32 #timeerrorsS# %discrete time errors [s] corresponding to picking weights [0 1 2 3] for S
0.8 #minAICPslope# %below this slope [counts/s] the initial P pick is rejected
1.1 #minAICPSNR# %below this SNR the initial P pick is rejected
1.0 #minAICSslope# %below this slope [counts/s] the initial S pick is rejected
1.5 #minAICSSNR# %below this SNR the initial S pick is rejected
1.0 #minsiglength# %length of signal part for which amplitudes must exceed noiselevel [s]
1.0 #noisefactor# %noiselevel*noisefactor=threshold
10.0 #minpercent# %required percentage of amplitudes exceeding threshold
1.5 #zfac# %P-amplitude must exceed at least zfac times RMS-S amplitude
6.0 #mdttolerance# %maximum allowed deviation of P picks from median [s]
1.0 #wdttolerance# %maximum allowed deviation from Wadati-diagram
5.0 #jackfactor# %pick is removed if the variance of the subgroup with the pick removed is larger than the mean variance of all subgroups times safety factor

View File

@ -158,24 +158,29 @@ def buildPyLoT(verbosity=None):
def installPyLoT(verbosity=None): def installPyLoT(verbosity=None):
files_to_copy = {'autoPyLoT_local.in':['~', '.pylot'], files_to_copy = {'pylot_local.in': ['~', '.pylot'],
'autoPyLoT_regional.in':['~', '.pylot'], 'pylot_regional.in': ['~', '.pylot'],
'filter.in':['~', '.pylot']} 'pylot_global.in': ['~', '.pylot']}
if verbosity > 0: if verbosity > 0:
print('starting installation of PyLoT ...') print('starting installation of PyLoT ...')
if verbosity > 1: if verbosity > 1:
print('copying input files into destination folder ...') print('copying input files into destination folder ...')
ans = input('please specify scope of interest ' ans = input('please specify scope of interest '
'([0]=local, 1=regional) :') or 0 '([0]=local, 1=regional, 2=global) :') or 0
if not isinstance(ans, int): if not isinstance(ans, int):
ans = int(ans) ans = int(ans)
ans = 'local' if ans is 0 else 'regional' if ans == 0:
ans = 'local'
elif ans == 1:
ans = 'regional'
elif ans == 2:
ans = 'global'
link_dest = [] link_dest = []
for file, destination in files_to_copy.items(): for file, destination in files_to_copy.items():
link_file = ans in file link_file = ans in file
if link_file: if link_file:
link_dest = copy.deepcopy(destination) link_dest = copy.deepcopy(destination)
link_dest.append('autoPyLoT.in') link_dest.append('pylot.in')
link_dest = os.path.join(*link_dest) link_dest = os.path.join(*link_dest)
destination.append(file) destination.append(file)
destination = os.path.join(*destination) destination = os.path.join(*destination)
@ -191,8 +196,6 @@ def installPyLoT(verbosity=None):
os.symlink(destination, link_dest) os.symlink(destination, link_dest)
def cleanUp(verbosity=None): def cleanUp(verbosity=None):
if verbosity >= 1: if verbosity >= 1:
print('cleaning up build files...') print('cleaning up build files...')

Binary file not shown.

Before

Width:  |  Height:  |  Size: 2.2 KiB

View File

@ -1 +0,0 @@
0.1a

0
pylot/__init__.py Executable file → Normal file
View File

0
pylot/core/__init__.py Executable file → Normal file
View File

View File

@ -2,28 +2,33 @@
# -*- coding: utf-8 -*- # -*- coding: utf-8 -*-
""" """
Created autumn/winter 2015. Created autumn/winter 2015.
Revised/extended summer 2017.
:author: Ludger Küperkoch / MAGS2 EP3 working group :author: Ludger Küperkoch / MAGS2 EP3 working group
""" """
import os
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
import numpy as np import numpy as np
import obspy.core.event as ope import obspy.core.event as ope
from obspy.geodetics import degrees2kilometers from obspy.geodetics import degrees2kilometers
from scipy import integrate, signal
from scipy.optimize import curve_fit
from pylot.core.pick.utils import getsignalwin, crossings_nonzero_all, \ from pylot.core.pick.utils import getsignalwin, crossings_nonzero_all, \
select_for_phase select_for_phase
from pylot.core.util.utils import common_range, fit_curve from pylot.core.util.utils import common_range, fit_curve
from scipy import integrate, signal
from scipy.optimize import curve_fit
def richter_magnitude_scaling(delta): def richter_magnitude_scaling(delta):
relation = np.loadtxt(os.path.join(os.path.expanduser('~'), distance = np.array([0, 10, 20, 25, 30, 35, 40, 45, 50, 60, 70, 75, 85, 90, 100, 110,
'.pylot', 'richter_scaling.data')) 120, 130, 140, 150, 160, 170, 180, 190, 200, 210, 230, 240, 250,
260, 270, 280, 290, 300, 310, 320, 330, 340, 350, 360, 370, 380,
390, 400, 430, 470, 510, 560, 600, 700, 800, 900, 1000])
richter_scaling = np.array([1.4, 1.5, 1.7, 1.9, 2.1, 2.3, 2.4, 2.5, 2.6, 2.8, 2.8, 2.9,
2.9, 3.0, 3.1, 3.1, 3.2, 3.2, 3.3, 3.3, 3.4, 3.4, 3.5, 3.5,
3.6, 3.7, 3.7, 3.8, 3.8, 3.9, 3.9, 4.0, 4.0, 4.1, 4.2, 4.2,
4.2, 4.2, 4.3, 4.3, 4.3, 4.4, 4.4, 4.5, 4.6, 4.7, 4.8, 4.9,
5.1, 5.2, 5.4, 5.5, 5.7])
# prepare spline interpolation to calculate return value # prepare spline interpolation to calculate return value
func, params = fit_curve(relation[:, 0], relation[:, 1]) func, params = fit_curve(distance, richter_scaling)
return func(delta, params) return func(delta, params)
@ -34,10 +39,10 @@ class Magnitude(object):
def __init__(self, stream, event, verbosity=False, iplot=0): def __init__(self, stream, event, verbosity=False, iplot=0):
self._type = "M" self._type = "M"
self._stream = stream
self._plot_flag = iplot self._plot_flag = iplot
self._verbosity = verbosity self._verbosity = verbosity
self._event = event self._event = event
self._stream = stream
self._magnitudes = dict() self._magnitudes = dict()
def __str__(self): def __str__(self):
@ -111,17 +116,24 @@ class Magnitude(object):
def calc(self): def calc(self):
pass pass
def updated_event(self): def updated_event(self, magscaling=None):
self.event.magnitudes.append(self.net_magnitude()) self.event.magnitudes.append(self.net_magnitude(magscaling))
return self.event return self.event
def net_magnitude(self): def net_magnitude(self, magscaling=None):
if self: if self:
# TODO if an average Magnitude instead of the median is calculated if magscaling is not None and str(magscaling) is not '[0.0, 0.0]':
# StationMagnitudeContributions should be added to the returned # scaling necessary
# Magnitude object print("Scaling network magnitude ...")
# mag_error => weights (magnitude error estimate from peak_to_peak, calcsourcespec?) mag = ope.Magnitude(
# weights => StationMagnitdeContribution mag=np.median([M.mag for M in self.magnitudes.values()]) * \
magscaling[0] + magscaling[1],
magnitude_type=self.type,
origin_id=self.origin_id,
station_count=len(self.magnitudes),
azimuthal_gap=self.origin_id.get_referred_object().quality.azimuthal_gap)
else:
# no saling necessary
mag = ope.Magnitude( mag = ope.Magnitude(
mag=np.median([M.mag for M in self.magnitudes.values()]), mag=np.median([M.mag for M in self.magnitudes.values()]),
magnitude_type=self.type, magnitude_type=self.type,
@ -132,7 +144,7 @@ class Magnitude(object):
return None return None
class RichterMagnitude(Magnitude): class LocalMagnitude(Magnitude):
""" """
Method to derive peak-to-peak amplitude as seen on a Wood-Anderson- Method to derive peak-to-peak amplitude as seen on a Wood-Anderson-
seismograph. Has to be derived from instrument corrected traces! seismograph. Has to be derived from instrument corrected traces!
@ -149,10 +161,11 @@ class RichterMagnitude(Magnitude):
_amplitudes = dict() _amplitudes = dict()
def __init__(self, stream, event, calc_win, verbosity=False, iplot=0): def __init__(self, stream, event, calc_win, wascaling, verbosity=False, iplot=0):
super(RichterMagnitude, self).__init__(stream, event, verbosity, iplot) super(LocalMagnitude, self).__init__(stream, event, verbosity, iplot)
self._calc_win = calc_win self._calc_win = calc_win
self._wascaling = wascaling
self._type = 'ML' self._type = 'ML'
self.calc() self.calc()
@ -164,6 +177,10 @@ class RichterMagnitude(Magnitude):
def calc_win(self, value): def calc_win(self, value):
self._calc_win = value self._calc_win = value
@property
def wascaling(self):
return self._wascaling
@property @property
def amplitudes(self): def amplitudes(self):
return self._amplitudes return self._amplitudes
@ -175,6 +192,14 @@ class RichterMagnitude(Magnitude):
def peak_to_peak(self, st, t0): def peak_to_peak(self, st, t0):
try:
iplot = int(self.plot_flag)
except:
if self.plot_flag == True or self.plot_flag == 'True':
iplot = 2
else:
iplot = 0
# simulate Wood-Anderson response # simulate Wood-Anderson response
st.simulate(paz_remove=None, paz_simulate=self._paz) st.simulate(paz_remove=None, paz_simulate=self._paz)
@ -198,28 +223,29 @@ class RichterMagnitude(Magnitude):
th = np.arange(0, len(sqH) * dt, dt) th = np.arange(0, len(sqH) * dt, dt)
# get maximum peak within pick window # get maximum peak within pick window
iwin = getsignalwin(th, t0 - stime, self.calc_win) iwin = getsignalwin(th, t0 - stime, self.calc_win)
ii = min([iwin[len(iwin) - 1], len(th)])
iwin = iwin[0:ii]
wapp = np.max(sqH[iwin]) wapp = np.max(sqH[iwin])
if self.verbose: if self.verbose:
print("Determined Wood-Anderson peak-to-peak amplitude: {0} " print("Determined Wood-Anderson peak-to-peak amplitude for station {0}: {1} "
"mm".format(wapp)) "mm".format(st[0].stats.station, wapp))
# check for plot flag (for debugging only) # check for plot flag (for debugging only)
if self.plot_flag > 1: fig = None
if iplot > 1:
st.plot() st.plot()
f = plt.figure(2) fig = plt.figure()
plt.plot(th, sqH) ax = fig.add_subplot(111)
plt.plot(th[iwin], sqH[iwin], 'g') ax.plot(th, sqH)
plt.plot([t0, t0], [0, max(sqH)], 'r', linewidth=2) ax.plot(th[iwin], sqH[iwin], 'g')
plt.title( ax.plot([t0, t0], [0, max(sqH)], 'r', linewidth=2)
ax.title(
'Station %s, RMS Horizontal Traces, WA-peak-to-peak=%4.1f mm' \ 'Station %s, RMS Horizontal Traces, WA-peak-to-peak=%4.1f mm' \
% (st[0].stats.station, wapp)) % (st[0].stats.station, wapp))
plt.xlabel('Time [s]') ax.set_xlabel('Time [s]')
plt.ylabel('Displacement [mm]') ax.set_ylabel('Displacement [mm]')
plt.show()
raw_input()
plt.close(f)
return wapp return wapp, fig
def calc(self): def calc(self):
for a in self.arrivals: for a in self.arrivals:
@ -237,7 +263,7 @@ class RichterMagnitude(Magnitude):
continue continue
delta = degrees2kilometers(a.distance) delta = degrees2kilometers(a.distance)
onset = pick.time onset = pick.time
a0 = self.peak_to_peak(wf, onset) a0, self.p2p_fig = self.peak_to_peak(wf, onset)
amplitude = ope.Amplitude(generic_amplitude=a0 * 1e-3) amplitude = ope.Amplitude(generic_amplitude=a0 * 1e-3)
amplitude.unit = 'm' amplitude.unit = 'm'
amplitude.category = 'point' amplitude.category = 'point'
@ -248,10 +274,18 @@ class RichterMagnitude(Magnitude):
self.event.amplitudes.append(amplitude) self.event.amplitudes.append(amplitude)
self.amplitudes = (station, amplitude) self.amplitudes = (station, amplitude)
# using standard Gutenberg-Richter relation # using standard Gutenberg-Richter relation
# TODO make the ML calculation more flexible by allowing # or scale WA amplitude with given scaling relation
# use of custom relation functions if str(self.wascaling) == '[0.0, 0.0, 0.0]':
magnitude = ope.StationMagnitude( print("Calculating original Richter magnitude ...")
mag=np.log10(a0) + richter_magnitude_scaling(delta)) magnitude = ope.StationMagnitude(mag=np.log10(a0) \
+ richter_magnitude_scaling(delta))
else:
print("Calculating scaled local magnitude ...")
a0 = a0 * 1e03 # mm to nm (see Havskov & Ottemöller, 2010)
magnitude = ope.StationMagnitude(mag=np.log10(a0) \
+ self.wascaling[0] * np.log10(delta) + self.wascaling[1]
* delta + self.wascaling[
2])
magnitude.origin_id = self.origin_id magnitude.origin_id = self.origin_id
magnitude.waveform_id = pick.waveform_id magnitude.waveform_id = pick.waveform_id
magnitude.amplitude_id = amplitude.resource_id magnitude.amplitude_id = amplitude.resource_id
@ -317,8 +351,8 @@ class MomentMagnitude(Magnitude):
continue continue
pick = a.pick_id.get_referred_object() pick = a.pick_id.get_referred_object()
station = pick.waveform_id.station_code station = pick.waveform_id.station_code
wf = select_for_phase(self.stream.select( scopy = self.stream.copy()
station=station), a.phase) wf = scopy.select(station=station)
if not wf: if not wf:
continue continue
onset = pick.time onset = pick.time
@ -326,15 +360,16 @@ class MomentMagnitude(Magnitude):
azimuth = a.azimuth azimuth = a.azimuth
incidence = a.takeoff_angle incidence = a.takeoff_angle
w0, fc = calcsourcespec(wf, onset, self.p_velocity, distance, w0, fc = calcsourcespec(wf, onset, self.p_velocity, distance,
azimuth, azimuth, incidence, self.p_attenuation,
incidence, self.p_attenuation,
self.plot_flag, self.verbose) self.plot_flag, self.verbose)
if w0 is None or fc is None: if w0 is None or fc is None:
if self.verbose: if self.verbose:
print("WARNING: insufficient frequency information") print("WARNING: insufficient frequency information")
continue continue
wf = select_for_phase(wf, "P") WF = select_for_phase(self.stream.select(
m0, mw = calcMoMw(wf, w0, self.rock_density, self.p_velocity, station=station), a.phase)
WF = select_for_phase(WF, "P")
m0, mw = calcMoMw(WF, w0, self.rock_density, self.p_velocity,
distance, self.verbose) distance, self.verbose)
self.moment_props = (station, dict(w0=w0, fc=fc, Mo=m0)) self.moment_props = (station, dict(w0=w0, fc=fc, Mo=m0))
magnitude = ope.StationMagnitude(mag=mw) magnitude = ope.StationMagnitude(mag=mw)
@ -426,7 +461,15 @@ def calcsourcespec(wfstream, onset, vp, delta, azimuth, incidence,
:type: integer :type: integer
''' '''
if verbosity: if verbosity:
print ("Calculating source spectrum ....") print("Calculating source spectrum for station %s ...." % wfstream[0].stats.station)
try:
iplot = int(iplot)
except:
if iplot == True or iplot == 'True':
iplot = 2
else:
iplot = 0
# get Q value # get Q value
Q, A = qp Q, A = qp
@ -453,18 +496,21 @@ def calcsourcespec(wfstream, onset, vp, delta, azimuth, incidence,
LQT = wfstream.rotate('ZNE->LQT', azimuth, incidence) LQT = wfstream.rotate('ZNE->LQT', azimuth, incidence)
ldat = LQT.select(component="L") ldat = LQT.select(component="L")
if len(ldat) == 0: if len(ldat) == 0:
# if horizontal channels are 2 and 3 # if horizontal channels are 1 and 2
# no azimuth information is available and thus no # no azimuth information is available and thus no
# rotation is possible! # rotation is possible!
if verbosity: if verbosity:
print("calcsourcespec: Azimuth information is missing, " print("calcsourcespec: Azimuth information is missing, "
"no rotation of components possible!") "no rotation of components possible!")
# instead, use component 3
ldat = LQT.select(component="3")
if len(ldat) == 0:
# maybe component z available
ldat = LQT.select(component="Z") ldat = LQT.select(component="Z")
# integrate to displacement # integrate to displacement
# unrotated vertical component (for comparison) # unrotated vertical component (for comparison)
inttrz = signal.detrend(integrate.cumtrapz(zdat[0].data, None, dt)) inttrz = signal.detrend(integrate.cumtrapz(zdat[0].data, None, dt))
# rotated component Z => L # rotated component Z => L
Ldat = signal.detrend(integrate.cumtrapz(ldat[0].data, None, dt)) Ldat = signal.detrend(integrate.cumtrapz(ldat[0].data, None, dt))
@ -527,22 +573,24 @@ def calcsourcespec(wfstream, onset, vp, delta, azimuth, incidence,
# use of implicit scipy otimization function # use of implicit scipy otimization function
fit = synthsourcespec(F, w0in, Fcin) fit = synthsourcespec(F, w0in, Fcin)
[optspecfit, _] = curve_fit(synthsourcespec, F, YYcor, [w0in, Fcin]) [optspecfit, _] = curve_fit(synthsourcespec, F, YYcor, [w0in, Fcin])
w01 = optspecfit[0] w0 = optspecfit[0]
fc1 = optspecfit[1] fc = optspecfit[1]
# w01 = optspecfit[0]
# fc1 = optspecfit[1]
if verbosity: if verbosity:
print("calcsourcespec: Determined w0-value: %e m/Hz, \n" print("calcsourcespec: Determined w0-value: %e m/Hz, \n"
"Determined corner frequency: %f Hz" % (w01, fc1)) "calcsourcespec: Determined corner frequency: %f Hz" % (w0, fc))
# use of conventional fitting # use of conventional fitting
[w02, fc2] = fitSourceModel(F, YYcor, Fcin, iplot, verbosity) # [w02, fc2] = fitSourceModel(F, YYcor, Fcin, iplot, verbosity)
# get w0 and fc as median of both # get w0 and fc as median of both
# source spectrum fits # source spectrum fits
w0 = np.median([w01, w02]) # w0 = np.median([w01, w02])
fc = np.median([fc1, fc2]) # fc = np.median([fc1, fc2])
if verbosity: # if verbosity:
print("calcsourcespec: Using w0-value = %e m/Hz and fc = %f Hz" % ( # print("calcsourcespec: Using w0-value = %e m/Hz and fc = %f Hz" % (
w0, fc)) # w0, fc))
if iplot > 1: if iplot > 1:
f1 = plt.figure() f1 = plt.figure()
@ -569,18 +617,15 @@ def calcsourcespec(wfstream, onset, vp, delta, azimuth, incidence,
p3, = plt.loglog(F, YYcor, 'r') p3, = plt.loglog(F, YYcor, 'r')
p4, = plt.loglog(F, fit, 'g') p4, = plt.loglog(F, fit, 'g')
plt.loglog([fc, fc], [w0 / 100, w0], 'g') plt.loglog([fc, fc], [w0 / 100, w0], 'g')
plt.legend([p1, p2, p3, p4], ['Raw Spectrum', \ plt.legend([p1, p2, p3, p4], ['Raw Spectrum',
'Used Raw Spectrum', \ 'Used Raw Spectrum',
'Q-Corrected Spectrum', \ 'Q-Corrected Spectrum',
'Fit to Spectrum']) 'Fit to Spectrum'])
plt.title('Source Spectrum from P Pulse, w0=%e m/Hz, fc=%6.2f Hz' \ plt.title('Source Spectrum from P Pulse, w0=%e m/Hz, fc=%6.2f Hz' \
% (w0, fc)) % (w0, fc))
plt.xlabel('Frequency [Hz]') plt.xlabel('Frequency [Hz]')
plt.ylabel('Amplitude [m/Hz]') plt.ylabel('Amplitude [m/Hz]')
plt.grid() plt.grid()
plt.show()
raw_input()
plt.close(f1)
return w0, fc return w0, fc
@ -622,23 +667,48 @@ def fitSourceModel(f, S, fc0, iplot, verbosity=False):
:type: float :type: float
''' '''
try:
iplot = int(iplot)
except:
if iplot == True or iplot == 'True':
iplot = 2
else:
iplot = 0
w0 = [] w0 = []
stdw0 = [] stdw0 = []
fc = [] fc = []
stdfc = [] stdfc = []
STD = [] STD = []
# get window around initial corner frequency for trials # get window around initial corner frequency for trials
fcstopl = fc0 - max(1, len(f) / 10) # left side of initial corner frequency
il = np.argmin(abs(f - fcstopl)) fcstopl = max(f[0], fc0 - max(1, fc0 / 2))
fcstopl = f[il] il = np.where(f <= fcstopl)
fcstopr = fc0 + min(len(f), len(f) / 10) il = il[0][np.size(il) - 1]
ir = np.argmin(abs(f - fcstopr)) # right side of initial corner frequency
fcstopr = f[ir] fcstopr = min(fc0 + (fc0 / 2), f[len(f) - 1])
iF = np.where((f >= fcstopl) & (f <= fcstopr)) ir = np.where(f >= fcstopr)
# check, if fcstopr is available
if np.size(ir) == 0:
fcstopr = fc0
ir = len(f) - 1
else:
ir = ir[0][0]
# vary corner frequency around initial point # vary corner frequency around initial point
for i in range(il, ir): print("fitSourceModel: Varying corner frequency "
"around initial corner frequency ...")
# check difference of il and ir in order to
# keep calculation time acceptable
idiff = ir - il
if idiff > 10000:
increment = 100
elif idiff <= 20:
increment = 1
else:
increment = 10
for i in range(il, ir, increment):
FC = f[i] FC = f[i]
indexdc = np.where((f > 0) & (f <= FC)) indexdc = np.where((f > 0) & (f <= FC))
dc = np.mean(S[indexdc]) dc = np.mean(S[indexdc])
@ -665,7 +735,7 @@ def fitSourceModel(f, S, fc0, iplot, verbosity=False):
"fitSourceModel: best fc: {0} Hz, best w0: {1} m/Hz".format(fc, w0)) "fitSourceModel: best fc: {0} Hz, best w0: {1} m/Hz".format(fc, w0))
if iplot > 1: if iplot > 1:
plt.figure(iplot) plt.figure() # iplot)
plt.loglog(f, S, 'k') plt.loglog(f, S, 'k')
plt.loglog([f[0], fc], [w0, w0], 'g') plt.loglog([f[0], fc], [w0, w0], 'g')
plt.loglog([fc, fc], [w0 / 100, w0], 'g') plt.loglog([fc, fc], [w0 / 100, w0], 'g')
@ -674,7 +744,7 @@ def fitSourceModel(f, S, fc0, iplot, verbosity=False):
plt.xlabel('Frequency [Hz]') plt.xlabel('Frequency [Hz]')
plt.ylabel('Amplitude [m/Hz]') plt.ylabel('Amplitude [m/Hz]')
plt.grid() plt.grid()
plt.figure(iplot + 1) plt.figure() # iplot + 1)
plt.subplot(311) plt.subplot(311)
plt.plot(f[il:ir], STD, '*') plt.plot(f[il:ir], STD, '*')
plt.title('Common Standard Deviations') plt.title('Common Standard Deviations')
@ -687,8 +757,5 @@ def fitSourceModel(f, S, fc0, iplot, verbosity=False):
plt.plot(f[il:ir], stdfc, '*') plt.plot(f[il:ir], stdfc, '*')
plt.title('Standard Deviations of Corner Frequencies') plt.title('Standard Deviations of Corner Frequencies')
plt.xlabel('Corner Frequencies [Hz]') plt.xlabel('Corner Frequencies [Hz]')
plt.show()
raw_input()
plt.close()
return w0, fc return w0, fc

View File

@ -3,14 +3,17 @@
import copy import copy
import os import os
from obspy import read_events from obspy import read_events
from obspy.core import read, Stream, UTCDateTime from obspy.core import read, Stream, UTCDateTime
from obspy.core.event import Event from obspy.core.event import Event as ObsPyEvent
from obspy.io.sac import SacIOError
from pylot.core.io.phases import readPILOTEvent, picks_from_picksdict, \ from pylot.core.io.phases import readPILOTEvent, picks_from_picksdict, \
picksdict_from_pilot, merge_picks picksdict_from_pilot, merge_picks
from pylot.core.util.errors import FormatError, OverwriteError from pylot.core.util.errors import FormatError, OverwriteError
from pylot.core.util.event import Event
from pylot.core.util.utils import fnConstructor, full_range from pylot.core.util.utils import fnConstructor, full_range
import pylot.core.loc.velest as velest
class Data(object): class Data(object):
@ -34,12 +37,12 @@ class Data(object):
self.comp = 'Z' self.comp = 'Z'
self.wfdata = Stream() self.wfdata = Stream()
self._new = False self._new = False
if isinstance(evtdata, Event): if isinstance(evtdata, ObsPyEvent) or isinstance(evtdata, Event):
pass pass
elif isinstance(evtdata, dict): elif isinstance(evtdata, dict):
evt = readPILOTEvent(**evtdata) evt = readPILOTEvent(**evtdata)
evtdata = evt evtdata = evt
elif isinstance(evtdata, basestring): elif isinstance(evtdata, str):
try: try:
cat = read_events(evtdata) cat = read_events(evtdata)
if len(cat) is not 1: if len(cat) is not 1:
@ -50,7 +53,7 @@ class Data(object):
if 'Unknown format for file' in e.message: if 'Unknown format for file' in e.message:
if 'PHASES' in evtdata: if 'PHASES' in evtdata:
picks = picksdict_from_pilot(evtdata) picks = picksdict_from_pilot(evtdata)
evtdata = Event() evtdata = ObsPyEvent()
evtdata.picks = picks_from_picksdict(picks) evtdata.picks = picks_from_picksdict(picks)
elif 'LOC' in evtdata: elif 'LOC' in evtdata:
raise NotImplementedError('PILOT location information ' raise NotImplementedError('PILOT location information '
@ -62,7 +65,7 @@ class Data(object):
raise e raise e
else: # create an empty Event object else: # create an empty Event object
self.setNew() self.setNew()
evtdata = Event() evtdata = ObsPyEvent()
evtdata.picks = [] evtdata.picks = []
self.evtdata = evtdata self.evtdata = evtdata
self.wforiginal = None self.wforiginal = None
@ -74,6 +77,8 @@ class Data(object):
def __add__(self, other): def __add__(self, other):
assert isinstance(other, Data), "operands must be of same type 'Data'" assert isinstance(other, Data), "operands must be of same type 'Data'"
rs_id = self.get_evt_data().get('resource_id')
rs_id_other = other.get_evt_data().get('resource_id')
if other.isNew() and not self.isNew(): if other.isNew() and not self.isNew():
picks_to_add = other.get_evt_data().picks picks_to_add = other.get_evt_data().picks
old_picks = self.get_evt_data().picks old_picks = self.get_evt_data().picks
@ -85,7 +90,7 @@ class Data(object):
self.evtdata = new.get_evt_data() self.evtdata = new.get_evt_data()
elif self.isNew() and other.isNew(): elif self.isNew() and other.isNew():
pass pass
elif self.get_evt_data().get('id') == other.get_evt_data().get('id'): elif rs_id == rs_id_other:
other.setNew() other.setNew()
return self + other return self + other
else: else:
@ -145,16 +150,57 @@ class Data(object):
# handle forbidden filenames especially on windows systems # handle forbidden filenames especially on windows systems
return fnConstructor(str(ID)) return fnConstructor(str(ID))
def exportEvent(self, fnout, fnext='.xml'): def checkEvent(self, event, fcheck, forceOverwrite=False):
if 'origin' in fcheck:
self.replaceOrigin(event, forceOverwrite)
if 'magnitude' in fcheck:
self.replaceMagnitude(event, forceOverwrite)
if 'auto' in fcheck:
self.replacePicks(event, 'auto')
if 'manual' in fcheck:
self.replacePicks(event, 'manual')
def replaceOrigin(self, event, forceOverwrite=False):
if self.get_evt_data().origins or forceOverwrite:
if event.origins:
print("Found origin, replace it by new origin.")
event.origins = self.get_evt_data().origins
def replaceMagnitude(self, event, forceOverwrite=False):
if self.get_evt_data().magnitudes or forceOverwrite:
if event.magnitudes:
print("Found magnitude, replace it by new magnitude")
event.magnitudes = self.get_evt_data().magnitudes
def replacePicks(self, event, picktype):
checkflag = 0
picks = event.picks
# remove existing picks
for j, pick in reversed(list(enumerate(picks))):
if picktype in str(pick.method_id.id):
picks.pop(j)
checkflag = 1
if checkflag:
print("Found %s pick(s), remove them and append new picks to catalog." % picktype)
# append new picks
for pick in self.get_evt_data().picks:
if picktype in str(pick.method_id.id):
picks.append(pick)
def exportEvent(self, fnout, fnext='.xml', fcheck='auto', upperErrors=None):
""" """
:param fnout: basename of file
:param fnout: :param fnext: file extension
:param fnext: :param fcheck: check and delete existing information
:raise KeyError: can be a str or a list of strings of ['manual', 'auto', 'origin', 'magnitude']
""" """
from pylot.core.util.defaults import OUTPUTFORMATS from pylot.core.util.defaults import OUTPUTFORMATS
if not type(fcheck) == list:
fcheck = [fcheck]
try: try:
evtformat = OUTPUTFORMATS[fnext] evtformat = OUTPUTFORMATS[fnext]
except KeyError as e: except KeyError as e:
@ -162,9 +208,96 @@ class Data(object):
'supported'.format(e, fnext) 'supported'.format(e, fnext)
raise FormatError(errmsg) raise FormatError(errmsg)
# try exporting event via ObsPy # check for already existing xml-file
try: if fnext == '.xml':
if os.path.isfile(fnout + fnext):
print("xml-file already exists! Check content ...")
cat = read_events(fnout + fnext)
if len(cat) > 1:
raise IOError('Ambigious event information in file {}'.format(fnout + fnext))
if len(cat) < 1:
raise IOError('No event information in file {}'.format(fnout + fnext))
event = cat[0]
if not event.resource_id == self.get_evt_data().resource_id:
raise IOError("Missmatching event resource id's: {} and {}".format(event.resource_id,
self.get_evt_data().resource_id))
self.checkEvent(event, fcheck)
self.setEvtData(event)
self.get_evt_data().write(fnout + fnext, format=evtformat) self.get_evt_data().write(fnout + fnext, format=evtformat)
# try exporting event
else:
evtdata_org = self.get_evt_data()
picks = evtdata_org.picks
eventpath = evtdata_org.path
picks_copy = copy.deepcopy(picks)
evtdata_copy = Event(eventpath)
evtdata_copy.picks = picks_copy
# check for stations picked automatically as well as manually
# Prefer manual picks!
for i in range(len(picks)):
if picks[i].method_id == 'manual':
mstation = picks[i].waveform_id.station_code
mstation_ext = mstation + '_'
for k in range(len(picks_copy)):
if ((picks_copy[k].waveform_id.station_code == mstation) or
(picks_copy[k].waveform_id.station_code == mstation_ext)) and \
(picks_copy[k].method_id == 'auto'):
del picks_copy[k]
break
lendiff = len(picks) - len(picks_copy)
if lendiff is not 0:
print("Manual as well as automatic picks available. Prefered the {} manual ones!".format(lendiff))
if upperErrors:
# check for pick uncertainties exceeding adjusted upper errors
# Picks with larger uncertainties will not be saved in output file!
for j in range(len(picks)):
for i in range(len(picks_copy)):
if picks_copy[i].phase_hint[0] == 'P':
if (picks_copy[i].time_errors['upper_uncertainty'] >= upperErrors[0]) or \
(picks_copy[i].time_errors['uncertainty'] == None):
print("Uncertainty exceeds or equal adjusted upper time error!")
print("Adjusted uncertainty: {}".format(upperErrors[0]))
print("Pick uncertainty: {}".format(picks_copy[i].time_errors['uncertainty']))
print("{1} P-Pick of station {0} will not be saved in outputfile".format(
picks_copy[i].waveform_id.station_code,
picks_copy[i].method_id))
print("#")
del picks_copy[i]
break
if picks_copy[i].phase_hint[0] == 'S':
if (picks_copy[i].time_errors['upper_uncertainty'] >= upperErrors[1]) or \
(picks_copy[i].time_errors['uncertainty'] == None):
print("Uncertainty exceeds or equal adjusted upper time error!")
print("Adjusted uncertainty: {}".format(upperErrors[1]))
print("Pick uncertainty: {}".format(picks_copy[i].time_errors['uncertainty']))
print("{1} S-Pick of station {0} will not be saved in outputfile".format(
picks_copy[i].waveform_id.station_code,
picks_copy[i].method_id))
print("#")
del picks_copy[i]
break
if fnext == '.obs':
try:
evtdata_copy.write(fnout + fnext, format=evtformat)
# write header afterwards
evid = str(evtdata_org.resource_id).split('/')[1]
header = '# EQEVENT: Label: EQ%s Loc: X 0.00 Y 0.00 Z 10.00 OT 0.00 \n' % evid
nllocfile = open(fnout + fnext)
l = nllocfile.readlines()
nllocfile.close()
l.insert(0, header)
nllocfile = open(fnout + fnext, 'w')
nllocfile.write("".join(l))
nllocfile.close()
except KeyError as e:
raise KeyError('''{0} export format
not implemented: {1}'''.format(evtformat, e))
if fnext == '.cnv':
try:
velest.export(picks_copy, fnout + fnext, eventinfo=self.get_evt_data())
except KeyError as e: except KeyError as e:
raise KeyError('''{0} export format raise KeyError('''{0} export format
not implemented: {1}'''.format(evtformat, e)) not implemented: {1}'''.format(evtformat, e))
@ -232,6 +365,8 @@ class Data(object):
self.wfdata += read(fname, format='GSE2') self.wfdata += read(fname, format='GSE2')
except Exception as e: except Exception as e:
warnmsg += '{0}\n{1}\n'.format(fname, e) warnmsg += '{0}\n{1}\n'.format(fname, e)
except SacIOError as se:
warnmsg += '{0}\n{1}\n'.format(fname, se)
if warnmsg: if warnmsg:
warnmsg = 'WARNING: unable to read\n' + warnmsg warnmsg = 'WARNING: unable to read\n' + warnmsg
print(warnmsg) print(warnmsg)
@ -278,12 +413,12 @@ class Data(object):
def setEvtData(self, event): def setEvtData(self, event):
self.evtdata = event self.evtdata = event
def applyEVTData(self, data, type='pick', authority_id='rub'): def applyEVTData(self, data, typ='pick', authority_id='rub'):
""" """
:param data: :param data:
:param type: :param typ:
:param authority_id: :param authority_id:
:raise OverwriteError: :raise OverwriteError:
""" """
@ -296,12 +431,20 @@ class Data(object):
:raise OverwriteError: raises an OverwriteError if the picks list is :raise OverwriteError: raises an OverwriteError if the picks list is
not empty. The GUI will then ask for a decision. not empty. The GUI will then ask for a decision.
""" """
# firstonset = find_firstonset(picks) # firstonset = find_firstonset(picks)
# check for automatic picks
print("Writing phases to ObsPy-quakeml file")
for key in picks:
if picks[key]['P']['picker'] == 'auto':
print("Existing picks will be overwritten!")
picks = picks_from_picksdict(picks)
break
else:
if self.get_evt_data().picks: if self.get_evt_data().picks:
raise OverwriteError('Actual picks would be overwritten!') raise OverwriteError('Existing picks would be overwritten!')
else: else:
picks = picks_from_picksdict(picks) picks = picks_from_picksdict(picks)
break
self.get_evt_data().picks = picks self.get_evt_data().picks = picks
# if 'smi:local' in self.getID() and firstonset: # if 'smi:local' in self.getID() and firstonset:
# fonset_str = firstonset.strftime('%Y_%m_%d_%H_%M_%S') # fonset_str = firstonset.strftime('%Y_%m_%d_%H_%M_%S')
@ -309,26 +452,32 @@ class Data(object):
# ID.convertIDToQuakeMLURI(authority_id=authority_id) # ID.convertIDToQuakeMLURI(authority_id=authority_id)
# self.get_evt_data().resource_id = ID # self.get_evt_data().resource_id = ID
def applyEvent(event): def applyEvent(event):
""" """
takes an `obspy.core.event.Event` object and applies all new takes an `obspy.core.event.Event` object and applies all new
information on the event to the actual data information on the event to the actual data
:param event: :param event:
""" """
if not self.isNew(): if self.isNew():
self.setEvtData(event) self.setEvtData(event)
else: else:
# prevent overwriting original pick information # prevent overwriting original pick information
picks = copy.deepcopy(self.get_evt_data().picks) event_old = self.get_evt_data()
if not event_old.resource_id == event.resource_id:
print("WARNING: Missmatch in event resource id's: {} and {}".format(
event_old.resource_id,
event.resource_id))
else:
picks = copy.deepcopy(event_old.picks)
event = merge_picks(event, picks) event = merge_picks(event, picks)
# apply event information from location # apply event information from location
self.get_evt_data().update(event) event_old.update(event)
applydata = {'pick': applyPicks, applydata = {'pick': applyPicks,
'event': applyEvent} 'event': applyEvent}
applydata[type](data) applydata[typ](data)
self._new = False
class GenericDataStructure(object): class GenericDataStructure(object):

View File

@ -0,0 +1,491 @@
#!/usr/bin/env python
# -*- coding: utf-8 -*-
defaults = {'rootpath': {'type': str,
'tooltip': 'project path',
'value': '',
'namestring': 'Root path'},
'datapath': {'type': str,
'tooltip': 'data path',
'value': '',
'namestring': 'Data path'},
'database': {'type': str,
'tooltip': 'name of data base',
'value': '',
'namestring': 'Database path'},
'eventID': {'type': str,
'tooltip': 'event ID for single event processing (* for all events found in database)',
'value': '',
'namestring': 'Event ID'},
'extent': {'type': str,
'tooltip': 'extent of array ("local", "regional" or "global")',
'value': 'local',
'namestring': 'Array extent'},
'invdir': {'type': str,
'tooltip': 'full path to inventory or dataless-seed file',
'value': '',
'namestring': 'Inversion dir'},
'datastructure': {'type': str,
'tooltip': 'choose data structure',
'value': 'PILOT',
'namestring': 'Datastructure'},
'apverbose': {'type': bool,
'tooltip': "choose 'True' or 'False' for terminal output",
'value': True,
'namestring': 'App. verbosity'},
'nllocbin': {'type': str,
'tooltip': 'path to NLLoc executable',
'value': '',
'namestring': 'NLLoc bin path'},
'nllocroot': {'type': str,
'tooltip': 'root of NLLoc-processing directory',
'value': '',
'namestring': 'NLLoc root path'},
'phasefile': {'type': str,
'tooltip': 'name of autoPyLoT-output phase file for NLLoc',
'value': 'AUTOPHASES.obs',
'namestring': 'Phase filename'},
'ctrfile': {'type': str,
'tooltip': 'name of autoPyLoT-output control file for NLLoc',
'value': 'Insheim_min1d2015_auto.in',
'namestring': 'Control filename'},
'ttpatter': {'type': str,
'tooltip': 'pattern of NLLoc ttimes from grid',
'value': 'ttime',
'namestring': 'Traveltime pattern'},
'outpatter': {'type': str,
'tooltip': 'pattern of NLLoc-output file',
'value': 'AUTOLOC_nlloc',
'namestring': 'NLLoc output pattern'},
'vp': {'type': float,
'tooltip': 'average P-wave velocity',
'value': 3530.,
'namestring': 'P-velocity'},
'rho': {'type': float,
'tooltip': 'average rock density [kg/m^3]',
'value': 2500.,
'namestring': 'Density'},
'Qp': {'type': (float, float),
'tooltip': 'quality factor for P waves (Qp*f^a); list(Qp, a)',
'value': (300., 0.8),
'namestring': ('Quality factor', 'Qp1', 'Qp2')},
'pstart': {'type': float,
'tooltip': 'start time [s] for calculating CF for P-picking (if TauPy:'
' seconds relative to estimated onset)',
'value': 15.0,
'namestring': 'P start'},
'pstop': {'type': float,
'tooltip': 'end time [s] for calculating CF for P-picking (if TauPy:'
' seconds relative to estimated onset)',
'value': 60.0,
'namestring': 'P stop'},
'sstart': {'type': float,
'tooltip': 'start time [s] relative to P-onset for calculating CF for S-picking',
'value': -1.0,
'namestring': 'S start'},
'sstop': {'type': float,
'tooltip': 'end time [s] after P-onset for calculating CF for S-picking',
'value': 10.0,
'namestring': 'S stop'},
'bpz1': {'type': (float, float),
'tooltip': 'lower/upper corner freq. of first band pass filter Z-comp. [Hz]',
'value': (2, 20),
'namestring': ('Z-bandpass 1', 'Lower', 'Upper')},
'bpz2': {'type': (float, float),
'tooltip': 'lower/upper corner freq. of second band pass filter Z-comp. [Hz]',
'value': (2, 30),
'namestring': ('Z-bandpass 2', 'Lower', 'Upper')},
'bph1': {'type': (float, float),
'tooltip': 'lower/upper corner freq. of first band pass filter H-comp. [Hz]',
'value': (2, 15),
'namestring': ('H-bandpass 1', 'Lower', 'Upper')},
'bph2': {'type': (float, float),
'tooltip': 'lower/upper corner freq. of second band pass filter z-comp. [Hz]',
'value': (2, 20),
'namestring': ('H-bandpass 2', 'Lower', 'Upper')},
'algoP': {'type': str,
'tooltip': 'choose algorithm for P-onset determination (HOS, ARZ, or AR3)',
'value': 'HOS',
'namestring': 'P algorithm'},
'tlta': {'type': float,
'tooltip': 'for HOS-/AR-AIC-picker, length of LTA window [s]',
'value': 7.0,
'namestring': 'LTA window'},
'hosorder': {'type': int,
'tooltip': 'for HOS-picker, order of Higher Order Statistics',
'value': 4,
'namestring': 'HOS order'},
'Parorder': {'type': int,
'tooltip': 'for AR-picker, order of AR process of Z-component',
'value': 2,
'namestring': 'AR order P'},
'tdet1z': {'type': float,
'tooltip': 'for AR-picker, length of AR determination window [s] for Z-component, 1st pick',
'value': 1.2,
'namestring': 'AR det. window Z 1'},
'tpred1z': {'type': float,
'tooltip': 'for AR-picker, length of AR prediction window [s] for Z-component, 1st pick',
'value': 0.4,
'namestring': 'AR pred. window Z 1'},
'tdet2z': {'type': float,
'tooltip': 'for AR-picker, length of AR determination window [s] for Z-component, 2nd pick',
'value': 0.6,
'namestring': 'AR det. window Z 2'},
'tpred2z': {'type': float,
'tooltip': 'for AR-picker, length of AR prediction window [s] for Z-component, 2nd pick',
'value': 0.2,
'namestring': 'AR pred. window Z 2'},
'addnoise': {'type': float,
'tooltip': 'add noise to seismogram for stable AR prediction',
'value': 0.001,
'namestring': 'Add noise'},
'tsnrz': {'type': (float, float, float, float),
'tooltip': 'for HOS/AR, window lengths for SNR-and slope estimation [tnoise, tsafetey, tsignal, tslope] [s]',
'value': (3, 0.1, 0.5, 1.0),
'namestring': ('SNR windows P', 'Noise', 'Safety', 'Signal', 'Slope')},
'pickwinP': {'type': float,
'tooltip': 'for initial AIC pick, length of P-pick window [s]',
'value': 3.0,
'namestring': 'AIC window P'},
'Precalcwin': {'type': float,
'tooltip': 'for HOS/AR, window length [s] for recalculation of CF (relative to 1st pick)',
'value': 6.0,
'namestring': 'Recal. window P'},
'aictsmooth': {'type': float,
'tooltip': 'for HOS/AR, take average of samples for smoothing of AIC-function [s]',
'value': 0.2,
'namestring': 'AIC smooth P'},
'tsmoothP': {'type': float,
'tooltip': 'for HOS/AR, take average of samples for smoothing CF [s]',
'value': 0.1,
'namestring': 'CF smooth P'},
'ausP': {'type': float,
'tooltip': 'for HOS/AR, artificial uplift of samples (aus) of CF (P)',
'value': 0.001,
'namestring': 'Artificial uplift P'},
'nfacP': {'type': float,
'tooltip': 'for HOS/AR, noise factor for noise level determination (P)',
'value': 1.3,
'namestring': 'Noise factor P'},
'algoS': {'type': str,
'tooltip': 'choose algorithm for S-onset determination (ARH or AR3)',
'value': 'ARH',
'namestring': 'S algorithm'},
'tdet1h': {'type': float,
'tooltip': 'for HOS/AR, length of AR-determination window [s], H-components, 1st pick',
'value': 0.8,
'namestring': 'AR det. window H 1'},
'tpred1h': {'type': float,
'tooltip': 'for HOS/AR, length of AR-prediction window [s], H-components, 1st pick',
'value': 0.4,
'namestring': 'AR pred. window H 1'},
'tdet2h': {'type': float,
'tooltip': 'for HOS/AR, length of AR-determinaton window [s], H-components, 2nd pick',
'value': 0.6,
'namestring': 'AR det. window H 2'},
'tpred2h': {'type': float,
'tooltip': 'for HOS/AR, length of AR-prediction window [s], H-components, 2nd pick',
'value': 0.3,
'namestring': 'AR pred. window H 2'},
'Sarorder': {'type': int,
'tooltip': 'for AR-picker, order of AR process of H-components',
'value': 4,
'namestring': 'AR order S'},
'Srecalcwin': {'type': float,
'tooltip': 'for AR-picker, window length [s] for recalculation of CF (2nd pick) (H)',
'value': 5.0,
'namestring': 'Recal. window S'},
'pickwinS': {'type': float,
'tooltip': 'for initial AIC pick, length of S-pick window [s]',
'value': 3.0,
'namestring': 'AIC window S'},
'tsnrh': {'type': (float, float, float, float),
'tooltip': 'for ARH/AR3, window lengths for SNR-and slope estimation [tnoise, tsafetey, tsignal, tslope] [s]',
'value': (2, 0.2, 1.5, 0.5),
'namestring': ('SNR windows S', 'Noise', 'Safety', 'Signal', 'Slope')},
'aictsmoothS': {'type': float,
'tooltip': 'for AIC-picker, take average of samples for smoothing of AIC-function [s]',
'value': 0.5,
'namestring': 'AIC smooth S'},
'tsmoothS': {'type': float,
'tooltip': 'for AR-picker, take average of samples for smoothing CF [s] (S)',
'value': 0.7,
'namestring': 'CF smooth S'},
'ausS': {'type': float,
'tooltip': 'for HOS/AR, artificial uplift of samples (aus) of CF (S)',
'value': 0.9,
'namestring': 'Artificial uplift S'},
'nfacS': {'type': float,
'tooltip': 'for AR-picker, noise factor for noise level determination (S)',
'value': 1.5,
'namestring': 'Noise factor S'},
'minfmweight': {'type': int,
'tooltip': 'minimum required P weight for first-motion determination',
'value': 1,
'namestring': 'Min. P weight'},
'minFMSNR': {'type': float,
'tooltip': 'miniumum required SNR for first-motion determination',
'value': 2.,
'namestring': 'Min SNR'},
'fmpickwin': {'type': float,
'tooltip': 'pick window around P onset for calculating zero crossings',
'value': 0.2,
'namestring': 'Zero crossings window'},
'timeerrorsP': {'type': (float, float, float, float),
'tooltip': 'discrete time errors [s] corresponding to picking weights [0 1 2 3] for P',
'value': (0.01, 0.02, 0.04, 0.08),
'namestring': ('Time errors P', '0', '1', '2', '3')},
'timeerrorsS': {'type': (float, float, float, float),
'tooltip': 'discrete time errors [s] corresponding to picking weights [0 1 2 3] for S',
'value': (0.04, 0.08, 0.16, 0.32),
'namestring': ('Time errors S', '0', '1', '2', '3')},
'minAICPslope': {'type': float,
'tooltip': 'below this slope [counts/s] the initial P pick is rejected',
'value': 0.8,
'namestring': 'Min. slope P'},
'minAICPSNR': {'type': float,
'tooltip': 'below this SNR the initial P pick is rejected',
'value': 1.1,
'namestring': 'Min. SNR P'},
'minAICSslope': {'type': float,
'tooltip': 'below this slope [counts/s] the initial S pick is rejected',
'value': 1.,
'namestring': 'Min. slope S'},
'minAICSSNR': {'type': float,
'tooltip': 'below this SNR the initial S pick is rejected',
'value': 1.5,
'namestring': 'Min. SNR S'},
'minsiglength': {'type': float,
'tooltip': 'length of signal part for which amplitudes must exceed noiselevel [s]',
'value': 1.,
'namestring': 'Min. signal length'},
'noisefactor': {'type': float,
'tooltip': 'noiselevel*noisefactor=threshold',
'value': 1.0,
'namestring': 'Noise factor'},
'minpercent': {'type': float,
'tooltip': 'required percentage of amplitudes exceeding threshold',
'value': 10.,
'namestring': 'Min amplitude [%]'},
'zfac': {'type': float,
'tooltip': 'P-amplitude must exceed at least zfac times RMS-S amplitude',
'value': 1.5,
'namestring': 'Z factor'},
'mdttolerance': {'type': float,
'tooltip': 'maximum allowed deviation of P picks from median [s]',
'value': 6.0,
'namestring': 'Median tolerance'},
'wdttolerance': {'type': float,
'tooltip': 'maximum allowed deviation from Wadati-diagram',
'value': 1.0,
'namestring': 'Wadati tolerance'},
'jackfactor': {'type': float,
'tooltip': 'pick is removed if the variance of the subgroup with the pick removed is larger than the mean variance of all subgroups times safety factor',
'value': 5.0,
'namestring': 'Jackknife safety factor'},
'WAscaling': {'type': (float, float, float),
'tooltip': 'Scaling relation (log(Ao)+Alog(r)+Br+C) of Wood-Anderson amplitude Ao [nm] \
If zeros are set, original Richter magnitude is calculated!',
'value': (0., 0., 0.),
'namestring': ('Wood-Anderson scaling', '', '', '')},
'magscaling': {'type': (float, float),
'tooltip': 'Scaling relation for derived local magnitude [a*Ml+b]. \
If zeros are set, no scaling of network magnitude is applied!',
'value': (0., 0.),
'namestring': ('Local mag. scaling', '', '')},
'minfreq': {'type': (float, float),
'tooltip': 'Lower filter frequency [P, S]',
'value': (1.0, 1.0),
'namestring': ('Lower freq.', 'P', 'S')},
'maxfreq': {'type': (float, float),
'tooltip': 'Upper filter frequency [P, S]',
'value': (10.0, 10.0),
'namestring': ('Upper freq.', 'P', 'S')},
'filter_order': {'type': (int, int),
'tooltip': 'filter order [P, S]',
'value': (2, 2),
'namestring': ('Order', 'P', 'S')},
'filter_type': {'type': (str, str),
'tooltip': 'filter type (bandpass, bandstop, lowpass, highpass) [P, S]',
'value': ('bandpass', 'bandpass'),
'namestring': ('Type', 'P', 'S')},
'use_taup': {'type': bool,
'tooltip': 'use estimated traveltimes from TauPy for calculating windows for CF',
'value': True,
'namestring': 'Use TauPy'},
'taup_model': {'type': str,
'tooltip': 'define TauPy model for traveltime estimation. Possible values: 1066a, 1066b, ak135, ak135f, herrin, iasp91, jb, prem, pwdk, sp6',
'value': 'iasp91',
'namestring': 'TauPy model'}
}
settings_main = {
'dirs': [
'rootpath',
'datapath',
'database',
'eventID',
'invdir',
'datastructure',
'apverbose'],
'nlloc': [
'nllocbin',
'nllocroot',
'phasefile',
'ctrfile',
'ttpatter',
'outpatter'],
'smoment': [
'vp',
'rho',
'Qp'],
'localmag': [
'WAscaling',
'magscaling'],
'filter': [
'minfreq',
'maxfreq',
'filter_order',
'filter_type'],
'pick': [
'extent',
'pstart',
'pstop',
'sstart',
'sstop',
'use_taup',
'taup_model',
'bpz1',
'bpz2',
'bph1',
'bph2']
}
settings_special_pick = {
'z': [
'algoP',
'tlta',
'hosorder',
'Parorder',
'tdet1z',
'tpred1z',
'tdet2z',
'tpred2z',
'addnoise',
'tsnrz',
'pickwinP',
'Precalcwin',
'aictsmooth',
'tsmoothP',
'ausP',
'nfacP'],
'h': [
'algoS',
'tdet1h',
'tpred1h',
'tdet2h',
'tpred2h',
'Sarorder',
'Srecalcwin',
'pickwinS',
'tsnrh',
'aictsmoothS',
'tsmoothS',
'ausS',
'nfacS'],
'fm': [
'minfmweight',
'minFMSNR',
'fmpickwin'],
'quality': [
'timeerrorsP',
'timeerrorsS',
'minAICPslope',
'minAICPSNR',
'minAICSslope',
'minAICSSNR',
'minsiglength',
'noisefactor',
'minpercent',
'zfac',
'mdttolerance',
'wdttolerance',
'jackfactor'],
}

View File

@ -1,12 +1,13 @@
#!/usr/bin/env python #!/usr/bin/env python
# -*- coding: utf-8 -*- # -*- coding: utf-8 -*-
from pylot.core.io import default_parameters
from pylot.core.util.errors import ParameterError from pylot.core.util.errors import ParameterError
class AutoPickParameter(object): class PylotParameter(object):
''' '''
AutoPickParameters is a parameter type object capable to read and/or write PylotParameter is a parameter type object capable to read and/or write
parameter ASCII. parameter ASCII.
:param fn str: Filename of the input file :param fn str: Filename of the input file
@ -44,48 +45,15 @@ class AutoPickParameter(object):
contain all parameters. contain all parameters.
''' '''
self.__init_default_paras()
self.__init_subsettings()
self.__filename = fnin self.__filename = fnin
parFileCont = {} self._verbosity = verbosity
self._parFileCont = {}
# io from parsed arguments alternatively # io from parsed arguments alternatively
for key, val in kwargs.items(): for key, val in kwargs.items():
parFileCont[key] = val self._parFileCont[key] = val
self.from_file()
if self.__filename is not None:
inputFile = open(self.__filename, 'r')
else:
return
try:
lines = inputFile.readlines()
for line in lines:
parspl = line.split('\t')[:2]
parFileCont[parspl[0].strip()] = parspl[1]
except IndexError as e:
if verbosity > 0:
self._printParameterError(e)
inputFile.seek(0)
lines = inputFile.readlines()
for line in lines:
if not line.startswith(('#', '%', '\n', ' ')):
parspl = line.split('#')[:2]
parFileCont[parspl[1].strip()] = parspl[0].strip()
for key, value in parFileCont.items():
try:
val = int(value)
except:
try:
val = float(value)
except:
if len(value.split(' ')) > 1:
vallist = value.strip().split(' ')
val = []
for val0 in vallist:
val0 = float(val0)
val.append(val0)
else:
val = str(value.strip())
parFileCont[key] = val
self.__parameter = parFileCont
if fnout: if fnout:
self.export2File(fnout) self.export2File(fnout)
@ -100,16 +68,28 @@ class AutoPickParameter(object):
string += 'Empty parameter dictionary.' string += 'Empty parameter dictionary.'
return string return string
# Set default values of parameter names
def __init_default_paras(self):
parameters = default_parameters.defaults
self.__defaults = parameters
def __init_subsettings(self):
self._settings_main = default_parameters.settings_main
self._settings_special_pick = default_parameters.settings_special_pick
# String representation of the object # String representation of the object
def __repr__(self): def __repr__(self):
return "AutoPickParameter('%s')" % self.__filename return "PylotParameter('%s')" % self.__filename
# Boolean test # Boolean test
def __nonzero__(self): def __nonzero__(self):
return self.__parameter return bool(self.__parameter)
def __getitem__(self, key): def __getitem__(self, key):
try:
return self.__parameter[key] return self.__parameter[key]
except:
return None
def __setitem__(self, key, value): def __setitem__(self, key, value):
self.__parameter[key] = value self.__parameter[key] = value
@ -128,7 +108,7 @@ class AutoPickParameter(object):
yield key, value yield key, value
def hasParam(self, parameter): def hasParam(self, parameter):
if self.__parameter.has_key(parameter): if parameter in self.__parameter.keys():
return True return True
return False return False
@ -147,21 +127,165 @@ class AutoPickParameter(object):
self._printParameterError(e) self._printParameterError(e)
raise ParameterError(e) raise ParameterError(e)
def setParam(self, **kwargs): def get_defaults(self):
for param, value in kwargs.items(): return self.__defaults
def get_main_para_names(self):
return self._settings_main
def get_special_para_names(self):
return self._settings_special_pick
def get_all_para_names(self):
all_names = []
all_names += self.get_main_para_names()['dirs']
all_names += self.get_main_para_names()['nlloc']
all_names += self.get_main_para_names()['smoment']
all_names += self.get_main_para_names()['localmag']
all_names += self.get_main_para_names()['pick']
all_names += self.get_main_para_names()['filter']
all_names += self.get_special_para_names()['z']
all_names += self.get_special_para_names()['h']
all_names += self.get_special_para_names()['fm']
all_names += self.get_special_para_names()['quality']
return all_names
def checkValue(self, param, value):
is_type = type(value)
expect_type = self.get_defaults()[param]['type']
if not is_type == expect_type and not is_type == tuple:
message = 'Type check failed for param: {}, is type: {}, expected type:{}'
message = message.format(param, is_type, expect_type)
print(Warning(message))
def setParamKV(self, param, value):
self.__setitem__(param, value) self.__setitem__(param, value)
# print(self)
def setParam(self, **kwargs):
for key in kwargs:
self.__setitem__(key, kwargs[key])
@staticmethod @staticmethod
def _printParameterError(errmsg): def _printParameterError(errmsg):
print('ParameterError:\n non-existent parameter %s' % errmsg) print('ParameterError:\n non-existent parameter %s' % errmsg)
def reset_defaults(self):
defaults = self.get_defaults()
for param in defaults:
self.setParamKV(param, defaults[param]['value'])
def from_file(self, fnin=None):
if not fnin:
if self.__filename is not None:
fnin = self.__filename
else:
return
if isinstance(fnin, (list, tuple)):
fnin = fnin[0]
inputFile = open(fnin, 'r')
try:
lines = inputFile.readlines()
for line in lines:
parspl = line.split('\t')[:2]
self._parFileCont[parspl[0].strip()] = parspl[1]
except IndexError as e:
if self._verbosity > 0:
self._printParameterError(e)
inputFile.seek(0)
lines = inputFile.readlines()
for line in lines:
if not line.startswith(('#', '%', '\n', ' ')):
parspl = line.split('#')[:2]
self._parFileCont[parspl[1].strip()] = parspl[0].strip()
for key, value in self._parFileCont.items():
try:
val = int(value)
except:
try:
val = float(value)
except:
if len(value.split(' ')) > 1:
vallist = value.strip().split(' ')
val = []
for val0 in vallist:
try:
val0 = float(val0)
except:
pass
val.append(val0)
else:
val = str(value.strip())
self._parFileCont[key] = val
self.__parameter = self._parFileCont
def export2File(self, fnout): def export2File(self, fnout):
fid_out = open(fnout, 'w') fid_out = open(fnout, 'w')
lines = [] lines = []
for key, value in self.iteritems(): # for key, value in self.iteritems():
lines.append('{key}\t{value}'.format(key=key, value=value)) # lines.append('{key}\t{value}\n'.format(key=key, value=value))
fid_out.writelines(lines) # fid_out.writelines(lines)
header = ('%This is a parameter input file for PyLoT/autoPyLoT.\n' +
'%All main and special settings regarding data handling\n' +
'%and picking are to be set here!\n' +
'%Parameters are optimized for %{} data sets!\n'.format(self.get_main_para_names()['pick'][0]))
separator = '%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%\n'
fid_out.write(header)
self.write_section(fid_out, self.get_main_para_names()['dirs'],
'main settings', separator)
self.write_section(fid_out, self.get_main_para_names()['nlloc'],
'NLLoc settings', separator)
self.write_section(fid_out, self.get_main_para_names()['smoment'],
'parameters for seismic moment estimation', separator)
self.write_section(fid_out, self.get_main_para_names()['localmag'],
'settings local magnitude', separator)
self.write_section(fid_out, self.get_main_para_names()['filter'],
'filter settings', separator)
self.write_section(fid_out, self.get_main_para_names()['pick'],
'common settings picker', separator)
fid_out.write(('#special settings for calculating CF#\n' +
'%!!Edit the following only if you know what you are doing!!%\n'))
self.write_section(fid_out, self.get_special_para_names()['z'],
'Z-component', None)
self.write_section(fid_out, self.get_special_para_names()['h'],
'H-components', None)
self.write_section(fid_out, self.get_special_para_names()['fm'],
'first-motion picker', None)
self.write_section(fid_out, self.get_special_para_names()['quality'],
'quality assessment', None)
def write_section(self, fid, names, title, separator):
if separator:
fid.write(separator)
fid.write('#{}#\n'.format(title))
l_val = 50
l_name = 15
l_ttip = 100
for name in names:
value = self[name]
if type(value) == list or type(value) == tuple:
value_tmp = ''
for vl in value:
value_tmp += '{} '.format(vl)
value = value_tmp
tooltip = self.get_defaults()[name]['tooltip']
if not len(str(value)) > l_val:
value = '{:<{}} '.format(str(value), l_val)
else:
value = '{} '.format(str(value))
name += '#'
if not len(name) > l_name:
name = '#{:<{}} '.format(name, l_name)
else:
name = '#{} '.format(name)
if not len(tooltip) > l_ttip:
ttip = '%{:<{}}\n'.format(tooltip, l_ttip)
else:
ttip = '%{}\n'.format(tooltip)
line = value + name + ttip
fid.write(line)
class FilterOptions(object): class FilterOptions(object):
@ -218,12 +342,13 @@ class FilterOptions(object):
def parseFilterOptions(self): def parseFilterOptions(self):
if self: if self:
robject = {'type': self.getFilterType(), 'corners': self.getOrder()} robject = {'type': self.getFilterType(), 'corners': self.getOrder()}
if len(self.getFreq()) > 1: if not self.getFilterType() in ['highpass', 'lowpass']:
robject['freqmin'] = self.getFreq()[0] robject['freqmin'] = self.getFreq()[0]
robject['freqmax'] = self.getFreq()[1] robject['freqmax'] = self.getFreq()[1]
else: elif self.getFilterType() == 'highpass':
robject['freq'] = self.getFreq() if type(self.getFreq()) is \ robject['freq'] = self.getFreq()[0]
float else self.getFreq()[0] elif self.getFilterType() == 'lowpass':
robject['freq'] = self.getFreq()[1]
return robject return robject
return None return None

View File

@ -2,15 +2,19 @@
# -*- coding: utf-8 -*- # -*- coding: utf-8 -*-
import glob import glob
import obspy.core.event as ope
import os import os
import scipy.io as sio
import warnings import warnings
from obspy.core import UTCDateTime
from pylot.core.io.inputs import AutoPickParameter import matplotlib.pyplot as plt
from pylot.core.io.location import create_arrival, create_event, \ import numpy as np
create_magnitude, create_origin, create_pick import obspy.core.event as ope
import scipy.io as sio
from obspy.core import UTCDateTime
from obspy.core.event import read_events
from obspy.core.util import AttribDict
from pylot.core.io.inputs import PylotParameter
from pylot.core.io.location import create_event, \
create_magnitude
from pylot.core.pick.utils import select_for_phase from pylot.core.pick.utils import select_for_phase
from pylot.core.util.utils import getOwner, full_range, four_digits from pylot.core.util.utils import getOwner, full_range, four_digits
@ -33,6 +37,7 @@ def add_amplitudes(event, amplitudes):
event.amplitudes = amplitude_list event.amplitudes = amplitude_list
return event return event
def readPILOTEvent(phasfn=None, locfn=None, authority_id='RUB', **kwargs): def readPILOTEvent(phasfn=None, locfn=None, authority_id='RUB', **kwargs):
""" """
readPILOTEvent - function readPILOTEvent - function
@ -117,7 +122,7 @@ def picksdict_from_pilot(fn):
picks = dict() picks = dict()
phases_pilot = sio.loadmat(fn) phases_pilot = sio.loadmat(fn)
stations = stations_from_pilot(phases_pilot['stat']) stations = stations_from_pilot(phases_pilot['stat'])
params = AutoPickParameter(TIMEERROR_DEFAULTS) params = PylotParameter(TIMEERROR_DEFAULTS)
timeerrors = dict(P=params.get('timeerrorsP'), timeerrors = dict(P=params.get('timeerrorsP'),
S=params.get('timeerrorsS')) S=params.get('timeerrorsS'))
for n, station in enumerate(stations): for n, station in enumerate(stations):
@ -189,24 +194,35 @@ def picksdict_from_picks(evt):
PyLoT PyLoT
:param evt: Event object contain all available information :param evt: Event object contain all available information
:type evt: `~obspy.core.event.Event` :type evt: `~obspy.core.event.Event`
:return: pick dictionary :return: pick dictionary (auto and manual)
""" """
picks = {} picksdict = {
'manual': {},
'auto': {}
}
for pick in evt.picks: for pick in evt.picks:
phase = {} phase = {}
station = pick.waveform_id.station_code station = pick.waveform_id.station_code
channel = pick.waveform_id.channel_code
network = pick.waveform_id.network_code
mpp = pick.time
spe = pick.time_errors.uncertainty
try: try:
onsets = picks[station] picker = str(pick.method_id)
if picker.startswith('smi:local/'):
picker = picker.split('smi:local/')[1]
except IndexError:
picker = 'manual' # MP MP TODO maybe improve statement
try:
onsets = picksdict[picker][station]
except KeyError as e: except KeyError as e:
# print(e) # print(e)
onsets = {} onsets = {}
mpp = pick.time
spe = pick.time_errors.uncertainty
try: try:
lpp = mpp + pick.time_errors.upper_uncertainty lpp = mpp + pick.time_errors.upper_uncertainty
epp = mpp - pick.time_errors.lower_uncertainty epp = mpp - pick.time_errors.lower_uncertainty
except TypeError as e: except TypeError as e:
msg = e.message + ',\n falling back to symmetric uncertainties' msg = e + ',\n falling back to symmetric uncertainties'
warnings.warn(msg) warnings.warn(msg)
lpp = mpp + spe lpp = mpp + spe
epp = mpp - spe epp = mpp - spe
@ -214,25 +230,27 @@ def picksdict_from_picks(evt):
phase['epp'] = epp phase['epp'] = epp
phase['lpp'] = lpp phase['lpp'] = lpp
phase['spe'] = spe phase['spe'] = spe
try: phase['channel'] = channel
picker = str(pick.method_id) phase['network'] = network
if picker.startswith('smi:local/'):
picker = picker.split('smi:local/')[1]
phase['picker'] = picker phase['picker'] = picker
except IndexError:
pass
onsets[pick.phase_hint] = phase.copy() onsets[pick.phase_hint] = phase.copy()
picks[station] = onsets.copy() picksdict[picker][station] = onsets.copy()
return picks return picksdict
def picks_from_picksdict(picks, creation_info=None): def picks_from_picksdict(picks, creation_info=None):
picks_list = list() picks_list = list()
for station, onsets in picks.items(): for station, onsets in picks.items():
for label, phase in onsets.items(): for label, phase in onsets.items():
if not isinstance(phase, dict): if not isinstance(phase, dict) and not isinstance(phase, AttribDict):
continue continue
onset = phase['mpp'] onset = phase['mpp']
try:
ccode = phase['channel']
ncode = phase['network']
except:
continue
pick = ope.Pick() pick = ope.Pick()
if creation_info: if creation_info:
pick.creation_info = creation_info pick.creation_info = creation_info
@ -244,8 +262,8 @@ def picks_from_picksdict(picks, creation_info=None):
lpp = phase['lpp'] lpp = phase['lpp']
pick.time_errors.lower_uncertainty = onset - epp pick.time_errors.lower_uncertainty = onset - epp
pick.time_errors.upper_uncertainty = lpp - onset pick.time_errors.upper_uncertainty = lpp - onset
except KeyError as e: except (KeyError, TypeError) as e:
warnings.warn(e.message, RuntimeWarning) warnings.warn(str(e), RuntimeWarning)
try: try:
picker = phase['picker'] picker = phase['picker']
except KeyError as e: except KeyError as e:
@ -253,7 +271,9 @@ def picks_from_picksdict(picks, creation_info=None):
picker = 'Unknown' picker = 'Unknown'
pick.phase_hint = label pick.phase_hint = label
pick.method_id = ope.ResourceIdentifier(id=picker) pick.method_id = ope.ResourceIdentifier(id=picker)
pick.waveform_id = ope.WaveformStreamID(station_code=station) pick.waveform_id = ope.WaveformStreamID(station_code=station,
channel_code=ccode,
network_code=ncode)
try: try:
polarity = phase['fm'] polarity = phase['fm']
if polarity == 'U' or '+': if polarity == 'U' or '+':
@ -263,7 +283,7 @@ def picks_from_picksdict(picks, creation_info=None):
else: else:
pick.polarity = 'undecidable' pick.polarity = 'undecidable'
except KeyError as e: except KeyError as e:
if 'fm' in e.message: # no polarity information found for this phase if 'fm' in str(e): # no polarity information found for this phase
pass pass
else: else:
raise e raise e
@ -283,18 +303,16 @@ def reassess_pilot_db(root_dir, db_dir, out_dir=None, fn_param=None, verbosity=0
reassess_pilot_event(root_dir, db_dir, evt, out_dir, fn_param, verbosity) reassess_pilot_event(root_dir, db_dir, evt, out_dir, fn_param, verbosity)
def reassess_pilot_event(root_dir, db_dir, event_id, out_dir=None, fn_param=None, verbosity=0): def reassess_pilot_event(root_dir, db_dir, event_id, out_dir=None, fn_param=None, verbosity=0):
from obspy import read from obspy import read
from pylot.core.io.inputs import AutoPickParameter from pylot.core.io.inputs import PylotParameter
from pylot.core.pick.utils import earllatepicker from pylot.core.pick.utils import earllatepicker
if fn_param is None: if fn_param is None:
import pylot.core.util.defaults as defaults
fn_param = defaults.AUTOMATIC_DEFAULTS fn_param = defaults.AUTOMATIC_DEFAULTS
default = AutoPickParameter(fn_param, verbosity) default = PylotParameter(fn_param, verbosity)
search_base = os.path.join(root_dir, db_dir, event_id) search_base = os.path.join(root_dir, db_dir, event_id)
phases_file = glob.glob(os.path.join(search_base, 'PHASES.mat')) phases_file = glob.glob(os.path.join(search_base, 'PHASES.mat'))
@ -325,7 +343,8 @@ def reassess_pilot_event(root_dir, db_dir, event_id, out_dir=None, fn_param=None
except Exception as e: except Exception as e:
if 'No file matching file pattern:' in e.message: if 'No file matching file pattern:' in e.message:
if verbosity > 0: if verbosity > 0:
warnings.warn('no waveform data found for station {station}'.format(station=station), RuntimeWarning) warnings.warn('no waveform data found for station {station}'.format(station=station),
RuntimeWarning)
datacheck.append(fn_pattern + ' (no data)\n') datacheck.append(fn_pattern + ' (no data)\n')
continue continue
else: else:
@ -349,8 +368,8 @@ def reassess_pilot_event(root_dir, db_dir, event_id, out_dir=None, fn_param=None
default.get('nfac{0}'.format(phase)), default.get('nfac{0}'.format(phase)),
default.get('tsnrz' if phase == 'P' else 'tsnrh'), default.get('tsnrz' if phase == 'P' else 'tsnrh'),
Pick1=rel_pick, Pick1=rel_pick,
iplot=None, iplot=0,
stealth_mode=True) verbosity=0)
if epp is None or lpp is None: if epp is None or lpp is None:
continue continue
epp = stime + epp epp = stime + epp
@ -374,17 +393,17 @@ def reassess_pilot_event(root_dir, db_dir, event_id, out_dir=None, fn_param=None
evt.picks = picks_from_picksdict(picks_dict) evt.picks = picks_from_picksdict(picks_dict)
# write phase information to file # write phase information to file
if not out_dir: if not out_dir:
fnout_prefix = os.path.join(root_dir, db_dir, event_id, '{0}.'.format(event_id)) fnout_prefix = os.path.join(root_dir, db_dir, event_id, 'PyLoT_{0}.'.format(event_id))
else: else:
out_dir = os.path.join(out_dir, db_dir) out_dir = os.path.join(out_dir, db_dir)
if not os.path.isdir(out_dir): if not os.path.isdir(out_dir):
os.makedirs(out_dir) os.makedirs(out_dir)
fnout_prefix = os.path.join(out_dir, '{0}.'.format(event_id)) fnout_prefix = os.path.join(out_dir, 'PyLoT_{0}.'.format(event_id))
evt.write(fnout_prefix + 'xml', format='QUAKEML') evt.write(fnout_prefix + 'xml', format='QUAKEML')
# evt.write(fnout_prefix + 'cnv', format='VELEST') # evt.write(fnout_prefix + 'cnv', format='VELEST')
def writephases(arrivals, fformat, filename): def writephases(arrivals, fformat, filename, parameter=None, eventinfo=None):
""" """
Function of methods to write phases to the following standard file Function of methods to write phases to the following standard file
formats used for locating earthquakes: formats used for locating earthquakes:
@ -403,16 +422,24 @@ def writephases(arrivals, fformat, filename):
:param: filename, full path and name of phase file :param: filename, full path and name of phase file
:type: string :type: string
:param: parameter, all input information
:type: object
:param: eventinfo, optional, needed for VELEST-cnv file
and FOCMEC- and HASH-input files
:type: `obspy.core.event.Event` object
""" """
if fformat == 'NLLoc': if fformat == 'NLLoc':
print("Writing phases to %s for NLLoc" % filename) print("Writing phases to %s for NLLoc" % filename)
fid = open("%s" % filename, 'w') fid = open("%s" % filename, 'w')
# write header # write header
fid.write('# EQEVENT: Label: EQ001 Loc: X 0.00 Y 0.00 Z 10.00 OT 0.00 \n') fid.write('# EQEVENT: %s Label: EQ%s Loc: X 0.00 Y 0.00 Z 10.00 OT 0.00 \n' %
(parameter.get('database'), parameter.get('eventID')))
for key in arrivals: for key in arrivals:
# P onsets # P onsets
if arrivals[key]['P']: if arrivals[key].has_key('P'):
try: try:
fm = arrivals[key]['P']['fm'] fm = arrivals[key]['P']['fm']
except KeyError as e: except KeyError as e:
@ -477,9 +504,13 @@ def writephases(arrivals, fformat, filename):
print("Writing phases to %s for HYPO71" % filename) print("Writing phases to %s for HYPO71" % filename)
fid = open("%s" % filename, 'w') fid = open("%s" % filename, 'w')
# write header # write header
fid.write(' EQ001\n') fid.write(' %s\n' %
parameter.get('eventID'))
for key in arrivals: for key in arrivals:
if arrivals[key]['P']['weight'] < 4: if arrivals[key]['P']['weight'] < 4:
stat = key
if len(stat) > 4: # HYPO71 handles only 4-string station IDs
stat = stat[1:5]
Ponset = arrivals[key]['P']['mpp'] Ponset = arrivals[key]['P']['mpp']
Sonset = arrivals[key]['S']['mpp'] Sonset = arrivals[key]['S']['mpp']
pweight = arrivals[key]['P']['weight'] pweight = arrivals[key]['P']['weight']
@ -517,7 +548,7 @@ def writephases(arrivals, fformat, filename):
sstr = 'I' sstr = 'I'
elif sweight >= 2: elif sweight >= 2:
sstr = 'E' sstr = 'E'
fid.write('%s%sP%s%d %02d%02d%02d%02d%02d%5.2f %s%sS %d %s\n' % (key, fid.write('%-4s%sP%s%d %02d%02d%02d%02d%02d%5.2f %s%sS %d %s\n' % (stat,
pstr, pstr,
fm, fm,
pweight, pweight,
@ -532,7 +563,7 @@ def writephases(arrivals, fformat, filename):
sweight, sweight,
Ao)) Ao))
else: else:
fid.write('%s%sP%s%d %02d%02d%02d%02d%02d%5.2f %s\n' % (key, fid.write('%-4s%sP%s%d %02d%02d%02d%02d%02d%5.2f %s\n' % (stat,
pstr, pstr,
fm, fm,
pweight, pweight,
@ -546,6 +577,271 @@ def writephases(arrivals, fformat, filename):
fid.close() fid.close()
elif fformat == 'HYPOSAT':
print("Writing phases to %s for HYPOSAT" % filename)
fid = open("%s" % filename, 'w')
# write header
fid.write('%s, event %s \n' % (parameter.get('database'), parameter.get('eventID')))
for key in arrivals:
# P onsets
if arrivals[key].has_key('P'):
if arrivals[key]['P']['weight'] < 4:
Ponset = arrivals[key]['P']['mpp']
pyear = Ponset.year
pmonth = Ponset.month
pday = Ponset.day
phh = Ponset.hour
pmm = Ponset.minute
pss = Ponset.second
pms = Ponset.microsecond
Pss = pss + pms / 1000000.0
# use symmetrized picking error as std
# (read the HYPOSAT manual)
pstd = arrivals[key]['P']['spe']
fid.write('%-5s P1 %4.0f %02d %02d %02d %02d %05.02f %5.3f -999. 0.00 -999. 0.00\n'
% (key, pyear, pmonth, pday, phh, pmm, Pss, pstd))
# S onsets
if arrivals[key].has_key('S') and arrivals[key]['S']:
if arrivals[key]['S']['weight'] < 4:
Sonset = arrivals[key]['S']['mpp']
syear = Sonset.year
smonth = Sonset.month
sday = Sonset.day
shh = Sonset.hour
smm = Sonset.minute
sss = Sonset.second
sms = Sonset.microsecond
Sss = sss + sms / 1000000.0
sstd = arrivals[key]['S']['spe']
fid.write('%-5s S1 %4.0f %02d %02d %02d %02d %05.02f %5.3f -999. 0.00 -999. 0.00\n'
% (key, syear, smonth, sday, shh, smm, Sss, sstd))
fid.close()
elif fformat == 'VELEST':
print("Writing phases to %s for VELEST" % filename)
fid = open("%s" % filename, 'w')
# get informations needed in cnv-file
# check, whether latitude is N or S and longitude is E or W
try:
eventsource = eventinfo.origins[0]
except:
print("No source origin calculated yet, thus no cnv-file creation possible!")
return
if eventsource['latitude'] < 0:
cns = 'S'
else:
cns = 'N'
if eventsource['longitude'] < 0:
cew = 'W'
else:
cew = 'E'
# get last two integers of origin year
stime = eventsource['time']
if stime.year - 2000 >= 0:
syear = stime.year - 2000
else:
syear = stime.year - 1900
ifx = 0 # default value, see VELEST manual, pp. 22-23
# write header
fid.write('%s%02d%02d %02d%02d %05.2f %7.4f%c %8.4f%c %7.2f %6.2f %02.0f 0.0 0.03 1.0 1.0\n' % (
syear, stime.month, stime.day, stime.hour, stime.minute, stime.second, eventsource['latitude'],
cns, eventsource['longitude'], cew, eventsource['depth'], eventinfo.magnitudes[0]['mag'], ifx))
n = 0
for key in arrivals:
# P onsets
if arrivals[key].has_key('P'):
if arrivals[key]['P']['weight'] < 4:
n += 1
stat = key
if len(stat) > 4: # VELEST handles only 4-string station IDs
stat = stat[1:5]
Ponset = arrivals[key]['P']['mpp']
Pweight = arrivals[key]['P']['weight']
Prt = Ponset - stime # onset time relative to source time
if n % 6 is not 0:
fid.write('%-4sP%d%6.2f' % (stat, Pweight, Prt))
else:
fid.write('%-4sP%d%6.2f\n' % (stat, Pweight, Prt))
# S onsets
if arrivals[key].has_key('S'):
if arrivals[key]['S']['weight'] < 4:
n += 1
stat = key
if len(stat) > 4: # VELEST handles only 4-string station IDs
stat = stat[1:5]
Sonset = arrivals[key]['S']['mpp']
Sweight = arrivals[key]['S']['weight']
Srt = Ponset - stime # onset time relative to source time
if n % 6 is not 0:
fid.write('%-4sS%d%6.2f' % (stat, Sweight, Srt))
else:
fid.write('%-4sS%d%6.2f\n' % (stat, Sweight, Srt))
fid.close()
elif fformat == 'hypoDD':
print("Writing phases to %s for hypoDD" % filename)
fid = open("%s" % filename, 'w')
# get event information needed for hypoDD-phase file
eventsource = eventinfo.origins[0]
stime = eventsource['time']
event = parameter.get('eventID')
hddID = event.split('.')[0][1:5]
# write header
fid.write('# %d %d %d %d %d %5.2f %7.4f +%6.4f %7.4f %4.2f 0.1 0.5 %4.2f %s\n' % (
stime.year, stime.month, stime.day, stime.hour, stime.minute, stime.second,
eventsource['latitude'], eventsource['longitude'], eventsource['depth'] / 1000,
eventinfo.magnitudes[0]['mag'], eventsource['quality']['standard_error'], hddID))
for key in arrivals:
if arrivals[key].has_key('P'):
# P onsets
if arrivals[key]['P']['weight'] < 4:
Ponset = arrivals[key]['P']['mpp']
Prt = Ponset - stime # onset time relative to source time
fid.write('%s %6.3f 1 P\n' % (key, Prt))
# S onsets
if arrivals[key]['S']['weight'] < 4:
Sonset = arrivals[key]['S']['mpp']
Srt = Sonset - stime # onset time relative to source time
fid.write('%-5s %6.3f 1 S\n' % (key, Srt))
fid.close()
elif fformat == 'FOCMEC':
print("Writing phases to %s for FOCMEC" % filename)
fid = open("%s" % filename, 'w')
# get event information needed for FOCMEC-input file
eventsource = eventinfo.origins[0]
stime = eventsource['time']
# write header line including event information
fid.write('%s %d%02d%02d%02d%02d%02.0f %7.4f %6.4f %3.1f %3.1f\n' % (parameter.get('eventID'),
stime.year, stime.month, stime.day,
stime.hour, stime.minute, stime.second,
eventsource['latitude'],
eventsource['longitude'],
eventsource['depth'] / 1000,
eventinfo.magnitudes[0]['mag']))
picks = eventinfo.picks
for key in arrivals:
if arrivals[key].has_key('P'):
if arrivals[key]['P']['weight'] < 4 and arrivals[key]['P']['fm'] is not None:
stat = key
for i in range(len(picks)):
station = picks[i].waveform_id.station_code
if station == stat:
# get resource ID
resid_picks = picks[i].get('resource_id')
# find same ID in eventinfo
# there it is the pick_id!!
for j in range(len(eventinfo.origins[0].arrivals)):
resid_eventinfo = eventinfo.origins[0].arrivals[j].get('pick_id')
if resid_eventinfo == resid_picks and eventinfo.origins[0].arrivals[j].phase == 'P':
if len(stat) > 4: # FOCMEC handles only 4-string station IDs
stat = stat[1:5]
az = eventinfo.origins[0].arrivals[j].get('azimuth')
inz = eventinfo.origins[0].arrivals[j].get('takeoff_angle')
fid.write('%-4s %6.2f %6.2f%s \n' % (stat,
az,
inz,
arrivals[key]['P']['fm']))
break
fid.close()
elif fformat == 'HASH':
# two different input files for
# HASH-driver 1 and 2 (see HASH manual!)
filename1 = filename + 'drv1' + '.phase'
filename2 = filename + 'drv2' + '.phase'
print("Writing phases to %s for HASH for HASH-driver 1" % filename1)
fid1 = open("%s" % filename1, 'w')
print("Writing phases to %s for HASH for HASH-driver 2" % filename2)
fid2 = open("%s" % filename2, 'w')
# get event information needed for HASH-input file
eventsource = eventinfo.origins[0]
event = parameter.get('eventID')
hashID = event.split('.')[0][1:5]
latdeg = eventsource['latitude']
latmin = eventsource['latitude'] * 60 / 10000
londeg = eventsource['longitude']
lonmin = eventsource['longitude'] * 60 / 10000
erh = 1 / 2 * (eventsource.origin_uncertainty['min_horizontal_uncertainty'] +
eventsource.origin_uncertainty['max_horizontal_uncertainty']) / 1000
erz = eventsource.depth_errors['uncertainty']
stime = eventsource['time']
if stime.year - 2000 >= 0:
syear = stime.year - 2000
else:
syear = stime.year - 1900
picks = eventinfo.picks
# write header line including event information
# for HASH-driver 1
fid1.write('%s%02d%02d%02d%02d%5.2f%2dN%5.2f%3dE%5.2f%6.3f%4.2f%5.2f%5.2f%s\n' % (syear,
stime.month, stime.day,
stime.hour, stime.minute,
stime.second,
latdeg, latmin, londeg,
lonmin, eventsource['depth'],
eventinfo.magnitudes[0][
'mag'], erh, erz,
hashID))
# write header line including event information
# for HASH-driver 2
fid2.write(
'%d%02d%02d%02d%02d%5.2f%dN%5.2f%3dE%6.2f%5.2f %d %5.2f %5.2f %4.2f %s \n' % (
syear, stime.month, stime.day,
stime.hour, stime.minute, stime.second,
latdeg, latmin, londeg, lonmin,
eventsource['depth'],
eventsource['quality']['used_phase_count'],
erh, erz, eventinfo.magnitudes[0]['mag'],
hashID))
# write phase lines
for key in arrivals:
if arrivals[key].has_key('P'):
if arrivals[key]['P']['weight'] < 4 and arrivals[key]['P']['fm'] is not None:
stat = key
ccode = arrivals[key]['P']['channel']
ncode = arrivals[key]['P']['network']
if arrivals[key]['P']['weight'] < 2:
Pqual = 'I'
else:
Pqual = 'E'
for i in range(len(picks)):
station = picks[i].waveform_id.station_code
if station == stat:
# get resource ID
resid_picks = picks[i].get('resource_id')
# find same ID in eventinfo
# there it is the pick_id!!
for j in range(len(eventinfo.origins[0].arrivals)):
resid_eventinfo = eventinfo.origins[0].arrivals[j].get('pick_id')
if resid_eventinfo == resid_picks and eventinfo.origins[0].arrivals[j].phase == 'P':
if len(stat) > 4: # HASH handles only 4-string station IDs
stat = stat[1:5]
az = eventinfo.origins[0].arrivals[j].get('azimuth')
inz = eventinfo.origins[0].arrivals[j].get('takeoff_angle')
dist = eventinfo.origins[0].arrivals[j].get('distance')
# write phase line for HASH-driver 1
fid1.write(
'%-4s%sP%s%d 0 %3.1f %03d %03d 2 1 %s\n' % (
stat, Pqual, arrivals[key]['P']['fm'], arrivals[key]['P']['weight'],
dist, inz, az, ccode))
# write phase line for HASH-driver 2
fid2.write('%-4s %s %s %s %s \n' % (
stat,
ncode,
ccode,
Pqual,
arrivals[key]['P']['fm']))
break
fid1.write(' %s' % hashID)
fid1.close()
fid2.close()
def merge_picks(event, picks): def merge_picks(event, picks):
""" """
@ -563,8 +859,158 @@ def merge_picks(event, picks):
err = pick.time_errors err = pick.time_errors
phase = pick.phase_hint phase = pick.phase_hint
station = pick.waveform_id.station_code station = pick.waveform_id.station_code
network = pick.waveform_id.network_code
method = pick.method_id
for p in event.picks: for p in event.picks:
if p.waveform_id.station_code == station and p.phase_hint == phase: if p.waveform_id.station_code == station\
p.time, p.time_errors = time, err and p.waveform_id.network_code == network\
del time, err, phase, station and p.phase_hint == phase\
and (str(p.method_id) in str(method)
or str(method) in str(p.method_id)):
p.time, p.time_errors, p.waveform_id.network_code, p.method_id = time, err, network, method
del time, err, phase, station, network, method
return event return event
def getQualitiesfromxml(xmlnames, ErrorsP, ErrorsS, plotflag=1):
"""
Script to get onset uncertainties from Quakeml.xml files created by PyLoT.
Uncertainties are tranformed into quality classes and visualized via histogram if desired.
Ludger Küperkoch, BESTEC GmbH, 07/2017
"""
from pylot.core.pick.utils import getQualityFromUncertainty
from pylot.core.util.utils import loopIdentifyPhase, identifyPhase
# read all onset weights
Pw0 = []
Pw1 = []
Pw2 = []
Pw3 = []
Pw4 = []
Sw0 = []
Sw1 = []
Sw2 = []
Sw3 = []
Sw4 = []
for names in xmlnames:
print("Getting onset weights from {}".format(names))
cat = read_events(names)
cat_copy = cat.copy()
arrivals = cat.events[0].picks
arrivals_copy = cat_copy.events[0].picks
# Prefere manual picks if qualities are sufficient!
for Pick in arrivals:
if (Pick.method_id.id).split('/')[1] == 'manual':
mstation = Pick.waveform_id.station_code
mstation_ext = mstation + '_'
for mpick in arrivals_copy:
phase = identifyPhase(loopIdentifyPhase(Pick.phase_hint))
if phase == 'P':
if ((mpick.waveform_id.station_code == mstation) or
(mpick.waveform_id.station_code == mstation_ext)) and \
((mpick.method_id).split('/')[1] == 'auto') and \
(mpick.time_errors['uncertainty'] <= ErrorsP[3]):
del mpick
break
elif phase == 'S':
if ((mpick.waveform_id.station_code == mstation) or
(mpick.waveform_id.station_code == mstation_ext)) and \
((mpick.method_id).split('/')[1] == 'auto') and \
(mpick.time_errors['uncertainty'] <= ErrorsS[3]):
del mpick
break
lendiff = len(arrivals) - len(arrivals_copy)
if lendiff is not 0:
print("Found manual as well as automatic picks, prefered the {} manual ones!".format(lendiff))
for Pick in arrivals_copy:
phase = identifyPhase(loopIdentifyPhase(Pick.phase_hint))
if phase == 'P':
Pqual = getQualityFromUncertainty(Pick.time_errors.uncertainty, ErrorsP)
if Pqual == 0:
Pw0.append(Pick.time_errors.uncertainty)
elif Pqual == 1:
Pw1.append(Pick.time_errors.uncertainty)
elif Pqual == 2:
Pw2.append(Pick.time_errors.uncertainty)
elif Pqual == 3:
Pw3.append(Pick.time_errors.uncertainty)
elif Pqual == 4:
Pw4.append(Pick.time_errors.uncertainty)
elif phase == 'S':
Squal = getQualityFromUncertainty(Pick.time_errors.uncertainty, ErrorsS)
if Squal == 0:
Sw0.append(Pick.time_errors.uncertainty)
elif Squal == 1:
Sw1.append(Pick.time_errors.uncertainty)
elif Squal == 2:
Sw2.append(Pick.time_errors.uncertainty)
elif Squal == 3:
Sw3.append(Pick.time_errors.uncertainty)
elif Squal == 4:
Sw4.append(Pick.time_errors.uncertainty)
else:
print("Phase hint not defined for picking!")
pass
if plotflag == 0:
Punc = [Pw0, Pw1, Pw2, Pw3, Pw4]
Sunc = [Sw0, Sw1, Sw2, Sw3, Sw4]
return Punc, Sunc
else:
# get percentage of weights
numPweights = np.sum([len(Pw0), len(Pw1), len(Pw2), len(Pw3), len(Pw4)])
numSweights = np.sum([len(Sw0), len(Sw1), len(Sw2), len(Sw3), len(Sw4)])
if len(Pw0) > 0:
P0perc = 100 / numPweights * len(Pw0)
else:
P0perc = 0
if len(Pw1) > 0:
P1perc = 100 / numPweights * len(Pw1)
else:
P1perc = 0
if len(Pw2) > 0:
P2perc = 100 / numPweights * len(Pw2)
else:
P2perc = 0
if len(Pw3) > 0:
P3perc = 100 / numPweights * len(Pw3)
else:
P3perc = 0
if len(Pw4) > 0:
P4perc = 100 / numPweights * len(Pw4)
else:
P4perc = 0
if len(Sw0) > 0:
S0perc = 100 / numSweights * len(Sw0)
else:
S0perc = 0
if len(Sw1) > 0:
S1perc = 100 / numSweights * len(Sw1)
else:
S1perc = 0
if len(Sw2) > 0:
S2perc = 100 / numSweights * len(Sw2)
else:
S2perc = 0
if len(Sw3) > 0:
S3perc = 100 / numSweights * len(Sw3)
else:
S3perc = 0
if len(Sw4) > 0:
S4perc = 100 / numSweights * len(Sw4)
else:
S4perc = 0
weights = ('0', '1', '2', '3', '4')
y_pos = np.arange(len(weights))
width = 0.34
plt.bar(y_pos - width, [P0perc, P1perc, P2perc, P3perc, P4perc], width, color='black')
plt.bar(y_pos, [S0perc, S1perc, S2perc, S3perc, S4perc], width, color='red')
plt.ylabel('%')
plt.xticks(y_pos, weights)
plt.xlim([-0.5, 4.5])
plt.xlabel('Qualities')
plt.title('{0} P-Qualities, {1} S-Qualities'.format(numPweights, numSweights))
plt.show()

28
pylot/core/loc/focmec.py Normal file
View File

@ -0,0 +1,28 @@
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from pylot.core.io.phases import writephases
from pylot.core.util.version import get_git_version as _getVersionString
__version__ = _getVersionString()
def export(picks, fnout, parameter, eventinfo):
'''
Take <picks> dictionary and exports picking data to a focmec
<phasefile> without creating an ObsPy event object.
:param picks: picking data dictionary
:type picks: dict
:param fnout: complete path to the exporting obs file
:type fnout: str
:param: parameter, all input information
:type: object
:param: eventinfo, source information needed for focmec format
:type: list object
'''
# write phases to FOCMEC-phase file
writephases(picks, 'FOCMEC', fnout, parameter, eventinfo)

28
pylot/core/loc/hash.py Normal file
View File

@ -0,0 +1,28 @@
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from pylot.core.io.phases import writephases
from pylot.core.util.version import get_git_version as _getVersionString
__version__ = _getVersionString()
def export(picks, fnout, parameter, eventinfo):
'''
Take <picks> dictionary and exports picking data to a HASH
<phasefile> without creating an ObsPy event object.
:param picks: picking data dictionary
:type picks: dict
:param fnout: complete path to the exporting obs file
:type fnout: str
:param: parameter, all input information
:type: object
:param: eventinfo, source information needed for HASH format
:type: list object
'''
# write phases to HASH-phase file
writephases(picks, 'HASH', fnout, parameter, eventinfo)

View File

@ -6,9 +6,10 @@ from pylot.core.util.version import get_git_version as _getVersionString
__version__ = _getVersionString() __version__ = _getVersionString()
def export(picks, fnout):
def export(picks, fnout, parameter):
''' '''
Take <picks> dictionary and exports picking data to a NLLOC-obs Take <picks> dictionary and exports picking data to a HYPO71
<phasefile> without creating an ObsPy event object. <phasefile> without creating an ObsPy event object.
:param picks: picking data dictionary :param picks: picking data dictionary
@ -16,6 +17,9 @@ def export(picks, fnout):
:param fnout: complete path to the exporting obs file :param fnout: complete path to the exporting obs file
:type fnout: str :type fnout: str
:param: parameter, all input information
:type: object
''' '''
# write phases to NLLoc-phase file # write phases to HYPO71-phase file
writephases(picks, 'HYPO71', fnout) writephases(picks, 'HYPO71', fnout, parameter)

28
pylot/core/loc/hypodd.py Normal file
View File

@ -0,0 +1,28 @@
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from pylot.core.io.phases import writephases
from pylot.core.util.version import get_git_version as _getVersionString
__version__ = _getVersionString()
def export(picks, fnout, parameter, eventinfo):
'''
Take <picks> dictionary and exports picking data to a hypoDD
<phasefile> without creating an ObsPy event object.
:param picks: picking data dictionary
:type picks: dict
:param fnout: complete path to the exporting obs file
:type fnout: str
:param: parameter, all input information
:type: object
:param: eventinfo, source information needed for hypoDD format
:type: list object
'''
# write phases to hypoDD-phase file
writephases(picks, 'hypoDD', fnout, parameter, eventinfo)

25
pylot/core/loc/hyposat.py Normal file
View File

@ -0,0 +1,25 @@
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from pylot.core.io.phases import writephases
from pylot.core.util.version import get_git_version as _getVersionString
__version__ = _getVersionString()
def export(picks, fnout, parameter):
'''
Take <picks> dictionary and exports picking data to a HYPOSAT
<phasefile> without creating an ObsPy event object.
:param picks: picking data dictionary
:type picks: dict
:param fnout: complete path to the exporting obs file
:type fnout: str
:param: parameter, all input information
:type: object
'''
# write phases to HYPOSAT-phase file
writephases(picks, 'HYPOSAT', fnout, parameter)

View File

@ -1,9 +1,10 @@
#!/usr/bin/env python #!/usr/bin/env python
# -*- coding: utf-8 -*- # -*- coding: utf-8 -*-
import subprocess
import os
import glob import glob
import os
import subprocess
from obspy import read_events from obspy import read_events
from pylot.core.io.phases import writephases from pylot.core.io.phases import writephases
from pylot.core.util.utils import getPatternLine, runProgram, which from pylot.core.util.utils import getPatternLine, runProgram, which
@ -11,10 +12,12 @@ from pylot.core.util.version import get_git_version as _getVersionString
__version__ = _getVersionString() __version__ = _getVersionString()
class NLLocError(EnvironmentError): class NLLocError(EnvironmentError):
pass pass
def export(picks, fnout):
def export(picks, fnout, parameter):
''' '''
Take <picks> dictionary and exports picking data to a NLLOC-obs Take <picks> dictionary and exports picking data to a NLLOC-obs
<phasefile> without creating an ObsPy event object. <phasefile> without creating an ObsPy event object.
@ -24,9 +27,12 @@ def export(picks, fnout):
:param fnout: complete path to the exporting obs file :param fnout: complete path to the exporting obs file
:type fnout: str :type fnout: str
:param: parameter, all input information
:type: object
''' '''
# write phases to NLLoc-phase file # write phases to NLLoc-phase file
writephases(picks, 'NLLoc', fnout) writephases(picks, 'NLLoc', fnout, parameter)
def modify_inputs(ctrfn, root, nllocoutn, phasefn, tttn): def modify_inputs(ctrfn, root, nllocoutn, phasefn, tttn):
@ -67,14 +73,17 @@ def modify_inputs(ctrfn, root, nllocoutn, phasefn, tttn):
nllfile.close() nllfile.close()
def locate(fnin): def locate(fnin, infile=None):
""" """
takes an external program name takes an external program name
:param fnin: :param fnin:
:return: :return:
""" """
if infile is None:
exe_path = which('NLLoc') exe_path = which('NLLoc')
else:
exe_path = which('NLLoc', infile)
if exe_path is None: if exe_path is None:
raise NLLocError('NonLinLoc executable not found; check your ' raise NLLocError('NonLinLoc executable not found; check your '
'environment variables') 'environment variables')

View File

@ -1,2 +1,28 @@
#!/usr/bin/env python #!/usr/bin/env python
# -*- coding: utf-8 -*- # -*- coding: utf-8 -*-
from pylot.core.io.phases import writephases
from pylot.core.util.version import get_git_version as _getVersionString
__version__ = _getVersionString()
def export(picks, fnout, eventinfo, parameter=None):
'''
Take <picks> dictionary and exports picking data to a VELEST-cnv
<phasefile> without creating an ObsPy event object.
:param picks: picking data dictionary
:type picks: dict
:param fnout: complete path to the exporting obs file
:type fnout: str
:param: eventinfo, source time needed for VELEST-cnv format
:type: list object
:param: parameter, all input information
:type: object
'''
# write phases to VELEST-phase file
writephases(picks, 'VELEST', fnout, parameter, eventinfo)

605
pylot/core/pick/autopick.py Executable file → Normal file
View File

@ -11,25 +11,37 @@ function conglomerate utils.
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
import numpy as np import numpy as np
from pylot.core.io.inputs import AutoPickParameter from pylot.core.io.data import Data
from pylot.core.pick.picker import AICPicker, PragPicker from pylot.core.io.inputs import PylotParameter
from pylot.core.pick.charfuns import CharacteristicFunction from pylot.core.pick.charfuns import CharacteristicFunction
from pylot.core.pick.charfuns import HOScf, AICcf, ARZcf, ARHcf, AR3Ccf from pylot.core.pick.charfuns import HOScf, AICcf, ARZcf, ARHcf, AR3Ccf
from pylot.core.pick.picker import AICPicker, PragPicker
from pylot.core.pick.utils import checksignallength, checkZ4S, earllatepicker, \ from pylot.core.pick.utils import checksignallength, checkZ4S, earllatepicker, \
getSNR, fmpicker, checkPonsets, wadaticheck getSNR, fmpicker, checkPonsets, wadaticheck
from pylot.core.util.utils import getPatternLine from pylot.core.util.utils import getPatternLine, gen_Pool,\
from pylot.core.io.data import Data real_Bool, identifyPhaseID
from obspy.taup import TauPyModel
def autopickevent(data, param): def autopickevent(data, param, iplot=0, fig_dict=None, fig_dict_wadatijack=None, ncores=0, metadata=None, origin=None):
stations = [] stations = []
all_onsets = {} all_onsets = {}
input_tuples = []
try:
iplot = int(iplot)
except:
if iplot == True or iplot == 'True':
iplot = 2
else:
iplot = 0
# get some parameters for quality control from # get some parameters for quality control from
# parameter input file (usually autoPyLoT.in). # parameter input file (usually pylot.in).
wdttolerance = param.get('wdttolerance') wdttolerance = param.get('wdttolerance')
mdttolerance = param.get('mdttolerance') mdttolerance = param.get('mdttolerance')
iplot = param.get('iplot') jackfactor = param.get('jackfactor')
apverbose = param.get('apverbose') apverbose = param.get('apverbose')
for n in range(len(data)): for n in range(len(data)):
station = data[n].stats.station station = data[n].stats.station
@ -40,34 +52,80 @@ def autopickevent(data, param):
for station in stations: for station in stations:
topick = data.select(station=station) topick = data.select(station=station)
all_onsets[station] = autopickstation(topick, param, verbose=apverbose)
if iplot == None or iplot == 'None' or iplot == 0:
input_tuples.append((topick, param, apverbose, metadata, origin))
if iplot > 0:
all_onsets[station] = autopickstation(topick, param, verbose=apverbose,
iplot=iplot, fig_dict=fig_dict,
metadata=metadata, origin=origin)
if iplot > 0:
print('iPlot Flag active: NO MULTIPROCESSING possible.')
return all_onsets
# rename str for ncores in case ncores == 0 (use all cores)
ncores_str = ncores if ncores != 0 else 'all available'
print('Autopickstation: Distribute autopicking for {} '
'stations on {} cores.'.format(len(input_tuples), ncores_str))
pool = gen_Pool(ncores)
result = pool.map(call_autopickstation, input_tuples)
pool.close()
for pick in result:
if pick:
station = pick['station']
pick.pop('station')
all_onsets[station] = pick
#return all_onsets
# quality control # quality control
# median check and jackknife on P-onset times # median check and jackknife on P-onset times
jk_checked_onsets = checkPonsets(all_onsets, mdttolerance, iplot) jk_checked_onsets = checkPonsets(all_onsets, mdttolerance, jackfactor, 1, fig_dict_wadatijack)
#return jk_checked_onsets
# check S-P times (Wadati) # check S-P times (Wadati)
return wadaticheck(jk_checked_onsets, wdttolerance, iplot) wadationsets = wadaticheck(jk_checked_onsets, wdttolerance, 1, fig_dict_wadatijack)
return wadationsets
def autopickstation(wfstream, pickparam, verbose=False): def call_autopickstation(input_tuple):
wfstream, pickparam, verbose, metadata, origin = input_tuple
# multiprocessing not possible with interactive plotting
return autopickstation(wfstream, pickparam, verbose, iplot=0, metadata=metadata, origin=origin)
def get_source_coords(parser, station_id):
station_coords = None
try:
station_coords = parser.get_coordinates(station_id)
except Exception as e:
print('Could not get source coordinates for station {}: {}'.format(station_id, e))
return station_coords
def autopickstation(wfstream, pickparam, verbose=False,
iplot=0, fig_dict=None, metadata=None, origin=None):
""" """
:param wfstream: `~obspy.core.stream.Stream` containing waveform :param wfstream: `~obspy.core.stream.Stream` containing waveform
:type wfstream: obspy.core.stream.Stream :type wfstream: obspy.core.stream.Stream
:param pickparam: container of picking parameters from input file, :param pickparam: container of picking parameters from input file,
usually autoPyLoT.in usually pylot.in
:type pickparam: AutoPickParameter :type pickparam: PylotParameter
:param verbose: :param verbose:
:type verbose: bool :type verbose: bool
""" """
# declaring pickparam variables (only for convenience) # declaring pickparam variables (only for convenience)
# read your autoPyLoT.in for details! # read your pylot.in for details!
plt_flag = 0
# special parameters for P picking # special parameters for P picking
algoP = pickparam.get('algoP') algoP = pickparam.get('algoP')
iplot = pickparam.get('iplot')
pstart = pickparam.get('pstart') pstart = pickparam.get('pstart')
pstop = pickparam.get('pstop') pstop = pickparam.get('pstop')
thosmw = pickparam.get('tlta') thosmw = pickparam.get('tlta')
@ -76,6 +134,7 @@ def autopickstation(wfstream, pickparam, verbose=False):
bpz1 = pickparam.get('bpz1') bpz1 = pickparam.get('bpz1')
bpz2 = pickparam.get('bpz2') bpz2 = pickparam.get('bpz2')
pickwinP = pickparam.get('pickwinP') pickwinP = pickparam.get('pickwinP')
aictsmoothP = pickparam.get('aictsmooth')
tsmoothP = pickparam.get('tsmoothP') tsmoothP = pickparam.get('tsmoothP')
ausP = pickparam.get('ausP') ausP = pickparam.get('ausP')
nfacP = pickparam.get('nfacP') nfacP = pickparam.get('nfacP')
@ -91,6 +150,8 @@ def autopickstation(wfstream, pickparam, verbose=False):
algoS = pickparam.get('algoS') algoS = pickparam.get('algoS')
sstart = pickparam.get('sstart') sstart = pickparam.get('sstart')
sstop = pickparam.get('sstop') sstop = pickparam.get('sstop')
use_taup = real_Bool(pickparam.get('use_taup'))
taup_model = pickparam.get('taup_model')
bph1 = pickparam.get('bph1') bph1 = pickparam.get('bph1')
bph2 = pickparam.get('bph2') bph2 = pickparam.get('bph2')
tsnrh = pickparam.get('tsnrh') tsnrh = pickparam.get('tsnrh')
@ -143,7 +204,7 @@ def autopickstation(wfstream, pickparam, verbose=False):
Sflag = 0 Sflag = 0
Pmarker = [] Pmarker = []
Ao = None # Wood-Anderson peak-to-peak amplitude Ao = None # Wood-Anderson peak-to-peak amplitude
picker = 'autoPyLoT' # name of the picking programm picker = 'auto' # type of picks
# split components # split components
zdat = wfstream.select(component="Z") zdat = wfstream.select(component="Z")
@ -156,25 +217,82 @@ def autopickstation(wfstream, pickparam, verbose=False):
if len(ndat) == 0: # check for other components if len(ndat) == 0: # check for other components
ndat = wfstream.select(component="1") ndat = wfstream.select(component="1")
if not zdat:
print('No z-component found for station {}. STOP'.format(wfstream[0].stats.station))
return
if algoP == 'HOS' or algoP == 'ARZ' and zdat is not None: if algoP == 'HOS' or algoP == 'ARZ' and zdat is not None:
msg = '##########################################\nautopickstation:' \ msg = '##################################################\nautopickstation:' \
' Working on P onset of station {station}\nFiltering vertical ' \ ' Working on P onset of station {station}\nFiltering vertical ' \
'trace ...\n{data}'.format(station=zdat[0].stats.station, 'trace ...\n{data}'.format(station=wfstream[0].stats.station,
data=str(zdat)) data=str(zdat))
if verbose: print(msg) if verbose: print(msg)
z_copy = zdat.copy() z_copy = zdat.copy()
# filter and taper data
tr_filt = zdat[0].copy() tr_filt = zdat[0].copy()
#remove constant offset from data to avoid unwanted filter response
tr_filt.detrend(type='demean')
# filter and taper data
tr_filt.filter('bandpass', freqmin=bpz1[0], freqmax=bpz1[1], tr_filt.filter('bandpass', freqmin=bpz1[0], freqmax=bpz1[1],
zerophase=False) zerophase=False)
tr_filt.taper(max_percentage=0.05, type='hann') tr_filt.taper(max_percentage=0.05, type='hann')
z_copy[0].data = tr_filt.data z_copy[0].data = tr_filt.data
############################################################## ##############################################################
# check length of waveform and compare with cut times # check length of waveform and compare with cut times
# for global seismology: use tau-p method for estimating travel times (needs source and station coords.)
# if not given: sets Lc to infinity to use full stream
if use_taup == True:
Lc = np.inf
print('autopickstation: use_taup flag active.')
if not metadata[1]:
print('Warning: Could not use TauPy to estimate onsets as there are no metadata given.')
else:
station_id = wfstream[0].get_id()
parser = metadata[1]
station_coords = get_source_coords(parser, station_id)
if station_coords and origin:
source_origin = origin[0]
model = TauPyModel(taup_model)
arrivals = model.get_travel_times_geo(
source_origin.depth,
source_origin.latitude,
source_origin.longitude,
station_coords['latitude'],
station_coords['longitude']
)
phases = {'P': [],
'S': []}
for arr in arrivals:
phases[identifyPhaseID(arr.phase.name)].append(arr)
# get first P and S onsets from arrivals list
arrP, estFirstP = min([(arr, arr.time) for arr in phases['P']], key = lambda t: t[1])
arrS, estFirstS = min([(arr, arr.time) for arr in phases['S']], key = lambda t: t[1])
print('autopick: estimated first arrivals for P: {} s, S:{} s after event'
' origin time using TauPy'.format(estFirstP, estFirstS))
# modifiy pstart and pstop relative to estimated first P arrival (relative to station time axis)
pstart += (source_origin.time + estFirstP) - zdat[0].stats.starttime
pstop += (source_origin.time + estFirstP) - zdat[0].stats.starttime
print('autopick: CF calculation times respectively:'
' pstart: {} s, pstop: {} s'.format(pstart, pstop))
elif not origin:
print('No source origins given!')
# make sure pstart and pstop are inside zdat[0]
pstart = max(pstart, 0)
pstop = min(pstop, len(zdat[0])*zdat[0].stats.delta)
if not use_taup == True or origin:
Lc = pstop - pstart Lc = pstop - pstart
Lwf = zdat[0].stats.endtime - zdat[0].stats.starttime Lwf = zdat[0].stats.endtime - zdat[0].stats.starttime
Ldiff = Lwf - Lc if not Lwf > 0:
if Ldiff < 0: print('autopickstation: empty trace! Return!')
return
Ldiff = Lwf - abs(Lc)
if Ldiff < 0 or pstop <= pstart:
msg = 'autopickstation: Cutting times are too large for actual ' \ msg = 'autopickstation: Cutting times are too large for actual ' \
'waveform!\nUsing entire waveform instead!' 'waveform!\nUsing entire waveform instead!'
if verbose: print(msg) if verbose: print(msg)
@ -206,7 +324,20 @@ def autopickstation(wfstream, pickparam, verbose=False):
############################################################## ##############################################################
# get prelimenary onset time from AIC-HOS-CF using subclass AICPicker # get prelimenary onset time from AIC-HOS-CF using subclass AICPicker
# of class AutoPicking # of class AutoPicking
aicpick = AICPicker(aiccf, tsnrz, pickwinP, iplot, None, tsmoothP) key = 'aicFig'
if fig_dict:
fig = fig_dict[key]
linecolor = fig_dict['plot_style']['linecolor']['rgba_mpl']
else:
fig = None
linecolor = 'k'
aicpick = AICPicker(aiccf, tsnrz, pickwinP, iplot, None, aictsmoothP, fig=fig, linecolor=linecolor)
# add pstart and pstop to aic plot
if fig:
for ax in fig.axes:
ax.vlines(pstart, ax.get_ylim()[0], ax.get_ylim()[1], color='c', linestyles='dashed', label='P start')
ax.vlines(pstop, ax.get_ylim()[0], ax.get_ylim()[1], color='c', linestyles='dashed', label='P stop')
ax.legend(loc=1)
############################################################## ##############################################################
if aicpick.getpick() is not None: if aicpick.getpick() is not None:
# check signal length to detect spuriously picked noise peaks # check signal length to detect spuriously picked noise peaks
@ -220,13 +351,24 @@ def autopickstation(wfstream, pickparam, verbose=False):
'Decreasing minsiglengh from {0} to ' \ 'Decreasing minsiglengh from {0} to ' \
'{1}'.format(minsiglength, minsiglength / 2) '{1}'.format(minsiglength, minsiglength / 2)
if verbose: print(msg) if verbose: print(msg)
key = 'slength'
if fig_dict:
fig = fig_dict[key]
linecolor = fig_dict['plot_style']['linecolor']['rgba_mpl']
else:
fig = None
linecolor = 'k'
Pflag = checksignallength(zne, aicpick.getpick(), tsnrz, Pflag = checksignallength(zne, aicpick.getpick(), tsnrz,
minsiglength / 2, minsiglength / 2,
nfacsl, minpercent, iplot) nfacsl, minpercent, iplot,
fig, linecolor)
else: else:
# filter and taper horizontal traces # filter and taper horizontal traces
trH1_filt = edat.copy() trH1_filt = edat.copy()
trH2_filt = ndat.copy() trH2_filt = ndat.copy()
# remove constant offset from data to avoid unwanted filter response
trH1_filt.detrend(type='demean')
trH2_filt.detrend(type='demean')
trH1_filt.filter('bandpass', freqmin=bph1[0], trH1_filt.filter('bandpass', freqmin=bph1[0],
freqmax=bph1[1], freqmax=bph1[1],
zerophase=False) zerophase=False)
@ -237,9 +379,16 @@ def autopickstation(wfstream, pickparam, verbose=False):
trH2_filt.taper(max_percentage=0.05, type='hann') trH2_filt.taper(max_percentage=0.05, type='hann')
zne += trH1_filt zne += trH1_filt
zne += trH2_filt zne += trH2_filt
if fig_dict:
fig = fig_dict['slength']
linecolor = fig_dict['plot_style']['linecolor']['rgba_mpl']
else:
fig = None
linecolor = 'k'
Pflag = checksignallength(zne, aicpick.getpick(), tsnrz, Pflag = checksignallength(zne, aicpick.getpick(), tsnrz,
minsiglength, minsiglength,
nfacsl, minpercent, iplot) nfacsl, minpercent, iplot,
fig, linecolor)
if Pflag == 1: if Pflag == 1:
# check for spuriously picked S onset # check for spuriously picked S onset
@ -249,8 +398,15 @@ def autopickstation(wfstream, pickparam, verbose=False):
'Skipping control function checkZ4S.' 'Skipping control function checkZ4S.'
if verbose: print(msg) if verbose: print(msg)
else: else:
if iplot > 1:
if fig_dict:
fig = fig_dict['checkZ4s']
linecolor = fig_dict['plot_style']['linecolor']['rgba_mpl']
else:
fig = None
linecolor = 'k'
Pflag = checkZ4S(zne, aicpick.getpick(), zfac, Pflag = checkZ4S(zne, aicpick.getpick(), zfac,
tsnrz[3], iplot) tsnrz[2], iplot, fig, linecolor)
if Pflag == 0: if Pflag == 0:
Pmarker = 'SinsteadP' Pmarker = 'SinsteadP'
Pweight = 9 Pweight = 9
@ -259,7 +415,10 @@ def autopickstation(wfstream, pickparam, verbose=False):
Pweight = 9 Pweight = 9
############################################################## ##############################################################
# go on with processing if AIC onset passes quality control # go on with processing if AIC onset passes quality control
if (aicpick.getSlope() >= minAICPslope and slope = aicpick.getSlope()
if not slope:
slope = 0
if (slope >= minAICPslope and
aicpick.getSNR() >= minAICPSNR and Pflag == 1): aicpick.getSNR() >= minAICPSNR and Pflag == 1):
aicPflag = 1 aicPflag = 1
msg = 'AIC P-pick passes quality control: Slope: {0} counts/s, ' \ msg = 'AIC P-pick passes quality control: Slope: {0} counts/s, ' \
@ -270,6 +429,7 @@ def autopickstation(wfstream, pickparam, verbose=False):
# re-filter waveform with larger bandpass # re-filter waveform with larger bandpass
z_copy = zdat.copy() z_copy = zdat.copy()
tr_filt = zdat[0].copy() tr_filt = zdat[0].copy()
tr_filt.detrend(type='demean')
tr_filt.filter('bandpass', freqmin=bpz2[0], freqmax=bpz2[1], tr_filt.filter('bandpass', freqmin=bpz2[0], freqmax=bpz2[1],
zerophase=False) zerophase=False)
tr_filt.taper(max_percentage=0.05, type='hann') tr_filt.taper(max_percentage=0.05, type='hann')
@ -297,20 +457,40 @@ def autopickstation(wfstream, pickparam, verbose=False):
'correctly: maybe the algorithm name ({algoP}) is ' \ 'correctly: maybe the algorithm name ({algoP}) is ' \
'corrupted'.format( 'corrupted'.format(
algoP=algoP) algoP=algoP)
if fig_dict:
fig = fig_dict['refPpick']
linecolor = fig_dict['plot_style']['linecolor']['rgba_mpl']
else:
fig = None
linecolor = 'k'
refPpick = PragPicker(cf2, tsnrz, pickwinP, iplot, ausP, tsmoothP, refPpick = PragPicker(cf2, tsnrz, pickwinP, iplot, ausP, tsmoothP,
aicpick.getpick()) aicpick.getpick(), fig, linecolor)
mpickP = refPpick.getpick() mpickP = refPpick.getpick()
############################################################# #############################################################
if mpickP is not None: if mpickP is not None:
# quality assessment # quality assessment
# get earliest/latest possible pick and symmetrized uncertainty # get earliest/latest possible pick and symmetrized uncertainty
[epickP, lpickP, Perror] = earllatepicker(z_copy, nfacP, tsnrz, if iplot:
if fig_dict:
fig = fig_dict['el_Ppick']
linecolor = fig_dict['plot_style']['linecolor']['rgba_mpl']
else:
fig = None
linecolor = 'k'
epickP, lpickP, Perror = earllatepicker(z_copy, nfacP, tsnrz,
mpickP, iplot, fig=fig,
linecolor=linecolor)
else:
epickP, lpickP, Perror = earllatepicker(z_copy, nfacP, tsnrz,
mpickP, iplot) mpickP, iplot)
# get SNR # get SNR
[SNRP, SNRPdB, Pnoiselevel] = getSNR(z_copy, tsnrz, mpickP) [SNRP, SNRPdB, Pnoiselevel] = getSNR(z_copy, tsnrz, mpickP)
# weight P-onset using symmetric error # weight P-onset using symmetric error
if Perror == None:
Pweight = 4
else:
if Perror <= timeerrorsP[0]: if Perror <= timeerrorsP[0]:
Pweight = 0 Pweight = 0
elif timeerrorsP[0] < Perror <= timeerrorsP[1]: elif timeerrorsP[0] < Perror <= timeerrorsP[1]:
@ -326,6 +506,14 @@ def autopickstation(wfstream, pickparam, verbose=False):
# get first motion of P onset # get first motion of P onset
# certain quality required # certain quality required
if Pweight <= minfmweight and SNRP >= minFMSNR: if Pweight <= minfmweight and SNRP >= minFMSNR:
if iplot:
if fig_dict:
fig = fig_dict['fm_picker']
linecolor = fig_dict['plot_style']['linecolor']['rgba_mpl']
else:
fig = None
FM = fmpicker(zdat, z_copy, fmpickwin, mpickP, iplot, fig, linecolor)
else:
FM = fmpicker(zdat, z_copy, fmpickwin, mpickP, iplot) FM = fmpicker(zdat, z_copy, fmpickwin, mpickP, iplot)
else: else:
FM = 'N' FM = 'N'
@ -336,6 +524,8 @@ def autopickstation(wfstream, pickparam, verbose=False):
SNRPdB, SNRPdB,
FM) FM)
print(msg) print(msg)
msg = 'autopickstation: Refined P-Pick: {} s | P-Error: {} s'.format(mpickP, Perror)
print(msg)
Sflag = 1 Sflag = 1
else: else:
@ -353,16 +543,46 @@ def autopickstation(wfstream, pickparam, verbose=False):
print('autopickstation: No vertical component data available!, ' print('autopickstation: No vertical component data available!, '
'Skipping station!') 'Skipping station!')
if edat is not None and ndat is not None and len(edat) > 0 and len( if ((len(edat) > 0 and len(ndat) == 0) or (
ndat) > 0 and Pweight < 4: len(ndat) > 0 and len(edat) == 0)) and Pweight < 4:
msg = 'Go on picking S onset ...\n' \
'##################################################\n' \
'Only one horizontal component available!\n' \
'ARH prediction requires at least 2 components!\n' \
'Copying existing horizontal component ...'
if verbose: print(msg)
# check which component is missing
if len(edat) == 0:
edat = ndat
else:
ndat = edat
pickSonset = (edat is not None and ndat is not None and len(edat) > 0 and len(
ndat) > 0 and Pweight < 4)
if pickSonset:
# determine time window for calculating CF after P onset
cuttimesh = [
round(max([mpickP + sstart, 0])), # MP MP relative time axis
round(min([
mpickP + sstop,
edat[0].stats.endtime-edat[0].stats.starttime,
ndat[0].stats.endtime-ndat[0].stats.starttime
]))
]
if not cuttimesh[1] >= cuttimesh[0]:
print('Cut window for horizontal phases too small! Will not pick S onsets.')
pickSonset = False
if pickSonset:
msg = 'Go on picking S onset ...\n' \ msg = 'Go on picking S onset ...\n' \
'##################################################\n' \ '##################################################\n' \
'Working on S onset of station {0}\nFiltering horizontal ' \ 'Working on S onset of station {0}\nFiltering horizontal ' \
'traces ...'.format(edat[0].stats.station) 'traces ...'.format(edat[0].stats.station)
if verbose: print(msg) if verbose: print(msg)
# determine time window for calculating CF after P onset
cuttimesh = [round(max([mpickP + sstart, 0])),
round(min([mpickP + sstop, Lwf]))]
if algoS == 'ARH': if algoS == 'ARH':
# re-create stream object including both horizontal components # re-create stream object including both horizontal components
@ -372,6 +592,8 @@ def autopickstation(wfstream, pickparam, verbose=False):
# filter and taper data # filter and taper data
trH1_filt = hdat[0].copy() trH1_filt = hdat[0].copy()
trH2_filt = hdat[1].copy() trH2_filt = hdat[1].copy()
trH1_filt.detrend(type='demean')
trH2_filt.detrend(type='demean')
trH1_filt.filter('bandpass', freqmin=bph1[0], freqmax=bph1[1], trH1_filt.filter('bandpass', freqmin=bph1[0], freqmax=bph1[1],
zerophase=False) zerophase=False)
trH2_filt.filter('bandpass', freqmin=bph1[0], freqmax=bph1[1], trH2_filt.filter('bandpass', freqmin=bph1[0], freqmax=bph1[1],
@ -390,6 +612,9 @@ def autopickstation(wfstream, pickparam, verbose=False):
trH1_filt = hdat[0].copy() trH1_filt = hdat[0].copy()
trH2_filt = hdat[1].copy() trH2_filt = hdat[1].copy()
trH3_filt = hdat[2].copy() trH3_filt = hdat[2].copy()
trH1_filt.detrend(type='demean')
trH2_filt.detrend(type='demean')
trH3_filt.detrend(type='demean')
trH1_filt.filter('bandpass', freqmin=bph1[0], freqmax=bph1[1], trH1_filt.filter('bandpass', freqmin=bph1[0], freqmax=bph1[1],
zerophase=False) zerophase=False)
trH2_filt.filter('bandpass', freqmin=bph1[0], freqmax=bph1[1], trH2_filt.filter('bandpass', freqmin=bph1[0], freqmax=bph1[1],
@ -425,11 +650,20 @@ def autopickstation(wfstream, pickparam, verbose=False):
############################################################## ##############################################################
# get prelimenary onset time from AIC-HOS-CF using subclass AICPicker # get prelimenary onset time from AIC-HOS-CF using subclass AICPicker
# of class AutoPicking # of class AutoPicking
if fig_dict:
fig = fig_dict['aicARHfig']
linecolor = fig_dict['plot_style']['linecolor']['rgba_mpl']
else:
fig = None
linecolor = 'k'
aicarhpick = AICPicker(haiccf, tsnrh, pickwinS, iplot, None, aicarhpick = AICPicker(haiccf, tsnrh, pickwinS, iplot, None,
aictsmoothS) aictsmoothS, fig=fig, linecolor=linecolor)
############################################################### ###############################################################
# go on with processing if AIC onset passes quality control # go on with processing if AIC onset passes quality control
if (aicarhpick.getSlope() >= minAICSslope and slope = aicarhpick.getSlope()
if not slope:
slope = 0
if (slope >= minAICSslope and
aicarhpick.getSNR() >= minAICSSNR and aicarhpick.getSNR() >= minAICSSNR and
aicarhpick.getpick() is not None): aicarhpick.getpick() is not None):
aicSflag = 1 aicSflag = 1
@ -448,6 +682,8 @@ def autopickstation(wfstream, pickparam, verbose=False):
if algoS == 'ARH': if algoS == 'ARH':
trH1_filt = hdat[0].copy() trH1_filt = hdat[0].copy()
trH2_filt = hdat[1].copy() trH2_filt = hdat[1].copy()
trH1_filt.detrend(type='demean')
trH2_filt.detrend(type='demean')
trH1_filt.filter('bandpass', freqmin=bph2[0], freqmax=bph2[1], trH1_filt.filter('bandpass', freqmin=bph2[0], freqmax=bph2[1],
zerophase=False) zerophase=False)
trH2_filt.filter('bandpass', freqmin=bph2[0], freqmax=bph2[1], trH2_filt.filter('bandpass', freqmin=bph2[0], freqmax=bph2[1],
@ -463,6 +699,9 @@ def autopickstation(wfstream, pickparam, verbose=False):
trH1_filt = hdat[0].copy() trH1_filt = hdat[0].copy()
trH2_filt = hdat[1].copy() trH2_filt = hdat[1].copy()
trH3_filt = hdat[2].copy() trH3_filt = hdat[2].copy()
trH1_filt.detrend(type='demean')
trH2_filt.detrend(type='demean')
trH3_filt.detrend(type='demean')
trH1_filt.filter('bandpass', freqmin=bph2[0], freqmax=bph2[1], trH1_filt.filter('bandpass', freqmin=bph2[0], freqmax=bph2[1],
zerophase=False) zerophase=False)
trH2_filt.filter('bandpass', freqmin=bph2[0], freqmax=bph2[1], trH2_filt.filter('bandpass', freqmin=bph2[0], freqmax=bph2[1],
@ -480,20 +719,52 @@ def autopickstation(wfstream, pickparam, verbose=False):
addnoise) # instance of ARHcf addnoise) # instance of ARHcf
# get refined onset time from CF2 using class Picker # get refined onset time from CF2 using class Picker
if fig_dict:
fig = fig_dict['refSpick']
linecolor = fig_dict['plot_style']['linecolor']['rgba_mpl']
else:
fig = None
linecolor = 'k'
refSpick = PragPicker(arhcf2, tsnrh, pickwinS, iplot, ausS, refSpick = PragPicker(arhcf2, tsnrh, pickwinS, iplot, ausS,
tsmoothS, aicarhpick.getpick()) tsmoothS, aicarhpick.getpick(), fig, linecolor)
mpickS = refSpick.getpick() mpickS = refSpick.getpick()
############################################################# #############################################################
if mpickS is not None: if mpickS is not None:
# quality assessment # quality assessment
# get earliest/latest possible pick and symmetrized uncertainty # get earliest/latest possible pick and symmetrized uncertainty
h_copy[0].data = trH1_filt.data h_copy[0].data = trH1_filt.data
[epickS1, lpickS1, Serror1] = earllatepicker(h_copy, nfacS, if iplot:
if fig_dict:
fig = fig_dict['el_S1pick']
linecolor = fig_dict['plot_style']['linecolor']['rgba_mpl']
else:
fig = None
linecolor = 'k'
epickS1, lpickS1, Serror1 = earllatepicker(h_copy, nfacS,
tsnrh,
mpickS, iplot,
fig=fig,
linecolor=linecolor)
else:
epickS1, lpickS1, Serror1 = earllatepicker(h_copy, nfacS,
tsnrh, tsnrh,
mpickS, iplot) mpickS, iplot)
h_copy[0].data = trH2_filt.data h_copy[0].data = trH2_filt.data
[epickS2, lpickS2, Serror2] = earllatepicker(h_copy, nfacS, if iplot:
if fig_dict:
fig = fig_dict['el_S2pick']
linecolor = fig_dict['plot_style']['linecolor']['rgba_mpl']
else:
fig = None
linecolor = ''
epickS2, lpickS2, Serror2 = earllatepicker(h_copy, nfacS,
tsnrh,
mpickS, iplot,
fig=fig,
linecolor=linecolor)
else:
epickS2, lpickS2, Serror2 = earllatepicker(h_copy, nfacS,
tsnrh, tsnrh,
mpickS, iplot) mpickS, iplot)
if epickS1 is not None and epickS2 is not None: if epickS1 is not None and epickS2 is not None:
@ -535,6 +806,9 @@ def autopickstation(wfstream, pickparam, verbose=False):
lpickS = lpick[ipick] lpickS = lpick[ipick]
Serror = pickerr[ipick] Serror = pickerr[ipick]
msg = 'autopickstation: Refined S-Pick: {} s | S-Error: {} s'.format(mpickS, Serror)
print(msg)
# get SNR # get SNR
[SNRS, SNRSdB, Snoiselevel] = getSNR(h_copy, tsnrh, mpickS) [SNRS, SNRSdB, Snoiselevel] = getSNR(h_copy, tsnrh, mpickS)
@ -552,12 +826,11 @@ def autopickstation(wfstream, pickparam, verbose=False):
print('autopickstation: S-weight: {0}, SNR: {1}, ' print('autopickstation: S-weight: {0}, SNR: {1}, '
'SNR[dB]: {2}\n' 'SNR[dB]: {2}\n'
'################################################' '##################################################'
''.format(Sweight, SNRS, SNRSdB)) ''.format(Sweight, SNRS, SNRSdB))
################################################################ ################################################################
# get Wood-Anderson peak-to-peak amplitude # get Wood-Anderson peak-to-peak amplitude
# initialize Data object # initialize Data object
data = Data()
# re-create stream object including both horizontal components # re-create stream object including both horizontal components
hdat = edat.copy() hdat = edat.copy()
hdat += ndat hdat += ndat
@ -566,7 +839,7 @@ def autopickstation(wfstream, pickparam, verbose=False):
'AIC-SNR={0}, AIC-Slope={1}counts/s\n' \ 'AIC-SNR={0}, AIC-Slope={1}counts/s\n' \
'(min. AIC-SNR={2}, ' \ '(min. AIC-SNR={2}, ' \
'min. AIC-Slope={3}counts/s)\n' \ 'min. AIC-Slope={3}counts/s)\n' \
'################################################' \ '##################################################' \
''.format(aicarhpick.getSNR(), ''.format(aicarhpick.getSNR(),
aicarhpick.getSlope(), aicarhpick.getSlope(),
minAICSSNR, minAICSSNR,
@ -576,50 +849,62 @@ def autopickstation(wfstream, pickparam, verbose=False):
############################################################ ############################################################
# get Wood-Anderson peak-to-peak amplitude # get Wood-Anderson peak-to-peak amplitude
# initialize Data object # initialize Data object
data = Data()
# re-create stream object including both horizontal components # re-create stream object including both horizontal components
hdat = edat.copy() hdat = edat.copy()
hdat += ndat hdat += ndat
else: else:
print('autopickstation: No horizontal component data available or ' \ print('autopickstation: No horizontal component data available or '
'bad P onset, skipping S picking!') 'bad P onset, skipping S picking!')
############################################################## ##############################################################
try:
iplot = int(iplot)
except:
if iplot == True or iplot == 'True':
iplot = 2
else:
iplot = 0
if iplot > 0: if iplot > 0:
# plot vertical trace # plot vertical trace
plt.figure() if fig_dict == None or fig_dict == 'None':
plt.subplot(3, 1, 1) fig = plt.figure()
plt_flag = 1
linecolor = 'k'
else:
fig = fig_dict['mainFig']
linecolor = fig_dict['plot_style']['linecolor']['rgba_mpl']
fig._tight = True
ax1 = fig.add_subplot(311)
tdata = np.arange(0, zdat[0].stats.npts / tr_filt.stats.sampling_rate, tdata = np.arange(0, zdat[0].stats.npts / tr_filt.stats.sampling_rate,
tr_filt.stats.delta) tr_filt.stats.delta)
# check equal length of arrays, sometimes they are different!? # check equal length of arrays, sometimes they are different!?
wfldiff = len(tr_filt.data) - len(tdata) wfldiff = len(tr_filt.data) - len(tdata)
if wfldiff < 0: if wfldiff < 0:
tdata = tdata[0:len(tdata) - abs(wfldiff)] tdata = tdata[0:len(tdata) - abs(wfldiff)]
p1, = plt.plot(tdata, tr_filt.data / max(tr_filt.data), 'k') ax1.plot(tdata, tr_filt.data / max(tr_filt.data), color=linecolor, linewidth=0.7, label='Data')
if Pweight < 4: if Pweight < 4:
p2, = plt.plot(cf1.getTimeArray(), cf1.getCF() / max(cf1.getCF()), ax1.plot(cf1.getTimeArray(), cf1.getCF() / max(cf1.getCF()),
'b') 'b', label='CF1')
if aicPflag == 1: if aicPflag == 1:
p3, = plt.plot(cf2.getTimeArray(), ax1.plot(cf2.getTimeArray(),
cf2.getCF() / max(cf2.getCF()), 'm') cf2.getCF() / max(cf2.getCF()), 'm', label='CF2')
p4, = plt.plot([aicpick.getpick(), aicpick.getpick()], [-1, 1], ax1.plot([aicpick.getpick(), aicpick.getpick()], [-1, 1],
'r') 'r', label='Initial P Onset')
plt.plot([aicpick.getpick() - 0.5, aicpick.getpick() + 0.5], ax1.plot([aicpick.getpick() - 0.5, aicpick.getpick() + 0.5],
[1, 1], 'r') [1, 1], 'r')
plt.plot([aicpick.getpick() - 0.5, aicpick.getpick() + 0.5], ax1.plot([aicpick.getpick() - 0.5, aicpick.getpick() + 0.5],
[-1, -1], 'r') [-1, -1], 'r')
p5, = plt.plot([refPpick.getpick(), refPpick.getpick()], ax1.plot([refPpick.getpick(), refPpick.getpick()],
[-1.3, 1.3], 'r', linewidth=2) [-1.3, 1.3], 'r', linewidth=2, label='Final P Pick')
plt.plot([refPpick.getpick() - 0.5, refPpick.getpick() + 0.5], ax1.plot([refPpick.getpick() - 0.5, refPpick.getpick() + 0.5],
[1.3, 1.3], 'r', linewidth=2) [1.3, 1.3], 'r', linewidth=2)
plt.plot([refPpick.getpick() - 0.5, refPpick.getpick() + 0.5], ax1.plot([refPpick.getpick() - 0.5, refPpick.getpick() + 0.5],
[-1.3, -1.3], 'r', linewidth=2) [-1.3, -1.3], 'r', linewidth=2)
plt.plot([lpickP, lpickP], [-1.1, 1.1], 'r--') ax1.plot([lpickP, lpickP], [-1.1, 1.1], 'r--', label='lpp')
plt.plot([epickP, epickP], [-1.1, 1.1], 'r--') ax1.plot([epickP, epickP], [-1.1, 1.1], 'r--', label='epp')
plt.legend([p1, p2, p3, p4, p5], ax1.set_title('%s, %s, P Weight=%d, SNR=%7.2f, SNR[dB]=%7.2f '
['Data', 'CF1', 'CF2', 'Initial P Onset',
'Final P Pick'])
plt.title('%s, %s, P Weight=%d, SNR=%7.2f, SNR[dB]=%7.2f '
'Polarity: %s' % (tr_filt.stats.station, 'Polarity: %s' % (tr_filt.stats.station,
tr_filt.stats.channel, tr_filt.stats.channel,
Pweight, Pweight,
@ -627,22 +912,28 @@ def autopickstation(wfstream, pickparam, verbose=False):
SNRPdB, SNRPdB,
FM)) FM))
else: else:
plt.legend([p1, p2], ['Data', 'CF1']) ax1.set_title('%s, P Weight=%d, SNR=None, '
plt.title('%s, P Weight=%d, SNR=None, '
'SNRdB=None' % (tr_filt.stats.channel, Pweight)) 'SNRdB=None' % (tr_filt.stats.channel, Pweight))
else: else:
plt.title('%s, %s, P Weight=%d' % (tr_filt.stats.station, ax1.set_title('%s, %s, P Weight=%d' % (tr_filt.stats.station,
tr_filt.stats.channel, tr_filt.stats.channel,
Pweight)) Pweight))
ax1.legend(loc=1)
plt.yticks([]) ax1.set_yticks([])
plt.ylim([-1.5, 1.5]) ax1.set_ylim([-1.5, 1.5])
plt.ylabel('Normalized Counts') ax1.set_ylabel('Normalized Counts')
plt.suptitle(tr_filt.stats.starttime) # fig.suptitle(tr_filt.stats.starttime)
try:
len(edat[0])
except:
edat = ndat
try:
len(ndat[0])
except:
ndat = edat
if len(edat[0]) > 1 and len(ndat[0]) > 1 and Sflag == 1: if len(edat[0]) > 1 and len(ndat[0]) > 1 and Sflag == 1:
# plot horizontal traces # plot horizontal traces
plt.subplot(3, 1, 2) ax2 = fig.add_subplot(3, 1, 2, sharex=ax1)
th1data = np.arange(0, th1data = np.arange(0,
trH1_filt.stats.npts / trH1_filt.stats.npts /
trH1_filt.stats.sampling_rate, trH1_filt.stats.sampling_rate,
@ -651,50 +942,47 @@ def autopickstation(wfstream, pickparam, verbose=False):
wfldiff = len(trH1_filt.data) - len(th1data) wfldiff = len(trH1_filt.data) - len(th1data)
if wfldiff < 0: if wfldiff < 0:
th1data = th1data[0:len(th1data) - abs(wfldiff)] th1data = th1data[0:len(th1data) - abs(wfldiff)]
p21, = plt.plot(th1data, trH1_filt.data / max(trH1_filt.data), 'k') ax2.plot(th1data, trH1_filt.data / max(trH1_filt.data), color=linecolor, linewidth=0.7, label='Data')
if Pweight < 4: if Pweight < 4:
p22, = plt.plot(arhcf1.getTimeArray(), ax2.plot(arhcf1.getTimeArray(),
arhcf1.getCF() / max(arhcf1.getCF()), 'b') arhcf1.getCF() / max(arhcf1.getCF()), 'b', label='CF1')
if aicSflag == 1: if aicSflag == 1 and Sweight < 4:
p23, = plt.plot(arhcf2.getTimeArray(), ax2.plot(arhcf2.getTimeArray(),
arhcf2.getCF() / max(arhcf2.getCF()), 'm') arhcf2.getCF() / max(arhcf2.getCF()), 'm', label='CF2')
p24, = plt.plot( ax2.plot(
[aicarhpick.getpick(), aicarhpick.getpick()], [aicarhpick.getpick(), aicarhpick.getpick()],
[-1, 1], 'g') [-1, 1], 'g', label='Initial S Onset')
plt.plot( ax2.plot(
[aicarhpick.getpick() - 0.5, [aicarhpick.getpick() - 0.5,
aicarhpick.getpick() + 0.5], aicarhpick.getpick() + 0.5],
[1, 1], 'g') [1, 1], 'g')
plt.plot( ax2.plot(
[aicarhpick.getpick() - 0.5, [aicarhpick.getpick() - 0.5,
aicarhpick.getpick() + 0.5], aicarhpick.getpick() + 0.5],
[-1, -1], 'g') [-1, -1], 'g')
p25, = plt.plot([refSpick.getpick(), refSpick.getpick()], ax2.plot([refSpick.getpick(), refSpick.getpick()],
[-1.3, 1.3], 'g', linewidth=2) [-1.3, 1.3], 'g', linewidth=2, label='Final S Pick')
plt.plot( ax2.plot(
[refSpick.getpick() - 0.5, refSpick.getpick() + 0.5], [refSpick.getpick() - 0.5, refSpick.getpick() + 0.5],
[1.3, 1.3], 'g', linewidth=2) [1.3, 1.3], 'g', linewidth=2)
plt.plot( ax2.plot(
[refSpick.getpick() - 0.5, refSpick.getpick() + 0.5], [refSpick.getpick() - 0.5, refSpick.getpick() + 0.5],
[-1.3, -1.3], 'g', linewidth=2) [-1.3, -1.3], 'g', linewidth=2)
plt.plot([lpickS, lpickS], [-1.1, 1.1], 'g--') ax2.plot([lpickS, lpickS], [-1.1, 1.1], 'g--', label='lpp')
plt.plot([epickS, epickS], [-1.1, 1.1], 'g--') ax2.plot([epickS, epickS], [-1.1, 1.1], 'g--', label='epp')
plt.legend([p21, p22, p23, p24, p25], ax2.set_title('%s, S Weight=%d, SNR=%7.2f, SNR[dB]=%7.2f' % (
['Data', 'CF1', 'CF2', 'Initial S Onset',
'Final S Pick'])
plt.title('%s, S Weight=%d, SNR=%7.2f, SNR[dB]=%7.2f' % (
trH1_filt.stats.channel, trH1_filt.stats.channel,
Sweight, SNRS, SNRSdB)) Sweight, SNRS, SNRSdB))
else: else:
plt.legend([p21, p22], ['Data', 'CF1']) ax2.set_title('%s, S Weight=%d, SNR=None, SNRdB=None' % (
plt.title('%s, S Weight=%d, SNR=None, SNRdB=None' % (
trH1_filt.stats.channel, Sweight)) trH1_filt.stats.channel, Sweight))
plt.yticks([]) ax2.legend(loc=1)
plt.ylim([-1.5, 1.5]) ax2.set_yticks([])
plt.ylabel('Normalized Counts') ax2.set_ylim([-1.5, 1.5])
plt.suptitle(trH1_filt.stats.starttime) ax2.set_ylabel('Normalized Counts')
# fig.suptitle(trH1_filt.stats.starttime)
plt.subplot(3, 1, 3) ax3 = fig.add_subplot(3, 1, 3, sharex=ax1)
th2data = np.arange(0, th2data = np.arange(0,
trH2_filt.stats.npts / trH2_filt.stats.npts /
trH2_filt.stats.sampling_rate, trH2_filt.stats.sampling_rate,
@ -703,53 +991,51 @@ def autopickstation(wfstream, pickparam, verbose=False):
wfldiff = len(trH2_filt.data) - len(th2data) wfldiff = len(trH2_filt.data) - len(th2data)
if wfldiff < 0: if wfldiff < 0:
th2data = th2data[0:len(th2data) - abs(wfldiff)] th2data = th2data[0:len(th2data) - abs(wfldiff)]
plt.plot(th2data, trH2_filt.data / max(trH2_filt.data), 'k') ax3.plot(th2data, trH2_filt.data / max(trH2_filt.data), color=linecolor, linewidth=0.7, label='Data')
if Pweight < 4: if Pweight < 4:
p22, = plt.plot(arhcf1.getTimeArray(), p22, = ax3.plot(arhcf1.getTimeArray(),
arhcf1.getCF() / max(arhcf1.getCF()), 'b') arhcf1.getCF() / max(arhcf1.getCF()), 'b', label='CF1')
if aicSflag == 1: if aicSflag == 1:
p23, = plt.plot(arhcf2.getTimeArray(), ax3.plot(arhcf2.getTimeArray(),
arhcf2.getCF() / max(arhcf2.getCF()), 'm') arhcf2.getCF() / max(arhcf2.getCF()), 'm', label='CF2')
p24, = plt.plot( ax3.plot(
[aicarhpick.getpick(), aicarhpick.getpick()], [aicarhpick.getpick(), aicarhpick.getpick()],
[-1, 1], 'g') [-1, 1], 'g', label='Initial S Onset')
plt.plot( ax3.plot(
[aicarhpick.getpick() - 0.5, [aicarhpick.getpick() - 0.5,
aicarhpick.getpick() + 0.5], aicarhpick.getpick() + 0.5],
[1, 1], 'g') [1, 1], 'g')
plt.plot( ax3.plot(
[aicarhpick.getpick() - 0.5, [aicarhpick.getpick() - 0.5,
aicarhpick.getpick() + 0.5], aicarhpick.getpick() + 0.5],
[-1, -1], 'g') [-1, -1], 'g')
p25, = plt.plot([refSpick.getpick(), refSpick.getpick()], ax3.plot([refSpick.getpick(), refSpick.getpick()],
[-1.3, 1.3], 'g', linewidth=2) [-1.3, 1.3], 'g', linewidth=2, label='Final S Pick')
plt.plot( ax3.plot(
[refSpick.getpick() - 0.5, refSpick.getpick() + 0.5], [refSpick.getpick() - 0.5, refSpick.getpick() + 0.5],
[1.3, 1.3], 'g', linewidth=2) [1.3, 1.3], 'g', linewidth=2)
plt.plot( ax3.plot(
[refSpick.getpick() - 0.5, refSpick.getpick() + 0.5], [refSpick.getpick() - 0.5, refSpick.getpick() + 0.5],
[-1.3, -1.3], 'g', linewidth=2) [-1.3, -1.3], 'g', linewidth=2)
plt.plot([lpickS, lpickS], [-1.1, 1.1], 'g--') ax3.plot([lpickS, lpickS], [-1.1, 1.1], 'g--', label='lpp')
plt.plot([epickS, epickS], [-1.1, 1.1], 'g--') ax3.plot([epickS, epickS], [-1.1, 1.1], 'g--', label='epp')
plt.legend([p21, p22, p23, p24, p25], ax3.legend(loc=1)
['Data', 'CF1', 'CF2', 'Initial S Onset', ax3.set_yticks([])
'Final S Pick']) ax3.set_ylim([-1.5, 1.5])
else: ax3.set_xlabel('Time [s] after %s' % tr_filt.stats.starttime)
plt.legend([p21, p22], ['Data', 'CF1']) ax3.set_ylabel('Normalized Counts')
plt.yticks([]) ax3.set_title(trH2_filt.stats.channel)
plt.ylim([-1.5, 1.5]) if plt_flag == 1:
plt.xlabel('Time [s] after %s' % tr_filt.stats.starttime) fig.show()
plt.ylabel('Normalized Counts') try: input()
plt.title(trH2_filt.stats.channel) except SyntaxError: pass
plt.show() plt.close(fig)
raw_input()
plt.close()
########################################################################## ##########################################################################
# calculate "real" onset times # calculate "real" onset times
if lpickP is not None and lpickP == mpickP: if lpickP is not None and lpickP == mpickP:
lpickP += timeerrorsP[0] lpickP += zdat[0].stats.delta
if epickP is not None and epickP == mpickP: if epickP is not None and epickP == mpickP:
epickP -= timeerrorsP[0] epickP -= zdat[0].stats.delta
if mpickP is not None and epickP is not None and lpickP is not None: if mpickP is not None and epickP is not None and lpickP is not None:
lpickP = zdat[0].stats.starttime + lpickP lpickP = zdat[0].stats.starttime + lpickP
epickP = zdat[0].stats.starttime + epickP epickP = zdat[0].stats.starttime + epickP
@ -761,35 +1047,46 @@ def autopickstation(wfstream, pickparam, verbose=False):
epickP = zdat[0].stats.starttime - timeerrorsP[3] epickP = zdat[0].stats.starttime - timeerrorsP[3]
mpickP = zdat[0].stats.starttime mpickP = zdat[0].stats.starttime
if edat:
hdat = edat[0]
elif ndat:
hdat = ndat[0]
else:
return
if lpickS is not None and lpickS == mpickS: if lpickS is not None and lpickS == mpickS:
lpickS += timeerrorsS[0] lpickS += hdat.stats.delta
if epickS is not None and epickS == mpickS: if epickS is not None and epickS == mpickS:
epickS -= timeerrorsS[0] epickS -= hdat.stats.delta
if mpickS is not None and epickS is not None and lpickS is not None: if mpickS is not None and epickS is not None and lpickS is not None:
lpickS = edat[0].stats.starttime + lpickS lpickS = hdat.stats.starttime + lpickS
epickS = edat[0].stats.starttime + epickS epickS = hdat.stats.starttime + epickS
mpickS = edat[0].stats.starttime + mpickS mpickS = hdat.stats.starttime + mpickS
else: else:
# dummy values (start of seismic trace) in order to derive # dummy values (start of seismic trace) in order to derive
# theoretical onset times for iteratve picking # theoretical onset times for iteratve picking
lpickS = edat[0].stats.starttime + timeerrorsS[3] lpickS = hdat.stats.starttime + timeerrorsS[3]
epickS = edat[0].stats.starttime - timeerrorsS[3] epickS = hdat.stats.starttime - timeerrorsS[3]
mpickS = edat[0].stats.starttime mpickS = hdat.stats.starttime
# create dictionary # create dictionary
# for P phase # for P phase
ppick = dict(lpp=lpickP, epp=epickP, mpp=mpickP, spe=Perror, snr=SNRP, ccode = zdat[0].stats.channel
ncode = zdat[0].stats.network
ppick = dict(channel=ccode, network=ncode, lpp=lpickP, epp=epickP, mpp=mpickP, spe=Perror, snr=SNRP,
snrdb=SNRPdB, weight=Pweight, fm=FM, w0=None, fc=None, Mo=None, snrdb=SNRPdB, weight=Pweight, fm=FM, w0=None, fc=None, Mo=None,
Mw=None, picker=picker, marked=Pmarker) Mw=None, picker=picker, marked=Pmarker)
# add S phase # add S phase
spick = dict(lpp=lpickS, epp=epickS, mpp=mpickS, spe=Serror, snr=SNRS, ccode = hdat.stats.channel
ncode = hdat.stats.network
spick = dict(channel=ccode, network=ncode, lpp=lpickS, epp=epickS, mpp=mpickS, spe=Serror, snr=SNRS,
snrdb=SNRSdB, weight=Sweight, fm=None, picker=picker, Ao=Ao) snrdb=SNRSdB, weight=Sweight, fm=None, picker=picker, Ao=Ao)
# merge picks into returning dictionary # merge picks into returning dictionary
picks = dict(P=ppick, S=spick) picks = dict(P=ppick, S=spick, station=zdat[0].stats.station)
return picks return picks
def iteratepicker(wf, NLLocfile, picks, badpicks, pickparameter): def iteratepicker(wf, NLLocfile, picks, badpicks, pickparameter, fig_dict=None):
''' '''
Repicking of bad onsets. Uses theoretical onset times from NLLoc-location file. Repicking of bad onsets. Uses theoretical onset times from NLLoc-location file.
@ -804,7 +1101,7 @@ def iteratepicker(wf, NLLocfile, picks, badpicks, pickparameter):
:param pickparameter: picking parameters from autoPyLoT-input file :param pickparameter: picking parameters from autoPyLoT-input file
''' '''
msg = '#######################################################\n' \ msg = '##################################################\n' \
'autoPyLoT: Found {0} bad onsets at station(s) {1}, ' \ 'autoPyLoT: Found {0} bad onsets at station(s) {1}, ' \
'starting re-picking them ...'.format(len(badpicks), badpicks) 'starting re-picking them ...'.format(len(badpicks), badpicks)
print(msg) print(msg)
@ -823,7 +1120,7 @@ def iteratepicker(wf, NLLocfile, picks, badpicks, pickparameter):
badpicks[i][1] = picks[badpicks[i][0]]['P']['mpp'] - float(res) badpicks[i][1] = picks[badpicks[i][0]]['P']['mpp'] - float(res)
# get corresponding waveform stream # get corresponding waveform stream
msg = '#######################################################\n' \ msg = '##################################################\n' \
'iteratepicker: Re-picking station {0}'.format(badpicks[i][0]) 'iteratepicker: Re-picking station {0}'.format(badpicks[i][0])
print(msg) print(msg)
wf2pick = wf.select(station=badpicks[i][0]) wf2pick = wf.select(station=badpicks[i][0])
@ -836,17 +1133,21 @@ def iteratepicker(wf, NLLocfile, picks, badpicks, pickparameter):
Precalcwin_old = pickparameter.get('Precalcwin') Precalcwin_old = pickparameter.get('Precalcwin')
noisefactor_old = pickparameter.get('noisefactor') noisefactor_old = pickparameter.get('noisefactor')
zfac_old = pickparameter.get('zfac') zfac_old = pickparameter.get('zfac')
pickparameter.setParam( twindows = pickparameter.get('tsnrz')
pstart=max([0, badpicks[i][1] - wf2pick[0].stats.starttime \ tsafety = twindows[1]
- pickparameter.get('tlta')])) pstart = max([0, badpicks[i][1] - wf2pick[0].stats.starttime - pickparameter.get('tlta')])
if abs(float(res)) <= tsafety / 2 or pstart == 0:
print("iteratepicker: Small residuum, leave parameters unchanged for this phase!")
else:
pickparameter.setParam(pstart=pstart)
pickparameter.setParam(pstop=pickparameter.get('pstart') + \ pickparameter.setParam(pstop=pickparameter.get('pstart') + \
(3 * pickparameter.get('tlta'))) (pickparameter.get('Precalcwin')))
pickparameter.setParam(sstop=pickparameter.get('sstop') / 2) pickparameter.setParam(sstop=pickparameter.get('sstop') / 2)
pickparameter.setParam(pickwinP=pickparameter.get('pickwinP') / 2) pickparameter.setParam(pickwinP=pickparameter.get('pickwinP') / 2)
pickparameter.setParam( pickparameter.setParam(Precalcwin=pickparameter.get('Precalcwin') / 2)
Precalcwin=pickparameter.get('Precalcwin') / 2)
pickparameter.setParam(noisefactor=1.0) pickparameter.setParam(noisefactor=1.0)
pickparameter.setParam(zfac=1.0) pickparameter.setParam(zfac=1.0)
print( print(
"iteratepicker: The following picking parameters have been modified for iterative picking:") "iteratepicker: The following picking parameters have been modified for iterative picking:")
print( print(
@ -864,7 +1165,7 @@ def iteratepicker(wf, NLLocfile, picks, badpicks, pickparameter):
print("zfac: %f => %f" % (zfac_old, pickparameter.get('zfac'))) print("zfac: %f => %f" % (zfac_old, pickparameter.get('zfac')))
# repick station # repick station
newpicks = autopickstation(wf2pick, pickparameter) newpicks = autopickstation(wf2pick, pickparameter, fig_dict=fig_dict)
# replace old dictionary with new one # replace old dictionary with new one
picks[badpicks[i][0]] = newpicks picks[badpicks[i][0]] = newpicks

View File

@ -17,7 +17,6 @@ autoregressive prediction: application ot local and regional distances, Geophys.
:author: MAGS2 EP3 working group :author: MAGS2 EP3 working group
""" """
import matplotlib.pyplot as plt
import numpy as np import numpy as np
from obspy.core import Stream from obspy.core import Stream
@ -27,7 +26,7 @@ class CharacteristicFunction(object):
SuperClass for different types of characteristic functions. SuperClass for different types of characteristic functions.
''' '''
def __init__(self, data, cut, t2=None, order=None, t1=None, fnoise=None, stealthMode=False): def __init__(self, data, cut, t2=None, order=None, t1=None, fnoise=None):
''' '''
Initialize data type object with information from the original Initialize data type object with information from the original
Seismogram. Seismogram.
@ -64,7 +63,6 @@ class CharacteristicFunction(object):
self.calcCF(self.getDataArray()) self.calcCF(self.getDataArray())
self.arpara = np.array([]) self.arpara = np.array([])
self.xpred = np.array([]) self.xpred = np.array([])
self._stealthMode = stealthMode
def __str__(self): def __str__(self):
return '''\n\t{name} object:\n return '''\n\t{name} object:\n
@ -138,9 +136,6 @@ class CharacteristicFunction(object):
def getXCF(self): def getXCF(self):
return self.xcf return self.xcf
def _getStealthMode(self):
return self._stealthMode()
def getDataArray(self, cut=None): def getDataArray(self, cut=None):
''' '''
If cut times are given, time series is cut from cut[0] (start time) If cut times are given, time series is cut from cut[0] (start time)
@ -225,13 +220,11 @@ class AICcf(CharacteristicFunction):
def calcCF(self, data): def calcCF(self, data):
# if self._getStealthMode() is False:
# print 'Calculating AIC ...'
x = self.getDataArray() x = self.getDataArray()
xnp = x[0].data xnp = x[0].data
nn = np.isnan(xnp) ind = np.where(~np.isnan(xnp))[0]
if len(nn) > 1: if ind.size:
xnp[nn] = 0 xnp[:ind[0]] = xnp[ind[0]]
datlen = len(xnp) datlen = len(xnp)
k = np.arange(1, datlen) k = np.arange(1, datlen)
cf = np.zeros(datlen) cf = np.zeros(datlen)
@ -265,13 +258,9 @@ class HOScf(CharacteristicFunction):
if len(nn) > 1: if len(nn) > 1:
xnp[nn] = 0 xnp[nn] = 0
if self.getOrder() == 3: # this is skewness if self.getOrder() == 3: # this is skewness
# if self._getStealthMode() is False:
# print 'Calculating skewness ...'
y = np.power(xnp, 3) y = np.power(xnp, 3)
y1 = np.power(xnp, 2) y1 = np.power(xnp, 2)
elif self.getOrder() == 4: # this is kurtosis elif self.getOrder() == 4: # this is kurtosis
# if self._getStealthMode() is False:
# print 'Calculating kurtosis ...'
y = np.power(xnp, 4) y = np.power(xnp, 4)
y1 = np.power(xnp, 2) y1 = np.power(xnp, 2)
@ -297,9 +286,12 @@ class HOScf(CharacteristicFunction):
elif self.getOrder() == 4: elif self.getOrder() == 4:
LTA[j] = lta / np.power(lta1, 2) LTA[j] = lta / np.power(lta1, 2)
nn = np.isnan(LTA) # remove NaN's with first not-NaN-value,
if len(nn) > 1: # so autopicker doesnt pick discontinuity at start of the trace
LTA[nn] = 0 ind = np.where(~np.isnan(LTA))[0]
if ind.size:
first = ind[0]
LTA[:first] = LTA[first]
self.cf = LTA self.cf = LTA
self.xcf = x self.xcf = x
@ -307,7 +299,7 @@ class HOScf(CharacteristicFunction):
class ARZcf(CharacteristicFunction): class ARZcf(CharacteristicFunction):
def calcCF(self, data): def calcCF(self, data):
print 'Calculating AR-prediction error from single trace ...' print('Calculating AR-prediction error from single trace ...')
x = self.getDataArray(self.getCut()) x = self.getDataArray(self.getCut())
xnp = x[0].data xnp = x[0].data
nn = np.isnan(xnp) nn = np.isnan(xnp)
@ -343,6 +335,7 @@ class ARZcf(CharacteristicFunction):
cf = tap * cf cf = tap * cf
io = np.where(cf == 0) io = np.where(cf == 0)
ino = np.where(cf > 0) ino = np.where(cf > 0)
if np.size(ino):
cf[io] = cf[ino[0][0]] cf[io] = cf[ino[0][0]]
self.cf = cf self.cf = cf
@ -430,7 +423,7 @@ class ARZcf(CharacteristicFunction):
class ARHcf(CharacteristicFunction): class ARHcf(CharacteristicFunction):
def calcCF(self, data): def calcCF(self, data):
print 'Calculating AR-prediction error from both horizontal traces ...' print('Calculating AR-prediction error from both horizontal traces ...')
xnp = self.getDataArray(self.getCut()) xnp = self.getDataArray(self.getCut())
n0 = np.isnan(xnp[0].data) n0 = np.isnan(xnp[0].data)
@ -475,6 +468,7 @@ class ARHcf(CharacteristicFunction):
cf = tap * cf cf = tap * cf
io = np.where(cf == 0) io = np.where(cf == 0)
ino = np.where(cf > 0) ino = np.where(cf > 0)
if np.size(ino):
cf[io] = cf[ino[0][0]] cf[io] = cf[ino[0][0]]
self.cf = cf self.cf = cf
@ -567,7 +561,7 @@ class ARHcf(CharacteristicFunction):
class AR3Ccf(CharacteristicFunction): class AR3Ccf(CharacteristicFunction):
def calcCF(self, data): def calcCF(self, data):
print 'Calculating AR-prediction error from all 3 components ...' print('Calculating AR-prediction error from all 3 components ...')
xnp = self.getDataArray(self.getCut()) xnp = self.getDataArray(self.getCut())
n0 = np.isnan(xnp[0].data) n0 = np.isnan(xnp[0].data)
@ -617,6 +611,7 @@ class AR3Ccf(CharacteristicFunction):
cf = tap * cf cf = tap * cf
io = np.where(cf == 0) io = np.where(cf == 0)
ino = np.where(cf > 0) ino = np.where(cf > 0)
if np.size(ino):
cf[io] = cf[ino[0][0]] cf[io] = cf[ino[0][0]]
self.cf = cf self.cf = cf

View File

@ -4,12 +4,11 @@
import copy import copy
import operator import operator
import os import os
import numpy as np
import glob
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
import numpy as np
from obspy import read_events from obspy import read_events
from obspy.core import AttribDict
from pylot.core.io.phases import picksdict_from_picks from pylot.core.io.phases import picksdict_from_picks
from pylot.core.util.pdf import ProbabilityDensityFunction from pylot.core.util.pdf import ProbabilityDensityFunction
from pylot.core.util.utils import find_in_list from pylot.core.util.utils import find_in_list
@ -28,16 +27,8 @@ class Comparison(object):
""" """
def __init__(self, **kwargs): def __init__(self, **kwargs):
names = list()
self._pdfs = dict() self._pdfs = dict()
for name, fn in kwargs.items(): names = self.iter_kwargs(kwargs)
if isinstance(fn, PDFDictionary):
self._pdfs[name] = fn
elif isinstance(fn, dict):
self._pdfs[name] = PDFDictionary(fn)
else:
self._pdfs[name] = PDFDictionary.from_quakeml(fn)
names.append(name)
if len(names) > 2: if len(names) > 2:
raise ValueError('Comparison is only defined for two ' raise ValueError('Comparison is only defined for two '
'arguments!') 'arguments!')
@ -49,6 +40,40 @@ class Comparison(object):
return False return False
return True return True
def iter_kwargs(self, kwargs):
names = list()
for name, fn in kwargs.items():
if name == 'eventlist':
names = self.init_by_eventlist(fn)
break
if isinstance(fn, PDFDictionary):
self._pdfs[name] = fn
elif isinstance(fn, dict) or isinstance(fn, AttribDict):
self._pdfs[name] = PDFDictionary(fn)
else:
self._pdfs[name] = PDFDictionary.from_quakeml(fn)
names.append(name)
return names
def init_by_eventlist(self, eventlist):
# create one dictionary containing all picks for all events (therefore modify station key)
global_picksdict = {}
for event in eventlist:
automanu = {'manu': event.pylot_picks,
'auto': event.pylot_autopicks}
for method, picksdict in automanu.items():
if not method in global_picksdict.keys():
global_picksdict[method] = {}
for station, picks in picksdict.items():
new_picksdict = global_picksdict[method]
# new id combining event and station in one dictionary for all events
id = '{}_{}'.format(event.pylot_id, station)
new_picksdict[id] = picks
for method, picksdict in global_picksdict.items():
self._pdfs[method] = PDFDictionary(picksdict)
names = list(global_picksdict.keys())
return names
def get(self, name): def get(self, name):
return self._pdfs[name] return self._pdfs[name]
@ -93,8 +118,8 @@ class Comparison(object):
""" """
compare_pdfs = dict() compare_pdfs = dict()
pdf_a = self.get(self.names[0]).generate_pdf_data(type) pdf_a = self.get('auto').generate_pdf_data(type)
pdf_b = self.get(self.names[1]).generate_pdf_data(type) pdf_b = self.get('manu').generate_pdf_data(type)
for station, phases in pdf_a.items(): for station, phases in pdf_a.items():
if station in pdf_b.keys(): if station in pdf_b.keys():
@ -155,7 +180,7 @@ class Comparison(object):
def get_array(self, phase, method_name): def get_array(self, phase, method_name):
method = operator.methodcaller(method_name) method = operator.methodcaller(method_name)
pdf_list = self.get_all(phase) pdf_list = self.get_all(phase)
rarray = map(method, pdf_list) rarray = list(map(method, pdf_list))
return np.array(rarray) return np.array(rarray)
def get_expectation_array(self, phase): def get_expectation_array(self, phase):
@ -253,11 +278,7 @@ class PDFDictionary(object):
@classmethod @classmethod
def from_quakeml(self, fn): def from_quakeml(self, fn):
cat = read_events(fn) return PDFDictionary(fn)
if len(cat) > 1:
raise NotImplementedError('reading more than one event at the same '
'time is not implemented yet! Sorry!')
return PDFDictionary(picksdict_from_picks(cat[0]))
def get_all(self, phase): def get_all(self, phase):
rlist = list() rlist = list()
@ -289,7 +310,6 @@ class PDFDictionary(object):
values['mpp'], values['mpp'],
values['lpp'], values['lpp'],
type=type) type=type)
return pdf_picks return pdf_picks
def plot(self, stations=None): def plot(self, stations=None):
@ -354,7 +374,6 @@ class PDFstatistics(object):
Takes a path as argument. Takes a path as argument.
""" """
def __init__(self, directory): def __init__(self, directory):
"""Initiates some values needed when dealing with pdfs later""" """Initiates some values needed when dealing with pdfs later"""
self._rootdir = directory self._rootdir = directory
@ -482,7 +501,7 @@ def main():
Insheim = PDFstatistics(root_dir) Insheim = PDFstatistics(root_dir)
Insheim.curphase = 'p' Insheim.curphase = 'p'
qdlist = Insheim.get('qdf', 0.2) qdlist = Insheim.get('qdf', 0.2)
print qdlist print(qdlist)
if __name__ == "__main__": if __name__ == "__main__":

View File

@ -19,12 +19,14 @@ calculated after Diehl & Kissling (2009).
:author: MAGS2 EP3 working group / Ludger Kueperkoch :author: MAGS2 EP3 working group / Ludger Kueperkoch
""" """
import numpy as np
import matplotlib.pyplot as plt
from pylot.core.pick.utils import getnoisewin, getsignalwin
from pylot.core.pick.charfuns import CharacteristicFunction
import warnings import warnings
import matplotlib.pyplot as plt
import numpy as np
from scipy.signal import argrelmax
from pylot.core.pick.charfuns import CharacteristicFunction
from pylot.core.pick.utils import getnoisewin, getsignalwin
class AutoPicker(object): class AutoPicker(object):
''' '''
@ -34,7 +36,7 @@ class AutoPicker(object):
warnings.simplefilter('ignore') warnings.simplefilter('ignore')
def __init__(self, cf, TSNR, PickWindow, iplot=None, aus=None, Tsmooth=None, Pick1=None): def __init__(self, cf, TSNR, PickWindow, iplot=0, aus=None, Tsmooth=None, Pick1=None, fig=None, linecolor='k'):
''' '''
:param: cf, characteristic function, on which the picking algorithm is applied :param: cf, characteristic function, on which the picking algorithm is applied
:type: `~pylot.core.pick.CharFuns.CharacteristicFunction` object :type: `~pylot.core.pick.CharFuns.CharacteristicFunction` object
@ -61,7 +63,8 @@ class AutoPicker(object):
''' '''
assert isinstance(cf, CharacteristicFunction), "%s is not a CharacteristicFunction object" % str(cf) assert isinstance(cf, CharacteristicFunction), "%s is not a CharacteristicFunction object" % str(cf)
self._linecolor = linecolor
self._pickcolor_p = 'b'
self.cf = cf.getCF() self.cf = cf.getCF()
self.Tcf = cf.getTimeArray() self.Tcf = cf.getTimeArray()
self.Data = cf.getXCF() self.Data = cf.getXCF()
@ -72,6 +75,7 @@ class AutoPicker(object):
self.setaus(aus) self.setaus(aus)
self.setTsmooth(Tsmooth) self.setTsmooth(Tsmooth)
self.setpick1(Pick1) self.setpick1(Pick1)
self.fig = fig
self.calcPick() self.calcPick()
def __str__(self): def __str__(self):
@ -152,6 +156,15 @@ class AICPicker(AutoPicker):
self.Pick = None self.Pick = None
self.slope = None self.slope = None
self.SNR = None self.SNR = None
plt_flag = 0
try:
iplot = int(self.iplot)
except:
if self.iplot == True or self.iplot == 'True':
iplot = 2
else:
iplot = 0
# find NaN's # find NaN's
nn = np.isnan(self.cf) nn = np.isnan(self.cf)
if len(nn) > 1: if len(nn) > 1:
@ -172,21 +185,14 @@ class AICPicker(AutoPicker):
aicsmooth[i] = aicsmooth[i - 1] + (aic[i] - aic[ii1]) / ismooth aicsmooth[i] = aicsmooth[i - 1] + (aic[i] - aic[ii1]) / ismooth
else: else:
aicsmooth[i] = np.mean(aic[1: i]) aicsmooth[i] = np.mean(aic[1: i])
# remove offset # remove offset in AIC function
offset = abs(min(aic) - min(aicsmooth)) offset = abs(min(aic) - min(aicsmooth))
aicsmooth = aicsmooth - offset aicsmooth = aicsmooth - offset
# get maximum of 1st derivative of AIC-CF (more stable!) as starting point # get maximum of HOS/AR-CF as startimg point for searching
diffcf = np.diff(aicsmooth) # minimum in AIC function
# find NaN's icfmax = np.argmax(self.Data[0].data)
nn = np.isnan(diffcf)
if len(nn) > 1:
diffcf[nn] = 0
# taper CF to get rid off side maxima
tap = np.hanning(len(diffcf))
diffcf = tap * diffcf * max(abs(aicsmooth))
icfmax = np.argmax(diffcf)
# find minimum in AIC-CF front of maximum # find minimum in AIC-CF front of maximum of HOS/AR-CF
lpickwindow = int(round(self.PickWindow / self.dt)) lpickwindow = int(round(self.PickWindow / self.dt))
for i in range(icfmax - 1, max([icfmax - lpickwindow, 2]), -1): for i in range(icfmax - 1, max([icfmax - lpickwindow, 2]), -1):
if aicsmooth[i - 1] >= aicsmooth[i]: if aicsmooth[i - 1] >= aicsmooth[i]:
@ -195,6 +201,14 @@ class AICPicker(AutoPicker):
# if no minimum could be found: # if no minimum could be found:
# search in 1st derivative of AIC-CF # search in 1st derivative of AIC-CF
if self.Pick is None: if self.Pick is None:
diffcf = np.diff(aicsmooth)
# find NaN's
nn = np.isnan(diffcf)
if len(nn) > 1:
diffcf[nn] = 0
# taper CF to get rid off side maxima
tap = np.hanning(len(diffcf))
diffcf = tap * diffcf * max(abs(aicsmooth))
for i in range(icfmax - 1, max([icfmax - lpickwindow, 2]), -1): for i in range(icfmax - 1, max([icfmax - lpickwindow, 2]), -1):
if diffcf[i - 1] >= diffcf[i]: if diffcf[i - 1] >= diffcf[i]:
self.Pick = self.Tcf[i] self.Pick = self.Tcf[i]
@ -206,89 +220,148 @@ class AICPicker(AutoPicker):
inoise = getnoisewin(self.Tcf, self.Pick, self.TSNR[0], self.TSNR[1]) inoise = getnoisewin(self.Tcf, self.Pick, self.TSNR[0], self.TSNR[1])
# check, if these are counts or m/s, important for slope estimation! # check, if these are counts or m/s, important for slope estimation!
# this is quick and dirty, better solution? # this is quick and dirty, better solution?
if max(self.Data[0].data < 1e-3): if max(self.Data[0].data < 1e-3) and max(self.Data[0].data >= 1e-6):
self.Data[0].data = self.Data[0].data * 1000000 self.Data[0].data = self.Data[0].data * 1000000.
elif max(self.Data[0].data < 1e-6):
self.Data[0].data = self.Data[0].data * 1e13
# get signal window # get signal window
isignal = getsignalwin(self.Tcf, self.Pick, self.TSNR[2]) isignal = getsignalwin(self.Tcf, self.Pick, self.TSNR[2])
if len(isignal) == 0:
return
ii = min([isignal[len(isignal) - 1], len(self.Tcf)])
isignal = isignal[0:ii]
try:
self.Data[0].data[isignal]
except IndexError as e:
msg = "Time series out of bounds! {}".format(e)
print(msg)
return
# calculate SNR from CF # calculate SNR from CF
self.SNR = max(abs(aic[isignal] - np.mean(aic[isignal]))) / \ self.SNR = max(abs(self.Data[0].data[isignal] - np.mean(self.Data[0].data[isignal]))) / \
max(abs(aic[inoise] - np.mean(aic[inoise]))) max(abs(self.Data[0].data[inoise] - np.mean(self.Data[0].data[inoise])))
# calculate slope from CF after initial pick # calculate slope from CF after initial pick
# get slope window # get slope window
tslope = self.TSNR[3] # slope determination window tslope = self.TSNR[3] # slope determination window
islope = np.where((self.Tcf <= min([self.Pick + tslope, len(self.Data[0].data)])) \ islope = np.where((self.Tcf <= min([self.Pick + tslope, self.Tcf[-1]])) \
& (self.Tcf >= self.Pick)) & (self.Tcf >= self.Pick)) # TODO: put this in a seperate function like getsignalwin
# find maximum within slope determination window # find maximum within slope determination window
# 'cause slope should be calculated up to first local minimum only! # 'cause slope should be calculated up to first local minimum only!
imax = np.argmax(self.Data[0].data[islope]) try:
if imax == 0: dataslope = self.Data[0].data[islope[0][0:-1]]
print('AICPicker: Maximum for slope determination right at the beginning of the window!') except IndexError:
print('Choose longer slope determination window!') print("Slope Calculation: empty array islope, check signal window")
if self.iplot > 1:
p = plt.figure(self.iplot)
x = self.Data[0].data
p1, = plt.plot(self.Tcf, x / max(x), 'k')
p2, = plt.plot(self.Tcf, aicsmooth / max(aicsmooth), 'r')
plt.legend([p1, p2], ['(HOS-/AR-) Data', 'Smoothed AIC-CF'])
plt.xlabel('Time [s] since %s' % self.Data[0].stats.starttime)
plt.yticks([])
plt.title(self.Data[0].stats.station)
plt.show()
raw_input()
plt.close(p)
return return
islope = islope[0][0:imax] if len(dataslope) < 1:
dataslope = self.Data[0].data[islope] print('No data in slope window found!')
return
imaxs, = argrelmax(dataslope)
if imaxs.size:
imax = imaxs[0]
else:
imax = np.argmax(dataslope)
iislope = islope[0][0:imax + 1]
if len(iislope) < 2:
# calculate slope from initial onset to maximum of AIC function
print("AICPicker: Not enough data samples left for slope calculation!")
print("Calculating slope from initial onset to maximum of AIC function ...")
imax = np.argmax(aicsmooth[islope[0][0:-1]])
if imax == 0:
print("AICPicker: Maximum for slope determination right at the beginning of the window!")
print("Choose longer slope determination window!")
if self.iplot > 1:
if self.fig == None or self.fig == 'None':
fig = plt.figure()
plt_flag = 1
else:
fig = self.fig
ax = fig.add_subplot(111)
x = self.Data[0].data
ax.plot(self.Tcf, x / max(x), color=self._linecolor, linewidth=0.7, label='(HOS-/AR-) Data')
ax.plot(self.Tcf, aicsmooth / max(aicsmooth), 'r', label='Smoothed AIC-CF')
ax.legend(loc=1)
ax.set_xlabel('Time [s] since %s' % self.Data[0].stats.starttime)
ax.set_yticks([])
ax.set_title(self.Data[0].stats.station)
if plt_flag == 1:
fig.show()
try: input()
except SyntaxError: pass
plt.close(fig)
return
iislope = islope[0][0:imax+1]
dataslope = self.Data[0].data[iislope]
# calculate slope as polynomal fit of order 1 # calculate slope as polynomal fit of order 1
xslope = np.arange(0, len(dataslope), 1) xslope = np.arange(0, len(dataslope), 1)
P = np.polyfit(xslope, dataslope, 1) P = np.polyfit(xslope, dataslope, 1)
datafit = np.polyval(P, xslope) datafit = np.polyval(P, xslope)
if datafit[0] >= datafit[len(datafit) - 1]: if datafit[0] >= datafit[-1]:
print('AICPicker: Negative slope, bad onset skipped!') print('AICPicker: Negative slope, bad onset skipped!')
return return
self.slope = 1 / tslope * (datafit[len(dataslope) - 1] - datafit[0]) self.slope = 1 / (len(dataslope) * self.Data[0].stats.delta) * (datafit[-1] - datafit[0])
else: else:
self.SNR = None self.SNR = None
self.slope = None self.slope = None
if self.iplot > 1: if iplot > 1:
p = plt.figure(self.iplot) if self.fig == None or self.fig == 'None':
x = self.Data[0].data fig = plt.figure() # self.iplot)
p1, = plt.plot(self.Tcf, x / max(x), 'k') plt_flag = 1
p2, = plt.plot(self.Tcf, aicsmooth / max(aicsmooth), 'r')
if self.Pick is not None:
p3, = plt.plot([self.Pick, self.Pick], [-0.1, 0.5], 'b', linewidth=2)
plt.legend([p1, p2, p3], ['(HOS-/AR-) Data', 'Smoothed AIC-CF', 'AIC-Pick'])
else: else:
plt.legend([p1, p2], ['(HOS-/AR-) Data', 'Smoothed AIC-CF']) fig = self.fig
plt.xlabel('Time [s] since %s' % self.Data[0].stats.starttime) fig._tight = True
plt.yticks([]) ax1 = fig.add_subplot(211)
plt.title(self.Data[0].stats.station) x = self.Data[0].data
if len(self.Tcf) > len(self.Data[0].data): # why? LK
self.Tcf = self.Tcf[0:len(self.Tcf)-1]
ax1.plot(self.Tcf, x / max(x), color=self._linecolor, linewidth=0.7, label='(HOS-/AR-) Data')
ax1.plot(self.Tcf, aicsmooth / max(aicsmooth), 'r', label='Smoothed AIC-CF')
if self.Pick is not None:
ax1.plot([self.Pick, self.Pick], [-0.1, 0.5], 'b', linewidth=2, label='AIC-Pick')
ax1.set_xlabel('Time [s] since %s' % self.Data[0].stats.starttime)
ax1.set_yticks([])
ax1.legend(loc=1)
if self.Pick is not None: if self.Pick is not None:
plt.figure(self.iplot + 1) ax2 = fig.add_subplot(2, 1, 2, sharex=ax1)
p11, = plt.plot(self.Tcf, x, 'k') ax2.plot(self.Tcf, x, color=self._linecolor, linewidth=0.7, label='Data')
p12, = plt.plot(self.Tcf[inoise], self.Data[0].data[inoise]) ax1.axvspan(self.Tcf[inoise[0]], self.Tcf[inoise[-1]], color='y', alpha=0.2, lw=0, label='Noise Window')
p13, = plt.plot(self.Tcf[isignal], self.Data[0].data[isignal], 'r') ax1.axvspan(self.Tcf[isignal[0]], self.Tcf[isignal[-1]], color='b', alpha=0.2, lw=0,
p14, = plt.plot(self.Tcf[islope], dataslope, 'g--') label='Signal Window')
p15, = plt.plot(self.Tcf[islope], datafit, 'g', linewidth=2) ax1.axvspan(self.Tcf[iislope[0]], self.Tcf[iislope[-1]], color='g', alpha=0.2, lw=0,
plt.legend([p11, p12, p13, p14, p15], label='Slope Window')
['Data', 'Noise Window', 'Signal Window', 'Slope Window', 'Slope'],
loc='best')
plt.title('Station %s, SNR=%7.2f, Slope= %12.2f counts/s' % (self.Data[0].stats.station,
self.SNR, self.slope))
plt.xlabel('Time [s] since %s' % self.Data[0].stats.starttime)
plt.ylabel('Counts')
plt.yticks([])
plt.show() ax2.axvspan(self.Tcf[inoise[0]], self.Tcf[inoise[-1]], color='y', alpha=0.2, lw=0, label='Noise Window')
raw_input() ax2.axvspan(self.Tcf[isignal[0]], self.Tcf[isignal[-1]], color='b', alpha=0.2, lw=0,
plt.close(p) label='Signal Window')
ax2.axvspan(self.Tcf[iislope[0]], self.Tcf[iislope[-1]], color='g', alpha=0.2, lw=0,
label='Slope Window')
ax2.plot(self.Tcf[iislope], datafit, 'g', linewidth=2, label='Slope')
ax1.set_title('Station %s, SNR=%7.2f, Slope= %12.2f counts/s' % (self.Data[0].stats.station,
self.SNR, self.slope))
ax2.set_xlabel('Time [s] since %s' % self.Data[0].stats.starttime)
ax2.set_ylabel('Counts')
ax2.set_yticks([])
ax2.legend(loc=1)
if plt_flag == 1:
fig.show()
try: input()
except SyntaxError: pass
plt.close(fig)
else:
ax1.set_title(self.Data[0].stats.station)
if plt_flag == 1:
fig.show()
try: input()
except SyntaxError: pass
plt.close(fig)
if self.Pick == None: if self.Pick == None:
print('AICPicker: Could not find minimum, picking window too short?') print('AICPicker: Could not find minimum, picking window too short?')
return
class PragPicker(AutoPicker): class PragPicker(AutoPicker):
''' '''
@ -297,6 +370,14 @@ class PragPicker(AutoPicker):
def calcPick(self): def calcPick(self):
try:
iplot = int(self.getiplot())
except:
if self.getiplot() == True or self.getiplot() == 'True':
iplot = 2
else:
iplot = 0
if self.getpick1() is not None: if self.getpick1() is not None:
print('PragPicker: Get most likely pick from HOS- or AR-CF using pragmatic picking algorithm ...') print('PragPicker: Get most likely pick from HOS- or AR-CF using pragmatic picking algorithm ...')
@ -304,6 +385,7 @@ class PragPicker(AutoPicker):
self.SNR = None self.SNR = None
self.slope = None self.slope = None
pickflag = 0 pickflag = 0
plt_flag = 0
# smooth CF # smooth CF
ismooth = int(round(self.Tsmooth / self.dt)) ismooth = int(round(self.Tsmooth / self.dt))
cfsmooth = np.zeros(len(self.cf)) cfsmooth = np.zeros(len(self.cf))
@ -328,12 +410,19 @@ class PragPicker(AutoPicker):
ipick1 = np.argmin(abs(self.Tcf - self.getpick1())) ipick1 = np.argmin(abs(self.Tcf - self.getpick1()))
cfpick1 = 2 * self.cf[ipick1] cfpick1 = 2 * self.cf[ipick1]
# check trend of CF, i.e. differences of CF and adjust aus regarding this trend # check trend of CF, i.e. differences of CF and adjust aus ("artificial uplift
# of picks") regarding this trend
# prominent trend: decrease aus # prominent trend: decrease aus
# flat: use given aus # flat: use given aus
cfdiff = np.diff(cfipick) cfdiff = np.diff(cfipick)
if len(cfdiff)<20:
print('PragPicker: Very few samples for CF. Check LTA window dimensions!')
i0diff = np.where(cfdiff > 0) i0diff = np.where(cfdiff > 0)
cfdiff = cfdiff[i0diff] cfdiff = cfdiff[i0diff]
if len(cfdiff)<1:
print('PragPicker: Negative slope for CF. Check LTA window dimensions! STOP')
self.Pick = None
return
minaus = min(cfdiff * (1 + self.aus)) minaus = min(cfdiff * (1 + self.aus))
aus1 = max([minaus, self.aus]) aus1 = max([minaus, self.aus])
@ -354,6 +443,7 @@ class PragPicker(AutoPicker):
break break
# now we look to the left # now we look to the left
if len(self.cf) > ipick1 +1:
for i in range(ipick1, max([ipick1 - lpickwindow + 1, 2]), -1): for i in range(ipick1, max([ipick1 - lpickwindow + 1, 2]), -1):
if self.cf[i + 1] > self.cf[i] and self.cf[i - 1] >= self.cf[i]: if self.cf[i + 1] > self.cf[i] and self.cf[i - 1] >= self.cf[i]:
if cfsmooth[i - 1] * (1 + aus1) >= cfsmooth[i]: if cfsmooth[i - 1] * (1 + aus1) >= cfsmooth[i]:
@ -363,6 +453,10 @@ class PragPicker(AutoPicker):
flagpick_r = 1 flagpick_r = 1
cfpick_l = self.cf[i] cfpick_l = self.cf[i]
break break
else:
msg ='PragPicker: Initial onset too close to start of CF! \
Stop finalizing pick to the left.'
print(msg)
# now decide which pick: left or right? # now decide which pick: left or right?
if flagpick_l > 0 and flagpick_r > 0 and cfpick_l <= 3 * cfpick_r: if flagpick_l > 0 and flagpick_r > 0 and cfpick_l <= 3 * cfpick_r:
@ -375,25 +469,34 @@ class PragPicker(AutoPicker):
self.Pick = pick_l self.Pick = pick_l
pickflag = 1 pickflag = 1
else: else:
print('PragPicker: Could not find reliable onset!') print("PragPicker: Could not find reliable onset!")
self.Pick = None self.Pick = None
pickflag = 0 pickflag = 0
if self.getiplot() > 1: if iplot > 1:
p = plt.figure(self.getiplot()) if self.fig == None or self.fig == 'None':
p1, = plt.plot(Tcfpick, cfipick, 'k') fig = plt.figure() # self.getiplot())
p2, = plt.plot(Tcfpick, cfsmoothipick, 'r') plt_flag = 1
else:
fig = self.fig
fig._tight = True
ax = fig.add_subplot(111)
ax.plot(Tcfpick, cfipick, color=self._linecolor, linewidth=0.7, label='CF')
ax.plot(Tcfpick, cfsmoothipick, 'r', label='Smoothed CF')
if pickflag > 0: if pickflag > 0:
p3, = plt.plot([self.Pick, self.Pick], [min(cfipick), max(cfipick)], 'b', linewidth=2) ax.plot([self.Pick, self.Pick], [min(cfipick), max(cfipick)], self._pickcolor_p, linewidth=2, label='Pick')
plt.legend([p1, p2, p3], ['CF', 'Smoothed CF', 'Pick']) ax.set_xlabel('Time [s] since %s' % self.Data[0].stats.starttime)
plt.xlabel('Time [s] since %s' % self.Data[0].stats.starttime) ax.set_yticks([])
plt.yticks([]) ax.set_title(self.Data[0].stats.station)
plt.title(self.Data[0].stats.station) ax.legend(loc=1)
plt.show() if plt_flag == 1:
raw_input() fig.show()
plt.close(p) try: input()
except SyntaxError: pass
plt.close(fig)
return
else: else:
print('PragPicker: No initial onset time given! Check input!') print("PragPicker: No initial onset time given! Check input!")
self.Pick = None self.Pick = None
return return

View File

@ -1,12 +1,11 @@
#!/usr/bin/env python #!/usr/bin/env python
# -*- coding: utf-8 -*- # -*- coding: utf-8 -*-
# #
# -*- coding: utf-8 -*-
""" """
Created Mar/Apr 2015 Created Mar/Apr 2015
Collection of helpful functions for manual and automatic picking. Collection of helpful functions for manual and automatic picking.
:author: Ludger Kueperkoch / MAGS2 EP3 working group :author: Ludger Kueperkoch, BESTEC GmbH
""" """
import warnings import warnings
@ -16,7 +15,7 @@ import numpy as np
from obspy.core import Stream, UTCDateTime from obspy.core import Stream, UTCDateTime
def earllatepicker(X, nfac, TSNR, Pick1, iplot=None, stealth_mode=False): def earllatepicker(X, nfac, TSNR, Pick1, iplot=0, verbosity=1, fig=None, linecolor='k'):
''' '''
Function to derive earliest and latest possible pick after Diehl & Kissling (2009) Function to derive earliest and latest possible pick after Diehl & Kissling (2009)
as reasonable uncertainties. Latest possible pick is based on noise level, as reasonable uncertainties. Latest possible pick is based on noise level,
@ -42,10 +41,25 @@ def earllatepicker(X, nfac, TSNR, Pick1, iplot=None, stealth_mode=False):
assert isinstance(X, Stream), "%s is not a stream object" % str(X) assert isinstance(X, Stream), "%s is not a stream object" % str(X)
if verbosity == 2:
print('earllatepicker:')
print('nfac:', nfac)
print('Init pick:', Pick1)
print('TSNR (T_noise, T_gap, T_signal):', TSNR)
LPick = None LPick = None
EPick = None EPick = None
PickError = None PickError = None
if stealth_mode is False: plt_flag = 0
try:
iplot = int(iplot)
except:
if iplot == True or iplot == 'True':
iplot = 2
else:
iplot = 0
if verbosity:
print('earllatepicker: Get earliest and latest possible pick' print('earllatepicker: Get earliest and latest possible pick'
' relative to most likely pick ...') ' relative to most likely pick ...')
@ -59,11 +73,18 @@ def earllatepicker(X, nfac, TSNR, Pick1, iplot=None, stealth_mode=False):
x = x - np.mean(x[inoise]) x = x - np.mean(x[inoise])
# calculate noise level # calculate noise level
nlevel = np.sqrt(np.mean(np.square(x[inoise]))) * nfac nlevel = np.sqrt(np.mean(np.square(x[inoise]))) * nfac
if verbosity == 2:
print('x:', x)
print('t:', t)
print('x_inoise:', x[inoise])
print('x_isignal:', x[isignal])
print('nlevel:', nlevel)
# get time where signal exceeds nlevel # get time where signal exceeds nlevel
ilup, = np.where(x[isignal] > nlevel) ilup, = np.where(x[isignal] > nlevel)
ildown, = np.where(x[isignal] < -nlevel) ildown, = np.where(x[isignal] < -nlevel)
if not ilup.size and not ildown.size: if not ilup.size and not ildown.size:
if stealth_mode is False: if verbosity:
print("earllatepicker: Signal lower than noise level!\n" print("earllatepicker: Signal lower than noise level!\n"
"Skip this trace!") "Skip this trace!")
return LPick, EPick, PickError return LPick, EPick, PickError
@ -73,14 +94,14 @@ def earllatepicker(X, nfac, TSNR, Pick1, iplot=None, stealth_mode=False):
# get earliest possible pick # get earliest possible pick
EPick = np.nan; EPick = np.nan
count = 0 count = 0
pis = isignal pis = isignal
# if EPick stays NaN the signal window size will be doubled # if EPick stays NaN the signal window size will be doubled
while np.isnan(EPick): while np.isnan(EPick):
if count > 0: if count > 0:
if stealth_mode is False: if verbosity:
print("\nearllatepicker: Doubled signal window size %s time(s) " print("\nearllatepicker: Doubled signal window size %s time(s) "
"because of NaN for earliest pick." % count) "because of NaN for earliest pick." % count)
isigDoubleWinStart = pis[-1] + 1 isigDoubleWinStart = pis[-1] + 1
@ -89,7 +110,7 @@ def earllatepicker(X, nfac, TSNR, Pick1, iplot=None, stealth_mode=False):
if (isigDoubleWinStart + len(pis)) < X[0].data.size: if (isigDoubleWinStart + len(pis)) < X[0].data.size:
pis = np.concatenate((pis, isignalDoubleWin)) pis = np.concatenate((pis, isignalDoubleWin))
else: else:
if stealth_mode is False: if verbosity:
print("Could not double signal window. Index out of bounds.") print("Could not double signal window. Index out of bounds.")
break break
count += 1 count += 1
@ -106,38 +127,41 @@ def earllatepicker(X, nfac, TSNR, Pick1, iplot=None, stealth_mode=False):
PickError = symmetrize_error(diffti_te, diffti_tl) PickError = symmetrize_error(diffti_te, diffti_tl)
if iplot > 1: if iplot > 1:
p = plt.figure(iplot) if fig == None or fig == 'None':
p1, = plt.plot(t, x, 'k') fig = plt.figure() # iplot)
p2, = plt.plot(t[inoise], x[inoise]) plt_flag = 1
p3, = plt.plot(t[isignal], x[isignal], 'r') fig._tight = True
p4, = plt.plot([t[0], t[int(len(t)) - 1]], [nlevel, nlevel], '--k') ax = fig.add_subplot(111)
p5, = plt.plot(t[isignal[zc]], np.zeros(len(zc)), '*g', ax.plot(t, x, color=linecolor, linewidth=0.7, label='Data')
markersize=14) ax.axvspan(t[inoise[0]], t[inoise[-1]], color='y', alpha=0.2, lw=0, label='Noise Window')
plt.legend([p1, p2, p3, p4, p5], ax.axvspan(t[isignal[0]], t[isignal[-1]], color='b', alpha=0.2, lw=0, label='Signal Window')
['Data', 'Noise Window', 'Signal Window', 'Noise Level', ax.plot([t[0], t[int(len(t)) - 1]], [nlevel, nlevel], color=linecolor, linewidth=0.7, linestyle='dashed', label='Noise Level')
'Zero Crossings'], ax.plot(t[pis[zc]], np.zeros(len(zc)), '*g',
loc='best') markersize=14, label='Zero Crossings')
plt.plot([t[0], t[int(len(t)) - 1]], [-nlevel, -nlevel], '--k') ax.plot([t[0], t[int(len(t)) - 1]], [-nlevel, -nlevel], color=linecolor, linewidth=0.7, linestyle='dashed')
plt.plot([Pick1, Pick1], [max(x), -max(x)], 'b', linewidth=2) ax.plot([Pick1, Pick1], [max(x), -max(x)], 'b', linewidth=2, label='mpp')
plt.plot([LPick, LPick], [max(x) / 2, -max(x) / 2], '--k') ax.plot([LPick, LPick], [max(x) / 2, -max(x) / 2], color=linecolor, linewidth=0.7, linestyle='dashed', label='lpp')
plt.plot([EPick, EPick], [max(x) / 2, -max(x) / 2], '--k') ax.plot([EPick, EPick], [max(x) / 2, -max(x) / 2], color=linecolor, linewidth=0.7, linestyle='dashed', label='epp')
plt.plot([Pick1 + PickError, Pick1 + PickError], ax.plot([Pick1 + PickError, Pick1 + PickError],
[max(x) / 2, -max(x) / 2], 'r--', label='spe')
ax.plot([Pick1 - PickError, Pick1 - PickError],
[max(x) / 2, -max(x) / 2], 'r--') [max(x) / 2, -max(x) / 2], 'r--')
plt.plot([Pick1 - PickError, Pick1 - PickError], ax.set_xlabel('Time [s] since %s' % X[0].stats.starttime)
[max(x) / 2, -max(x) / 2], 'r--') ax.set_yticks([])
plt.xlabel('Time [s] since %s' % X[0].stats.starttime) ax.set_title(
plt.yticks([])
plt.title(
'Earliest-/Latest Possible/Most Likely Pick & Symmetric Pick Error, %s' % 'Earliest-/Latest Possible/Most Likely Pick & Symmetric Pick Error, %s' %
X[0].stats.station) X[0].stats.station)
plt.show() ax.legend(loc=1)
raw_input() if plt_flag == 1:
plt.close(p) fig.show()
try: input()
except SyntaxError: pass
plt.close(fig)
return EPick, LPick, PickError return EPick, LPick, PickError
def fmpicker(Xraw, Xfilt, pickwin, Pick, iplot=None): def fmpicker(Xraw, Xfilt, pickwin, Pick, iplot=0, fig=None, linecolor='k'):
''' '''
Function to derive first motion (polarity) of given phase onset Pick. Function to derive first motion (polarity) of given phase onset Pick.
Calculation is based on zero crossings determined within time window pickwin Calculation is based on zero crossings determined within time window pickwin
@ -159,6 +183,15 @@ def fmpicker(Xraw, Xfilt, pickwin, Pick, iplot=None):
:type: int :type: int
''' '''
plt_flag = 0
try:
iplot = int(iplot)
except:
if iplot == True or iplot == 'True':
iplot = 2
else:
iplot = 0
warnings.simplefilter('ignore', np.RankWarning) warnings.simplefilter('ignore', np.RankWarning)
assert isinstance(Xraw, Stream), "%s is not a stream object" % str(Xraw) assert isinstance(Xraw, Stream), "%s is not a stream object" % str(Xraw)
@ -173,8 +206,10 @@ def fmpicker(Xraw, Xfilt, pickwin, Pick, iplot=None):
t = np.arange(0, Xraw[0].stats.npts / Xraw[0].stats.sampling_rate, t = np.arange(0, Xraw[0].stats.npts / Xraw[0].stats.sampling_rate,
Xraw[0].stats.delta) Xraw[0].stats.delta)
# get pick window # get pick window
ipick = np.where( ipick = np.where((t <= min([Pick + pickwin, len(Xraw[0])])) & (t >= Pick))
(t <= min([Pick + pickwin, len(Xraw[0])])) & (t >= Pick)) if len(ipick[0]) <= 1:
print('fmpicker: Zero crossings window to short!')
return
# remove mean # remove mean
xraw[ipick] = xraw[ipick] - np.mean(xraw[ipick]) xraw[ipick] = xraw[ipick] - np.mean(xraw[ipick])
xfilt[ipick] = xfilt[ipick] - np.mean(xfilt[ipick]) xfilt[ipick] = xfilt[ipick] - np.mean(xfilt[ipick])
@ -197,6 +232,10 @@ def fmpicker(Xraw, Xfilt, pickwin, Pick, iplot=None):
if len(zc1) == 3: if len(zc1) == 3:
break break
if len(zc1) < 3:
print('fmpicker: Could not determine zero crossings!')
return
# if time difference betweeen 1st and 2cnd zero crossing # if time difference betweeen 1st and 2cnd zero crossing
# is too short, get time difference between 1st and 3rd # is too short, get time difference between 1st and 3rd
# to derive maximum # to derive maximum
@ -204,7 +243,7 @@ def fmpicker(Xraw, Xfilt, pickwin, Pick, iplot=None):
li1 = index1[1] li1 = index1[1]
else: else:
li1 = index1[0] li1 = index1[0]
if np.size(xraw[ipick[0][1]:ipick[0][li1]]) == 0: if np.size(xraw[ipick[0][1]:ipick[0][li1]]) == 0 or len(index1) <= 1:
print("fmpicker: Onset on unfiltered trace too emergent for first motion determination!") print("fmpicker: Onset on unfiltered trace too emergent for first motion determination!")
P1 = None P1 = None
else: else:
@ -246,7 +285,7 @@ def fmpicker(Xraw, Xfilt, pickwin, Pick, iplot=None):
li2 = index2[1] li2 = index2[1]
else: else:
li2 = index2[0] li2 = index2[0]
if np.size(xfilt[ipick[0][1]:ipick[0][li2]]) == 0: if np.size(xfilt[ipick[0][1]:ipick[0][li2]]) == 0 or len(index2) <= 1:
print("fmpicker: Onset on filtered trace too emergent for first motion determination!") print("fmpicker: Onset on filtered trace too emergent for first motion determination!")
P2 = None P2 = None
else: else:
@ -282,39 +321,40 @@ def fmpicker(Xraw, Xfilt, pickwin, Pick, iplot=None):
print("fmpicker: Found polarity %s" % FM) print("fmpicker: Found polarity %s" % FM)
if iplot > 1: if iplot > 1:
plt.figure(iplot) if fig == None or fig == 'None':
plt.subplot(2, 1, 1) fig = plt.figure() # iplot)
plt.plot(t, xraw, 'k') plt_flag = 1
p1, = plt.plot([Pick, Pick], [max(xraw), -max(xraw)], 'b', linewidth=2) fig._tight = True
ax1 = fig.add_subplot(211)
ax1.plot(t, xraw, color=linecolor, linewidth=0.7)
ax1.plot([Pick, Pick], [max(xraw), -max(xraw)], 'b', linewidth=2, label='Pick')
if P1 is not None: if P1 is not None:
p2, = plt.plot(t[islope1], xraw[islope1]) ax1.plot(t[islope1], xraw[islope1], label='Slope Window')
p3, = plt.plot(zc1, np.zeros(len(zc1)), '*g', markersize=14) ax1.plot(zc1, np.zeros(len(zc1)), '*g', markersize=14, label='Zero Crossings')
p4, = plt.plot(t[islope1], datafit1, '--g', linewidth=2) ax1.plot(t[islope1], datafit1, '--g', linewidth=2)
plt.legend([p1, p2, p3, p4], ax1.legend(loc=1)
['Pick', 'Slope Window', 'Zero Crossings', 'Slope'], ax1.text(Pick + 0.02, max(xraw) / 2, '%s' % FM, fontsize=14)
loc='best') ax1.set_yticks([])
plt.text(Pick + 0.02, max(xraw) / 2, '%s' % FM, fontsize=14) ax1.set_title('First-Motion Determination, %s, Unfiltered Data' % Xraw[
ax = plt.gca()
plt.yticks([])
plt.title('First-Motion Determination, %s, Unfiltered Data' % Xraw[
0].stats.station) 0].stats.station)
plt.subplot(2, 1, 2) ax2 = fig.add_subplot(2, 1, 2, sharex=ax1)
plt.title('First-Motion Determination, Filtered Data') ax2.set_title('First-Motion Determination, Filtered Data')
plt.plot(t, xfilt, 'k') ax2.plot(t, xfilt, color=linecolor, linewidth=0.7)
p1, = plt.plot([Pick, Pick], [max(xfilt), -max(xfilt)], 'b', ax2.plot([Pick, Pick], [max(xfilt), -max(xfilt)], 'b',
linewidth=2) linewidth=2)
if P2 is not None: if P2 is not None:
p2, = plt.plot(t[islope2], xfilt[islope2]) ax2.plot(t[islope2], xfilt[islope2])
p3, = plt.plot(zc2, np.zeros(len(zc2)), '*g', markersize=14) ax2.plot(zc2, np.zeros(len(zc2)), '*g', markersize=14)
p4, = plt.plot(t[islope2], datafit2, '--g', linewidth=2) ax2.plot(t[islope2], datafit2, '--g', linewidth=2)
plt.text(Pick + 0.02, max(xraw) / 2, '%s' % FM, fontsize=14) ax2.text(Pick + 0.02, max(xraw) / 2, '%s' % FM, fontsize=14)
ax = plt.gca() ax2.set_xlabel('Time [s] since %s' % Xraw[0].stats.starttime)
plt.xlabel('Time [s] since %s' % Xraw[0].stats.starttime) ax2.set_yticks([])
plt.yticks([]) if plt_flag == 1:
plt.show() fig.show()
raw_input() try: input()
plt.close(iplot) except SyntaxError: pass
plt.close(fig)
return FM return FM
@ -355,6 +395,10 @@ def getSNR(X, TSNR, t1, tracenum=0):
assert isinstance(X, Stream), "%s is not a stream object" % str(X) assert isinstance(X, Stream), "%s is not a stream object" % str(X)
SNR = None
SNRdB = None
noiselevel = None
x = X[tracenum].data x = X[tracenum].data
npts = X[tracenum].stats.npts npts = X[tracenum].stats.npts
sr = X[tracenum].stats.sampling_rate sr = X[tracenum].stats.sampling_rate
@ -368,19 +412,20 @@ def getSNR(X, TSNR, t1, tracenum=0):
isignal = getsignalwin(t, t1, TSNR[2]) isignal = getsignalwin(t, t1, TSNR[2])
if np.size(inoise) < 1: if np.size(inoise) < 1:
print("getSNR: Empty array inoise, check noise window!") print("getSNR: Empty array inoise, check noise window!")
return return SNR, SNRdB, noiselevel
elif np.size(isignal) < 1:
print ("getSNR: Empty array isignal, check signal window!")
return
# demean over entire waveform # demean over entire waveform
x = x - np.mean(x[inoise]) x = x - np.mean(x[inoise])
# calculate ratios # calculate ratios
# noiselevel = np.sqrt(np.mean(np.square(x[inoise]))) noiselevel = np.sqrt(np.mean(np.square(x[inoise])))
# signallevel = np.sqrt(np.mean(np.square(x[isignal]))) # signallevel = np.sqrt(np.mean(np.square(x[isignal])))
noiselevel = np.abs(x[inoise]).max() if np.size(isignal) < 1:
print("getSNR: Empty array isignal, check signal window!")
return SNR, SNRdB, noiselevel
# noiselevel = np.abs(x[inoise]).max()
signallevel = np.abs(x[isignal]).max() signallevel = np.abs(x[isignal]).max()
SNR = signallevel / noiselevel SNR = signallevel / noiselevel
@ -411,6 +456,8 @@ def getnoisewin(t, t1, tnoise, tgap):
# get noise window # get noise window
inoise, = np.where((t <= max([t1 - tgap, 0])) \ inoise, = np.where((t <= max([t1 - tgap, 0])) \
& (t >= max([t1 - tnoise - tgap, 0]))) & (t >= max([t1 - tnoise - tgap, 0])))
if np.size(inoise) < 1:
inoise, = np.where((t >= t[0]) & (t <= t1))
if np.size(inoise) < 1: if np.size(inoise) < 1:
print("getnoisewin: Empty array inoise, check noise window!") print("getnoisewin: Empty array inoise, check noise window!")
@ -433,7 +480,7 @@ def getsignalwin(t, t1, tsignal):
''' '''
# get signal window # get signal window
isignal, = np.where((t <= min([t1 + tsignal, len(t)])) \ isignal, = np.where((t <= min([t1 + tsignal, t[-1]])) \
& (t >= t1)) & (t >= t1))
if np.size(isignal) < 1: if np.size(isignal) < 1:
print("getsignalwin: Empty array isignal, check signal window!") print("getsignalwin: Empty array isignal, check signal window!")
@ -441,7 +488,7 @@ def getsignalwin(t, t1, tsignal):
return isignal return isignal
def getResolutionWindow(snr): def getResolutionWindow(snr, extent):
""" """
Number -> Float Number -> Float
produce the half of the time resolution window width from given SNR produce the half of the time resolution window width from given SNR
@ -452,6 +499,8 @@ def getResolutionWindow(snr):
1.5 > SNR -> 15 sec VLRW 1.5 > SNR -> 15 sec VLRW
see also Diehl et al. 2009 see also Diehl et al. 2009
:parameter: extent, can be 'local', 'regional', 'global'
>>> getResolutionWindow(0.5) >>> getResolutionWindow(0.5)
7.5 7.5
>>> getResolutionWindow(1.8) >>> getResolutionWindow(1.8)
@ -464,16 +513,23 @@ def getResolutionWindow(snr):
2.5 2.5
""" """
res_wins = {'HRW': 2., 'MRW': 5., 'LRW': 10., 'VLRW': 15.} res_wins = {
'regional': {'HRW': 2., 'MRW': 5., 'LRW': 10., 'VLRW': 15.},
'local': {'HRW': 2., 'MRW': 5., 'LRW': 10., 'VLRW': 15.},
'global': {'HRW': 40., 'MRW': 100., 'LRW': 200., 'VLRW': 300.}
}
if snr:
if snr < 1.5: if snr < 1.5:
time_resolution = res_wins['VLRW'] time_resolution = res_wins[extent]['VLRW']
elif snr < 2.: elif snr < 2.:
time_resolution = res_wins['LRW'] time_resolution = res_wins[extent]['LRW']
elif snr < 3.: elif snr < 3.:
time_resolution = res_wins['MRW'] time_resolution = res_wins[extent]['MRW']
elif snr > 3.:
time_resolution = res_wins[extent]['HRW']
else: else:
time_resolution = res_wins['HRW'] time_resolution = res_wins[extent]['VLRW']
return time_resolution / 2 return time_resolution / 2
@ -490,18 +546,21 @@ def select_for_phase(st, phase):
:type phase: str :type phase: str
:return: :return:
''' '''
from pylot.core.util.defaults import COMPNAME_MAP from pylot.core.util.defaults import SetChannelComponents
sel_st = Stream() sel_st = Stream()
compclass = SetChannelComponents()
if phase.upper() == 'P': if phase.upper() == 'P':
comp = 'Z' comp = 'Z'
alter_comp = COMPNAME_MAP[comp] alter_comp = compclass.getCompPosition(comp)
alter_comp = str(alter_comp[0])
sel_st += st.select(component=comp) sel_st += st.select(component=comp)
sel_st += st.select(component=alter_comp) sel_st += st.select(component=alter_comp)
elif phase.upper() == 'S': elif phase.upper() == 'S':
comps = 'NE' comps = 'NE'
for comp in comps: for comp in comps:
alter_comp = COMPNAME_MAP[comp] alter_comp = compclass.getCompPosition(comp)
alter_comp = str(alter_comp[0])
sel_st += st.select(component=comp) sel_st += st.select(component=comp)
sel_st += st.select(component=alter_comp) sel_st += st.select(component=alter_comp)
else: else:
@ -509,7 +568,7 @@ def select_for_phase(st, phase):
return sel_st return sel_st
def wadaticheck(pickdic, dttolerance, iplot): def wadaticheck(pickdic, dttolerance, iplot=0, fig_dict=None):
''' '''
Function to calculate Wadati-diagram from given P and S onsets in order Function to calculate Wadati-diagram from given P and S onsets in order
to detect S pick outliers. If a certain S-P time deviates by dttolerance to detect S pick outliers. If a certain S-P time deviates by dttolerance
@ -532,7 +591,10 @@ def wadaticheck(pickdic, dttolerance, iplot):
Ppicks = [] Ppicks = []
Spicks = [] Spicks = []
SPtimes = [] SPtimes = []
for key in pickdic: stations = []
ibad = 0
for key in list(pickdic.keys()):
if pickdic[key]['P']['weight'] < 4 and pickdic[key]['S']['weight'] < 4: if pickdic[key]['P']['weight'] < 4 and pickdic[key]['S']['weight'] < 4:
# calculate S-P time # calculate S-P time
spt = pickdic[key]['S']['mpp'] - pickdic[key]['P']['mpp'] spt = pickdic[key]['S']['mpp'] - pickdic[key]['P']['mpp']
@ -559,19 +621,23 @@ def wadaticheck(pickdic, dttolerance, iplot):
checkedPpicks = [] checkedPpicks = []
checkedSpicks = [] checkedSpicks = []
checkedSPtimes = [] checkedSPtimes = []
badstations = []
# calculate deviations from Wadati regression # calculate deviations from Wadati regression
ii = 0 ii = 0
ibad = 0 for key in list(pickdic.keys()):
for key in pickdic: if 'SPt' in pickdic[key]:
if pickdic[key].has_key('SPt'): stations.append(key)
wddiff = abs(pickdic[key]['SPt'] - wdfit[ii]) wddiff = abs(pickdic[key]['SPt'] - wdfit[ii])
ii += 1 ii += 1
# check, if deviation is larger than adjusted # check, if deviation is larger than adjusted
if wddiff > dttolerance: if wddiff > dttolerance:
# mark onset and downgrade S-weight to 9 # remove pick from dictionary
# (not used anymore) pickdic.pop(key)
marker = 'badWadatiCheck' # # mark onset and downgrade S-weight to 9
pickdic[key]['S']['weight'] = 9 # # (not used anymore)
# marker = 'badWadatiCheck'
# pickdic[key]['S']['weight'] = 9
badstations.append(key)
ibad += 1 ibad += 1
else: else:
marker = 'goodWadatiCheck' marker = 'goodWadatiCheck'
@ -583,6 +649,9 @@ def wadaticheck(pickdic, dttolerance, iplot):
checkedSPtimes.append(checkedSPtime) checkedSPtimes.append(checkedSPtime)
pickdic[key]['S']['marked'] = marker pickdic[key]['S']['marked'] = marker
#pickdic[key]['S']['marked'] = marker
print("wadaticheck: the following stations failed the check:")
print(badstations)
if len(checkedPpicks) >= 3: if len(checkedPpicks) >= 3:
# calculate new slope # calculate new slope
@ -595,8 +664,10 @@ def wadaticheck(pickdic, dttolerance, iplot):
print("wadatacheck: Skipped %d S pick(s)" % ibad) print("wadatacheck: Skipped %d S pick(s)" % ibad)
else: else:
print("###############################################") print("###############################################")
print ("wadatacheck: Not enough checked S-P times available!") print("wadaticheck: Not enough checked S-P times available!")
print("Skip Wadati check!") print("Skip Wadati check!")
wfitflag = 1
wdfit2 = None
checkedonsets = pickdic checkedonsets = pickdic
@ -606,30 +677,50 @@ def wadaticheck(pickdic, dttolerance, iplot):
wfitflag = 1 wfitflag = 1
# plot results # plot results
if iplot > 1: if iplot > 0:
plt.figure(iplot) if fig_dict:
f1, = plt.plot(Ppicks, SPtimes, 'ro') fig = fig_dict['wadati']
if wfitflag == 0: linecolor = fig_dict['plot_style']['linecolor']['rgba_mpl']
f2, = plt.plot(Ppicks, wdfit, 'k') plt_flag = 0
f3, = plt.plot(checkedPpicks, checkedSPtimes, 'ko')
f4, = plt.plot(checkedPpicks, wdfit2, 'g')
plt.title('Wadati-Diagram, %d S-P Times, Vp/Vs(raw)=%5.2f,' \
'Vp/Vs(checked)=%5.2f' % (len(SPtimes), vpvsr, cvpvsr))
plt.legend([f1, f2, f3, f4], ['Skipped S-Picks', 'Wadati 1',
'Reliable S-Picks', 'Wadati 2'], loc='best')
else: else:
plt.title('Wadati-Diagram, %d S-P Times' % len(SPtimes)) fig = plt.figure()
linecolor = 'k'
plt_flag = 1
ax = fig.add_subplot(111)
if ibad > 0:
ax.plot(Ppicks, SPtimes, 'ro', label='Skipped S-Picks')
if wfitflag == 0:
ax.plot(Ppicks, wdfit, color=linecolor, linewidth=0.7, label='Wadati 1')
ax.plot(Ppicks, wdfit+dttolerance, color='0.9', linewidth=0.5, label='Wadati 1 Tolerance')
ax.plot(Ppicks, wdfit-dttolerance, color='0.9', linewidth=0.5)
ax.plot(checkedPpicks, wdfit2, 'g', label='Wadati 2')
ax.plot(checkedPpicks, checkedSPtimes, color=linecolor,
linewidth=0, marker='o', label='Reliable S-Picks')
for Ppick, SPtime, station in zip(Ppicks, SPtimes, stations):
ax.text(Ppick, SPtime + 0.01, '{0}'.format(station), color='0.25')
plt.ylabel('S-P Times [s]') ax.set_title('Wadati-Diagram, %d S-P Times, Vp/Vs(raw)=%5.2f,' \
plt.xlabel('P Times [s]') 'Vp/Vs(checked)=%5.2f' % (len(SPtimes), vpvsr, cvpvsr))
plt.show() ax.legend(loc=1, numpoints=1)
raw_input() else:
plt.close(iplot) ax.set_title('Wadati-Diagram, %d S-P Times' % len(SPtimes))
ax.set_ylabel('S-P Times [s]')
ax.set_xlabel('P Times [s]')
if plt_flag:
fig.show()
return checkedonsets return checkedonsets
def checksignallength(X, pick, TSNR, minsiglength, nfac, minpercent, iplot): def RMS(X):
'''
Function returns root mean square of a given array X
'''
return np.sqrt(np.sum(np.power(X, 2)) / len(X))
def checksignallength(X, pick, TSNR, minsiglength, nfac, minpercent, iplot=0, fig=None, linecolor='k'):
''' '''
Function to detect spuriously picked noise peaks. Function to detect spuriously picked noise peaks.
Uses RMS trace of all 3 components (if available) to determine, Uses RMS trace of all 3 components (if available) to determine,
@ -660,6 +751,15 @@ def checksignallength(X, pick, TSNR, minsiglength, nfac, minpercent, iplot):
: type: int : type: int
''' '''
plt_flag = 0
try:
iplot = int(iplot)
except:
if iplot == True or iplot == 'True':
iplot = 2
else:
iplot = 0
assert isinstance(X, Stream), "%s is not a stream object" % str(X) assert isinstance(X, Stream), "%s is not a stream object" % str(X)
print("Checking signal length ...") print("Checking signal length ...")
@ -675,17 +775,18 @@ def checksignallength(X, pick, TSNR, minsiglength, nfac, minpercent, iplot):
rms = np.sqrt((np.power(x1, 2) + np.power(x2, 2) + np.power(x3, 2)) / 3) rms = np.sqrt((np.power(x1, 2) + np.power(x2, 2) + np.power(x3, 2)) / 3)
else: else:
x1 = X[0].data x1 = X[0].data
rms = np.sqrt(np.power(2, x1)) ilen = len(x1)
rms = abs(x1)
t = np.arange(0, ilen / X[0].stats.sampling_rate, t = np.arange(0, ilen / X[0].stats.sampling_rate,
X[0].stats.delta) X[0].stats.delta)
# get noise window in front of pick plus saftey gap # get noise window in front of pick plus saftey gap
inoise = getnoisewin(t, pick - 0.5, TSNR[0], TSNR[1]) inoise = getnoisewin(t, pick, TSNR[0], TSNR[1])
# get signal window # get signal window
isignal = getsignalwin(t, pick, minsiglength) isignal = getsignalwin(t, pick, minsiglength)
# calculate minimum adjusted signal level # calculate minimum adjusted signal level
minsiglevel = max(rms[inoise]) * nfac minsiglevel = np.mean(rms[inoise]) * nfac
# minimum adjusted number of samples over minimum signal level # minimum adjusted number of samples over minimum signal level
minnum = len(isignal) * minpercent / 100 minnum = len(isignal) * minpercent / 100
# get number of samples above minimum adjusted signal level # get number of samples above minimum adjusted signal level
@ -700,29 +801,33 @@ def checksignallength(X, pick, TSNR, minsiglength, nfac, minpercent, iplot):
print("(min. signal length required: %s s)" % minsiglength) print("(min. signal length required: %s s)" % minsiglength)
returnflag = 0 returnflag = 0
if iplot == 2: if iplot > 1:
plt.figure(iplot) if fig == None or fig == 'None':
p1, = plt.plot(t, rms, 'k') fig = plt.figure() # iplot)
p2, = plt.plot(t[inoise], rms[inoise], 'c') plt_flag = 1
p3, = plt.plot(t[isignal], rms[isignal], 'r') fig._tight = True
p4, = plt.plot([t[isignal[0]], t[isignal[len(isignal) - 1]]], ax = fig.add_subplot(111)
[minsiglevel, minsiglevel], 'g', linewidth=2) ax.plot(t, rms, color=linecolor, linewidth=0.7, label='RMS Data')
p5, = plt.plot([pick, pick], [min(rms), max(rms)], 'b', linewidth=2) ax.axvspan(t[inoise[0]], t[inoise[-1]], color='y', alpha=0.2, lw=0, label='Noise Window')
plt.legend([p1, p2, p3, p4, p5], ['RMS Data', 'RMS Noise Window', ax.axvspan(t[isignal[0]], t[isignal[-1]], color='b', alpha=0.2, lw=0, label='Signal Window')
'RMS Signal Window', 'Minimum Signal Level', ax.plot([t[isignal[0]], t[isignal[len(isignal) - 1]]],
'Onset'], loc='best') [minsiglevel, minsiglevel], 'g', linewidth=2, label='Minimum Signal Level')
plt.xlabel('Time [s] since %s' % X[0].stats.starttime) ax.plot([pick, pick], [min(rms), max(rms)], 'b', linewidth=2, label='Onset')
plt.ylabel('Counts') ax.legend(loc=1)
plt.title('Check for Signal Length, Station %s' % X[0].stats.station) ax.set_xlabel('Time [s] since %s' % X[0].stats.starttime)
plt.yticks([]) ax.set_ylabel('Counts')
plt.show() ax.set_title('Check for Signal Length, Station %s' % X[0].stats.station)
raw_input() ax.set_yticks([])
plt.close(iplot) if plt_flag == 1:
fig.show()
try: input()
except SyntaxError: pass
plt.close(fig)
return returnflag return returnflag
def checkPonsets(pickdic, dttolerance, iplot): def checkPonsets(pickdic, dttolerance, jackfactor=5, iplot=0, fig_dict=None):
''' '''
Function to check statistics of P-onset times: Control deviation from Function to check statistics of P-onset times: Control deviation from
median (maximum adjusted deviation = dttolerance) and apply pseudo- median (maximum adjusted deviation = dttolerance) and apply pseudo-
@ -744,24 +849,27 @@ def checkPonsets(pickdic, dttolerance, iplot):
# search for good quality P picks # search for good quality P picks
Ppicks = [] Ppicks = []
stations = [] stations = []
for key in pickdic: for station in pickdic:
if pickdic[key]['P']['weight'] < 4: if pickdic[station]['P']['weight'] < 4:
# add P onsets to list # add P onsets to list
UTCPpick = UTCDateTime(pickdic[key]['P']['mpp']) UTCPpick = UTCDateTime(pickdic[station]['P']['mpp'])
Ppicks.append(UTCPpick.timestamp) Ppicks.append(UTCPpick.timestamp)
stations.append(key) stations.append(station)
# apply jackknife bootstrapping on variance of P onsets # apply jackknife bootstrapping on variance of P onsets
print("###############################################") print("###############################################")
print("checkPonsets: Apply jackknife bootstrapping on P-onset times ...") print("checkPonsets: Apply jackknife bootstrapping on P-onset times ...")
[xjack, PHI_pseudo, PHI_sub] = jackknife(Ppicks, 'VAR', 1) [xjack, PHI_pseudo, PHI_sub] = jackknife(Ppicks, 'VAR', 1)
if not xjack:
return
# get pseudo variances smaller than average variances # get pseudo variances smaller than average variances
# (times safety factor), these picks passed jackknife test # (times safety factor), these picks passed jackknife test
ij = np.where(PHI_pseudo <= 2 * xjack) ij = np.where(PHI_pseudo <= jackfactor * xjack)
# these picks did not pass jackknife test # these picks did not pass jackknife test
badjk = np.where(PHI_pseudo > 2 * xjack) badjk = np.where(PHI_pseudo > jackfactor * xjack)
badjkstations = np.array(stations)[badjk] badjkstations = np.array(stations)[badjk]
print("checkPonsets: %d pick(s) did not pass jackknife test!" % len(badjkstations)) print("checkPonsets: %d pick(s) did not pass jackknife test!" % len(badjkstations))
print(badjkstations)
# calculate median from these picks # calculate median from these picks
pmedian = np.median(np.array(Ppicks)[ij]) pmedian = np.median(np.array(Ppicks)[ij])
@ -774,6 +882,7 @@ def checkPonsets(pickdic, dttolerance, iplot):
badstations = np.array(stations)[ibad] badstations = np.array(stations)[ibad]
print("checkPonsets: %d pick(s) deviate too much from median!" % len(ibad)) print("checkPonsets: %d pick(s) deviate too much from median!" % len(ibad))
print(badstations)
print("checkPonsets: Skipped %d P pick(s) out of %d" % (len(badstations) \ print("checkPonsets: Skipped %d P pick(s) out of %d" % (len(badstations) \
+ len(badjkstations), len(stations))) + len(badjkstations), len(stations)))
@ -784,33 +893,52 @@ def checkPonsets(pickdic, dttolerance, iplot):
# mark P onset as checked and keep P weight # mark P onset as checked and keep P weight
pickdic[goodstations[i]]['P']['marked'] = goodmarker pickdic[goodstations[i]]['P']['marked'] = goodmarker
for i in range(0, len(badstations)): for i in range(0, len(badstations)):
# mark P onset and downgrade P weight to 9 # remove pick from dictionary
# (not used anymore) pickdic.pop(badstations[i])
pickdic[badstations[i]]['P']['marked'] = badmarker
pickdic[badstations[i]]['P']['weight'] = 9
for i in range(0, len(badjkstations)): for i in range(0, len(badjkstations)):
# mark P onset and downgrade P weight to 9 # remove pick from dictionary
# (not used anymore) pickdic.pop(badjkstations[i])
pickdic[badjkstations[i]]['P']['marked'] = badjkmarker # for i in range(0, len(badstations)):
pickdic[badjkstations[i]]['P']['weight'] = 9 # # mark P onset and downgrade P weight to 9
# # (not used anymore)
# pickdic[badstations[i]]['P']['marked'] = badmarker
# pickdic[badstations[i]]['P']['weight'] = 9
# for i in range(0, len(badjkstations)):
# # mark P onset and downgrade P weight to 9
# # (not used anymore)
# pickdic[badjkstations[i]]['P']['marked'] = badjkmarker
# pickdic[badjkstations[i]]['P']['weight'] = 9
checkedonsets = pickdic checkedonsets = pickdic
if iplot > 1: if iplot > 0:
p1, = plt.plot(np.arange(0, len(Ppicks)), Ppicks, 'r+', markersize=14) if fig_dict:
p2, = plt.plot(igood, np.array(Ppicks)[igood], 'g*', markersize=14) fig = fig_dict['jackknife']
p3, = plt.plot([0, len(Ppicks) - 1], [pmedian, pmedian], 'g', plt_flag = 0
linewidth=2) else:
for i in range(0, len(Ppicks)): fig = plt.figure()
plt.text(i, Ppicks[i] + 0.2, stations[i]) plt_flag = 1
ax = fig.add_subplot(111)
plt.xlabel('Number of P Picks') if len(badstations) > 0:
plt.ylabel('Onset Time [s] from 1.1.1970') ax.plot(ibad, np.array(Ppicks)[ibad], marker ='o', markerfacecolor='orange', markersize=14,
plt.legend([p1, p2, p3], ['Skipped P Picks', 'Good P Picks', 'Median'], linestyle='None', label='Median Skipped P Picks')
loc='best') if len(badjkstations) > 0:
plt.title('Check P Onsets') ax.plot(badjk[0], np.array(Ppicks)[badjk], 'ro', markersize=14, label='Jackknife Skipped P Picks')
plt.show() ax.plot(igood, np.array(Ppicks)[igood], 'go', markersize=14, label='Good P Picks')
raw_input() ax.plot([0, len(Ppicks) - 1], [pmedian, pmedian], 'g', linewidth=2, label='Median')
ax.plot([0, len(Ppicks) - 1], [pmedian + dttolerance, pmedian + dttolerance], 'g--', linewidth=1.2,
dashes=[25, 25], label='Median Tolerance')
ax.plot([0, len(Ppicks) - 1], [pmedian - dttolerance, pmedian - dttolerance], 'g--', linewidth=1.2,
dashes=[25, 25])
for index, pick in enumerate(Ppicks):
ax.text(index, pick + 0.01, '{0}'.format(stations[index]), color='0.25')
ax.set_xlabel('Number of P Picks')
ax.set_ylabel('Onset Time [s] from 1.1.1970') # MP MP Improve this?
ax.legend(loc=1, numpoints=1)
ax.set_title('Jackknifing and Median Tests on P Onsets')
if plt_flag:
fig.show()
return checkedonsets return checkedonsets
@ -839,13 +967,13 @@ def jackknife(X, phi, h):
PHI_sub = None PHI_sub = None
# determine number of subgroups # determine number of subgroups
g = len(X) / h
if type(g) is not int: if len(X) % h:
print("jackknife: Cannot divide quantity X in equal sized subgroups!") print("jackknife: Cannot divide quantity X in equal sized subgroups!")
print("Choose another size for subgroups!") print("Choose another size for subgroups!")
return PHI_jack, PHI_pseudo, PHI_sub return PHI_jack, PHI_pseudo, PHI_sub
else: else:
g = int(len(X) / h)
# estimator of undisturbed spot check # estimator of undisturbed spot check
if phi == 'MEA': if phi == 'MEA':
phi_sc = np.mean(X) phi_sc = np.mean(X)
@ -879,7 +1007,7 @@ def jackknife(X, phi, h):
return PHI_jack, PHI_pseudo, PHI_sub return PHI_jack, PHI_pseudo, PHI_sub
def checkZ4S(X, pick, zfac, checkwin, iplot): def checkZ4S(X, pick, zfac, checkwin, iplot, fig=None, linecolor='k'):
''' '''
Function to compare energy content of vertical trace with Function to compare energy content of vertical trace with
energy content of horizontal traces to detect spuriously energy content of horizontal traces to detect spuriously
@ -909,6 +1037,16 @@ def checkZ4S(X, pick, zfac, checkwin, iplot):
: type: int : type: int
''' '''
plt_flag = 0
try:
iplot = int(iplot)
except:
if iplot == True or iplot == 'True':
iplot = 2
else:
iplot = 0
assert isinstance(X, Stream), "%s is not a stream object" % str(X) assert isinstance(X, Stream), "%s is not a stream object" % str(X)
print("Check for spuriously picked S onset instead of P onset ...") print("Check for spuriously picked S onset instead of P onset ...")
@ -926,63 +1064,122 @@ def checkZ4S(X, pick, zfac, checkwin, iplot):
if len(ndat) == 0: # check for other components if len(ndat) == 0: # check for other components
ndat = X.select(component="1") ndat = X.select(component="1")
z = zdat[0].data # get earliest time of all 3 traces
min_t = min(zdat[0].stats.starttime, edat[0].stats.starttime, ndat[0].stats.starttime)
# generate time arrays for all 3 traces
tz = np.arange(0, zdat[0].stats.npts / zdat[0].stats.sampling_rate, tz = np.arange(0, zdat[0].stats.npts / zdat[0].stats.sampling_rate,
zdat[0].stats.delta) zdat[0].stats.delta)
tn = np.arange(0, ndat[0].stats.npts / ndat[0].stats.sampling_rate,
ndat[0].stats.delta)
te = np.arange(0, edat[0].stats.npts / edat[0].stats.sampling_rate,
edat[0].stats.delta)
# calculate RMS trace from vertical component zdiff = (zdat[0].stats.starttime - min_t)
absz = np.sqrt(np.power(z, 2)) ndiff = (ndat[0].stats.starttime - min_t)
# calculate RMS trace from both horizontal traces ediff = (edat[0].stats.starttime - min_t)
# make sure, both traces have equal lengths
lene = len(edat[0].data)
lenn = len(ndat[0].data)
minlen = min([lene, lenn])
absen = np.sqrt(np.power(edat[0].data[0:minlen - 1], 2) \
+ np.power(ndat[0].data[0:minlen - 1], 2))
# get signal window # get signal windows
isignal = getsignalwin(tz, pick, checkwin) isignalz = getsignalwin(tz, pick - zdiff, checkwin)
isignaln = getsignalwin(tn, pick - ndiff, checkwin)
isignale = getsignalwin(te, pick - ediff, checkwin)
# calculate energy levels # calculate RMS of traces
zcodalevel = max(absz[isignal]) rmsz = RMS(zdat[0].data[isignalz])
encodalevel = max(absen[isignal]) rmsn = RMS(ndat[0].data[isignaln])
rmse = RMS(edat[0].data[isignale])
# calculate threshold # calculate threshold
minsiglevel = encodalevel * zfac minsiglevel = (rmsn + rmse) / 2 * zfac
# vertical P-coda level must exceed horizontal P-coda level # vertical P-coda level must exceed horizontal P-coda level
# zfac times encodalevel # zfac times encodalevel
if zcodalevel < minsiglevel: if rmsz < minsiglevel:
print("checkZ4S: Maybe S onset? Skip this P pick!") print("checkZ4S: Maybe S onset? Skip this P pick!")
else: else:
print("checkZ4S: P onset passes checkZ4S test!") print("checkZ4S: P onset passes checkZ4S test!")
returnflag = 1 returnflag = 1
if iplot > 1: if iplot > 1:
te = np.arange(0, edat[0].stats.npts / edat[0].stats.sampling_rate, rms_dict = {'Z': rmsz,
edat[0].stats.delta) 'N': rmsn,
tn = np.arange(0, ndat[0].stats.npts / ndat[0].stats.sampling_rate, 'E': rmse}
ndat[0].stats.delta)
plt.plot(tz, z / max(z), 'k')
plt.plot(tz[isignal], z[isignal] / max(z), 'r')
plt.plot(te, edat[0].data / max(edat[0].data) + 1, 'k')
plt.plot(te[isignal], edat[0].data[isignal] / max(edat[0].data) + 1, 'r')
plt.plot(tn, ndat[0].data / max(ndat[0].data) + 2, 'k')
plt.plot(tn[isignal], ndat[0].data[isignal] / max(ndat[0].data) + 2, 'r')
plt.plot([tz[isignal[0]], tz[isignal[len(isignal) - 1]]],
[minsiglevel / max(z), minsiglevel / max(z)], 'g',
linewidth=2)
plt.xlabel('Time [s] since %s' % zdat[0].stats.starttime)
plt.ylabel('Normalized Counts')
plt.yticks([0, 1, 2], [zdat[0].stats.channel, edat[0].stats.channel,
ndat[0].stats.channel])
plt.title('CheckZ4S, Station %s' % zdat[0].stats.station)
plt.show()
raw_input()
traces_dict = {'Z': zdat[0],
'N': ndat[0],
'E': edat[0]}
diff_dict = {'Z': zdiff,
'N': ndiff,
'E': ediff}
signal_dict = {'Z': isignalz,
'N': isignaln,
'E': isignale}
for i, key in enumerate(['Z', 'N', 'E']):
rms = rms_dict[key]
trace = traces_dict[key]
t = np.arange(diff_dict[key], trace.stats.npts / trace.stats.sampling_rate + diff_dict[key],
trace.stats.delta)
if i == 0:
if fig == None or fig == 'None':
fig = plt.figure() # self.iplot) ### WHY? MP MP
plt_flag = 1
ax1 = fig.add_subplot(3, 1, i + 1)
ax = ax1
ax.set_title('CheckZ4S, Station %s' % zdat[0].stats.station)
else:
if fig == None or fig == 'None':
fig = plt.figure() # self.iplot) ### WHY? MP MP
plt_flag = 1
ax = fig.add_subplot(3, 1, i + 1, sharex=ax1)
fig._tight = True
ax.plot(t, abs(trace.data), color='b', label='abs')
ax.plot(t, trace.data, color=linecolor, linewidth=0.7)
name = str(trace.stats.channel) + ': {}'.format(rms)
ax.plot([pick, pick + checkwin], [rms, rms], 'r', label='RMS {}'.format(name))
ax.plot([pick, pick], ax.get_ylim(), 'm', label='Pick')
ax.set_ylabel('Normalized Counts')
ax.axvspan(pick, pick + checkwin, color='c', alpha=0.2,
lw=0)
ax.legend(loc=1)
ax.set_xlabel('Time [s] since %s' % zdat[0].stats.starttime)
if plt_flag == 1:
fig.show()
try: input()
except SyntaxError: pass
plt.close(fig)
return returnflag return returnflag
def getQualityFromUncertainty(uncertainty, Errors):
'''Script to transform uncertainty into quality classes 0-4
regarding adjusted time errors Errors.
'''
# set initial quality to 4 (worst) and change only if one condition is hit
quality = 4
if uncertainty == None or uncertainty == 'None':
return quality
if uncertainty <= Errors[0]:
quality = 0
elif (uncertainty > Errors[0]) and \
(uncertainty < Errors[1]):
quality = 1
elif (uncertainty > Errors[1]) and \
(uncertainty < Errors[2]):
quality = 2
elif (uncertainty > Errors[2]) and \
(uncertainty < Errors[3]):
quality = 3
elif uncertainty > Errors[3]:
quality = 4
return quality
if __name__ == '__main__': if __name__ == '__main__':
import doctest import doctest

0
pylot/core/util/__init__.py Executable file → Normal file
View File

View File

@ -1,13 +1,16 @@
#!/usr/bin/env python #!/usr/bin/env python
# -*- coding: utf-8 -*- # -*- coding: utf-8 -*-
import urllib2
def checkurl(url='https://ariadne.geophysik.rub.de/trac/PyLoT'):
try: try:
urllib2.urlopen(url, timeout=1) from urllib2 import urlopen
except:
from urllib.request import urlopen
def checkurl(url='https://ariadne.geophysik.ruhr-uni-bochum.de/trac/PyLoT/'):
try:
urlopen(url, timeout=1)
return True return True
except urllib2.URLError: except:
pass pass
return False return False

View File

@ -1,17 +1,15 @@
#!/usr/bin/env python #!/usr/bin/env python
# -*- coding: utf-8 -*- # -*- coding: utf-8 -*-
import os
import glob import glob
import os
import sys import sys
from obspy.io.xseed import Parser
import numpy as np import numpy as np
from obspy import UTCDateTime, read_inventory, read from obspy import UTCDateTime, read_inventory, read
from obspy.io.xseed import Parser from obspy.io.xseed import Parser
from pylot.core.util.utils import key_for_set_value, find_in_list, \ from pylot.core.util.utils import key_for_set_value, find_in_list, \
remove_underscores remove_underscores, gen_Pool
def time_from_header(header): def time_from_header(header):
@ -169,7 +167,8 @@ def read_metadata(path_to_inventory):
dlfile = list() dlfile = list()
invfile = list() invfile = list()
respfile = list() respfile = list()
inv = dict(dless=dlfile, xml=invfile, resp=respfile) # possible file extensions specified here:
inv = dict(dless=dlfile, xml=invfile, resp=respfile, dseed=dlfile[:])
if os.path.isfile(path_to_inventory): if os.path.isfile(path_to_inventory):
ext = os.path.splitext(path_to_inventory)[1].split('.')[1] ext = os.path.splitext(path_to_inventory)[1].split('.')[1]
inv[ext] += [path_to_inventory] inv[ext] += [path_to_inventory]
@ -180,8 +179,10 @@ def read_metadata(path_to_inventory):
invtype = key_for_set_value(inv) invtype = key_for_set_value(inv)
if invtype is None: if invtype is None:
raise IOError("Neither dataless-SEED file, inventory-xml file nor " print("Neither dataless-SEED file, inventory-xml file nor "
"RESP-file found!") "RESP-file found!")
print("!!WRONG CALCULATION OF SOURCE PARAMETERS!!")
robj = None,
elif invtype == 'dless': # prevent multiple read of large dlsv elif invtype == 'dless': # prevent multiple read of large dlsv
print("Reading metadata information from dataless-SEED file ...") print("Reading metadata information from dataless-SEED file ...")
if len(inv[invtype]) == 1: if len(inv[invtype]) == 1:
@ -195,33 +196,18 @@ def read_metadata(path_to_inventory):
return invtype, robj return invtype, robj
def restitute_data(data, invtype, inobj, unit='VEL', force=False): def restitute_trace(input_tuple):
""" tr, invtype, inobj, unit, force = input_tuple
takes a data stream and a path_to_inventory and returns the corrected
waveform data stream
:param data: seismic data stream
:param invtype: type of found metadata
:param inobj: either list of metadata files or `obspy.io.xseed.Parser`
object
:param unit: unit to correct for (default: 'VEL')
:param force: force restitution for already corrected traces (default:
False)
:return: corrected data stream
"""
restflag = list() remove_trace = False
data = remove_underscores(data)
# loop over traces
for tr in data:
seed_id = tr.get_id() seed_id = tr.get_id()
# check, whether this trace has already been corrected # check, whether this trace has already been corrected
if 'processing' in tr.stats.keys() \ if 'processing' in tr.stats.keys() \
and np.any(['remove' in p for p in tr.stats.processing]) \ and np.any(['remove' in p for p in tr.stats.processing]) \
and not force: and not force:
print("Trace {0} has already been corrected!".format(seed_id)) print("Trace {0} has already been corrected!".format(seed_id))
continue return tr, False
stime = tr.stats.starttime stime = tr.stats.starttime
prefilt = get_prefilt(tr) prefilt = get_prefilt(tr)
if invtype == 'resp': if invtype == 'resp':
@ -250,13 +236,22 @@ def restitute_data(data, invtype, inobj, unit='VEL', force=False):
else: else:
finv = invlist[0] finv = invlist[0]
inventory = read_inventory(finv, format='STATIONXML') inventory = read_inventory(finv, format='STATIONXML')
elif invtype == None:
print("No restitution possible, as there are no station-meta data available!")
return tr, True
else: else:
data.remove(tr) remove_trace = True
continue
# apply restitution to data # apply restitution to data
print("Correcting instrument at station %s, channel %s" \
% (tr.stats.station, tr.stats.channel))
try: try:
if invtype in ['resp', 'dless']: if invtype in ['resp', 'dless']:
try:
tr.simulate(**kwargs) tr.simulate(**kwargs)
except ValueError as e:
vmsg = '{0}'.format(e)
print(vmsg)
else: else:
tr.attach_response(inventory) tr.attach_response(inventory)
tr.remove_response(output=unit, tr.remove_response(output=unit,
@ -269,17 +264,52 @@ def restitute_data(data, invtype, inobj, unit='VEL', force=False):
else: else:
# restitution done to copies of data thus deleting traces # restitution done to copies of data thus deleting traces
# that failed should not be a problem # that failed should not be a problem
remove_trace = True
return tr, remove_trace
def restitute_data(data, invtype, inobj, unit='VEL', force=False, ncores=0):
"""
takes a data stream and a path_to_inventory and returns the corrected
waveform data stream
:param data: seismic data stream
:param invtype: type of found metadata
:param inobj: either list of metadata files or `obspy.io.xseed.Parser`
object
:param unit: unit to correct for (default: 'VEL')
:param force: force restitution for already corrected traces (default:
False)
:return: corrected data stream
"""
restflag = list()
data = remove_underscores(data)
# loop over traces
input_tuples = []
for tr in data:
input_tuples.append((tr, invtype, inobj, unit, force))
data.remove(tr) data.remove(tr)
continue
restflag.append(True) pool = gen_Pool(ncores)
result = pool.map(restitute_trace, input_tuples)
pool.close()
for tr, remove_trace in result:
if not remove_trace:
data.traces.append(tr)
# check if ALL traces could be restituted, take care of large datasets # check if ALL traces could be restituted, take care of large datasets
# better try restitution for smaller subsets of data (e.g. station by # better try restitution for smaller subsets of data (e.g. station by
# station) # station)
if len(restflag) > 0:
restflag = bool(np.all(restflag)) # if len(restflag) > 0:
else: # restflag = bool(np.all(restflag))
restflag = False # else:
return data, restflag # restflag = False
return data
def get_prefilt(trace, tlow=(0.5, 0.9), thi=(5., 2.), verbosity=0): def get_prefilt(trace, tlow=(0.5, 0.9), thi=(5., 2.), verbosity=0):

View File

@ -7,45 +7,29 @@ Created on Wed Feb 26 12:31:25 2014
""" """
import os import os
import platform
from pylot.core.util.utils import readDefaultFilterInformation
from pylot.core.loc import hypo71
from pylot.core.loc import hypodd
from pylot.core.loc import hyposat
from pylot.core.loc import nll from pylot.core.loc import nll
from pylot.core.loc import hsat
from pylot.core.loc import velest from pylot.core.loc import velest
def readFilterInformation(fname): # determine system dependent path separator
def convert2FreqRange(*args): system_name = platform.system()
if len(args) > 1: if system_name in ["Linux", "Darwin"]:
return [float(arg) for arg in args] SEPARATOR = '/'
elif len(args) == 1: elif system_name == "Windows":
return float(args[0]) SEPARATOR = '\\'
return None
filter_file = open(fname, 'r') # suffix for phase name if not phase identified by last letter (P, p, etc.)
filter_information = dict() ALTSUFFIX = ['diff', 'n', 'g', '1', '2', '3']
for filter_line in filter_file.readlines():
filter_line = filter_line.split(' ')
for n, pos in enumerate(filter_line):
if pos == '\n':
filter_line[n] = ''
filter_information[filter_line[0]] = {'filtertype': filter_line[1]
if filter_line[1]
else None,
'order': int(filter_line[2])
if filter_line[1]
else None,
'freq': convert2FreqRange(*filter_line[3:])
if filter_line[1]
else None}
return filter_information
FILTERDEFAULTS = readDefaultFilterInformation(os.path.join(os.path.expanduser('~'),
FILTERDEFAULTS = readFilterInformation(os.path.join(os.path.expanduser('~'),
'.pylot', '.pylot',
'filter.in')) 'pylot.in'))
AUTOMATIC_DEFAULTS = os.path.join(os.path.expanduser('~'),
'.pylot',
'autoPyLoT.in')
TIMEERROR_DEFAULTS = os.path.join(os.path.expanduser('~'), TIMEERROR_DEFAULTS = os.path.join(os.path.expanduser('~'),
'.pylot', '.pylot',
@ -55,11 +39,57 @@ OUTPUTFORMATS = {'.xml': 'QUAKEML',
'.cnv': 'CNV', '.cnv': 'CNV',
'.obs': 'NLLOC_OBS'} '.obs': 'NLLOC_OBS'}
LOCTOOLS = dict(nll=nll, hsat=hsat, velest=velest) LOCTOOLS = dict(nll=nll, hyposat=hyposat, velest=velest, hypo71=hypo71, hypodd=hypodd)
COMPPOSITION_MAP = dict(Z=2, N=1, E=0)
COMPPOSITION_MAP['1'] = 1
COMPPOSITION_MAP['2'] = 0
COMPPOSITION_MAP['3'] = 2
COMPNAME_MAP = dict(Z='3', N='1', E='2') class SetChannelComponents(object):
def __init__(self):
self.setDefaultCompPosition()
def setDefaultCompPosition(self):
# default component order
self.compPosition_Map = dict(Z=2, N=1, E=0)
self.compName_Map = {'3': 'Z',
'1': 'N',
'2': 'E'}
def _getCurrentPosition(self, component):
for key, value in self.compName_Map.items():
if value == component:
return key, value
errMsg = 'getCurrentPosition: Could not find former position of component {}.'.format(component)
raise ValueError(errMsg)
def _switch(self, component, component_alter):
# Without switching, multiple definitions of the same alter_comp are possible
old_alter_comp, _ = self._getCurrentPosition(component)
old_comp = self.compName_Map[component_alter]
if not old_alter_comp == component_alter and not old_comp == component:
self.compName_Map[old_alter_comp] = old_comp
print('switch: Automatically switched component {} to {}'.format(old_alter_comp, old_comp))
def setCompPosition(self, component_alter, component, switch=True):
component_alter = str(component_alter)
if not component_alter in self.compName_Map.keys():
errMsg = 'setCompPosition: Unrecognized alternative component {}. Expecting one of {}.'
raise ValueError(errMsg.format(component_alter, self.compName_Map.keys()))
if not component in self.compPosition_Map.keys():
errMsg = 'setCompPosition: Unrecognized target component {}. Expecting one of {}.'
raise ValueError(errMsg.format(component, self.compPosition_Map.keys()))
print('setCompPosition: set component {} to {}'.format(component_alter, component))
if switch:
self._switch(component, component_alter)
self.compName_Map[component_alter] = component
def getCompPosition(self, component):
return self._getCurrentPosition(component)[0]
def getPlotPosition(self, component):
component = str(component)
if component in self.compPosition_Map.keys():
return self.compPosition_Map[component]
elif component in self.compName_Map.keys():
return self.compPosition_Map[self.compName_Map[component]]
else:
errMsg = 'getCompPosition: Unrecognized component {}. Expecting one of {} or {}.'
raise ValueError(errMsg.format(component, self.compPosition_Map.keys(), self.compName_Map.keys()))

View File

@ -25,5 +25,6 @@ class OverwriteError(IOError):
class ParameterError(Exception): class ParameterError(Exception):
pass pass
class ProcessingError(RuntimeError): class ProcessingError(RuntimeError):
pass pass

172
pylot/core/util/event.py Normal file
View File

@ -0,0 +1,172 @@
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import os
from obspy import UTCDateTime
from obspy.core.event import Event as ObsPyEvent
from obspy.core.event import Origin, ResourceIdentifier
from pylot.core.io.phases import picks_from_picksdict
class Event(ObsPyEvent):
'''
Pickable class derived from ~obspy.core.event.Event containing information on a single event.
'''
def __init__(self, path):
self.pylot_id = path.split('/')[-1]
# initialize super class
super(Event, self).__init__(resource_id=ResourceIdentifier('smi:local/' + self.pylot_id))
self.path = path
self.database = path.split('/')[-2]
self.datapath = path.split('/')[-3]
self.rootpath = '/' + os.path.join(*path.split('/')[:-3])
self.pylot_autopicks = {}
self.pylot_picks = {}
self.notes = ''
self._testEvent = False
self._refEvent = False
self.get_notes()
def get_notes_path(self):
notesfile = os.path.join(self.path, 'notes.txt')
return notesfile
def get_notes(self):
notesfile = self.get_notes_path()
if os.path.isfile(notesfile):
with open(notesfile) as infile:
path = str(infile.readlines()[0].split('\n')[0])
text = '[eventInfo: ' + path + ']'
self.addNotes(text)
try:
datetime = UTCDateTime(path.split('/')[-1])
origin = Origin(resource_id=self.resource_id, time=datetime, latitude=0, longitude=0, depth=0)
self.origins.append(origin)
except:
pass
def addNotes(self, notes):
self.notes = str(notes)
def clearNotes(self):
self.notes = None
def isRefEvent(self):
return self._refEvent
def isTestEvent(self):
return self._testEvent
def setRefEvent(self, bool):
self._refEvent = bool
if bool: self._testEvent = False
def setTestEvent(self, bool):
self._testEvent = bool
if bool: self._refEvent = False
def clearObsPyPicks(self, picktype):
for index, pick in reversed(list(enumerate(self.picks))):
if picktype in str(pick.method_id):
self.picks.pop(index)
def addPicks(self, picks):
'''
add pylot picks and overwrite existing ones
'''
for station in picks:
self.pylot_picks[station] = picks[station]
# add ObsPy picks (clear old manual and copy all new manual from pylot)
self.clearObsPyPicks('manual')
self.picks += picks_from_picksdict(self.pylot_picks)
def addAutopicks(self, autopicks):
for station in autopicks:
self.pylot_autopicks[station] = autopicks[station]
# add ObsPy picks (clear old auto and copy all new auto from pylot)
self.clearObsPyPicks('auto')
self.picks += picks_from_picksdict(self.pylot_autopicks)
def setPick(self, station, pick):
if pick:
self.pylot_picks[station] = pick
else:
try:
self.pylot_picks.pop(station)
except Exception as e:
print('Could not remove pick {} from station {}: {}'.format(pick, station, e))
self.clearObsPyPicks('manual')
self.picks += picks_from_picksdict(self.pylot_picks)
def setPicks(self, picks):
'''
set pylot picks and delete and overwrite all existing
'''
self.pylot_picks = picks
self.clearObsPyPicks('manual')
self.picks += picks_from_picksdict(self.pylot_picks)
def getPick(self, station):
if station in self.pylot_picks.keys():
return self.pylot_picks[station]
def getPicks(self):
return self.pylot_picks
def setAutopick(self, station, pick):
if pick:
self.pylot_autopicks[station] = pick
else:
try:
self.pylot_autopicks.pop(station)
except Exception as e:
print('Could not remove pick {} from station {}: {}'.format(pick, station, e))
self.clearObsPyPicks('auto')
self.picks += picks_from_picksdict(self.pylot_autopicks)
def setAutopicks(self, picks):
'''
set pylot picks and delete and overwrite all existing
'''
self.pylot_autopicks = picks
self.clearObsPyPicks('auto')
self.picks += picks_from_picksdict(self.pylot_autopicks)
def getAutopick(self, station):
if station in self.pylot_autopicks.keys():
return self.pylot_autopicks[station]
def getAutopicks(self):
return self.pylot_autopicks
def save(self, filename):
'''
Save PyLoT Event to a file.
Can be loaded by using event.load(filename).
'''
try:
import cPickle
except ImportError:
import _pickle as cPickle
try:
outfile = open(filename, 'wb')
cPickle.dump(self, outfile, -1)
except Exception as e:
print('Could not pickle PyLoT event. Reason: {}'.format(e))
@staticmethod
def load(filename):
'''
Load project from filename.
'''
try:
import cPickle
except ImportError:
import _pickle as cPickle
infile = open(filename, 'rb')
event = cPickle.load(infile)
print('Loaded %s' % filename)
return event

View File

@ -0,0 +1,376 @@
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import matplotlib.pyplot as plt
import numpy as np
import obspy
from PySide import QtGui
from matplotlib.backends.backend_qt4agg import NavigationToolbar2QT as NavigationToolbar
from mpl_toolkits.basemap import Basemap
from pylot.core.util.widgets import PickDlg
from scipy.interpolate import griddata
plt.interactive(False)
class map_projection(QtGui.QWidget):
def __init__(self, parent, figure=None):
'''
:param: picked, can be False, auto, manual
:value: str
'''
QtGui.QWidget.__init__(self)
self._parent = parent
self.metadata = parent.metadata
self.parser = parent.metadata[1]
self.picks = None
self.picks_dict = None
self.eventLoc = None
self.figure = figure
self.init_graphics()
self.init_stations()
self.init_basemap(resolution='l')
self.init_map()
# self.show()
def init_map(self):
self.init_lat_lon_dimensions()
self.init_lat_lon_grid()
self.init_x_y_dimensions()
self.connectSignals()
self.draw_everything()
def onpick(self, event):
ind = event.ind
button = event.mouseevent.button
if ind == [] or not button == 1:
return
data = self._parent.get_data().getWFData()
for index in ind:
station = str(self.station_names[index].split('.')[-1])
try:
pickDlg = PickDlg(self, parameter=self._parent._inputs,
data=data.select(station=station),
station=station,
picks=self._parent.get_current_event().getPick(station),
autopicks=self._parent.get_current_event().getAutopick(station))
except Exception as e:
message = 'Could not generate Plot for station {st}.\n {er}'.format(st=station, er=e)
self._warn(message)
print(message, e)
return
pyl_mw = self._parent
try:
if pickDlg.exec_():
pyl_mw.setDirty(True)
pyl_mw.update_status('picks accepted ({0})'.format(station))
replot = pyl_mw.get_current_event().setPick(station, pickDlg.getPicks())
self._refresh_drawings()
if replot:
pyl_mw.plotWaveformData()
pyl_mw.drawPicks()
pyl_mw.draw()
else:
pyl_mw.drawPicks(station)
pyl_mw.draw()
else:
pyl_mw.update_status('picks discarded ({0})'.format(station))
except Exception as e:
message = 'Could not save picks for station {st}.\n{er}'.format(st=station, er=e)
self._warn(message)
print(message, e)
def connectSignals(self):
self.comboBox_phase.currentIndexChanged.connect(self._refresh_drawings)
self.zoom_id = self.basemap.ax.figure.canvas.mpl_connect('scroll_event', self.zoom)
def init_graphics(self):
if not self.figure:
if not hasattr(self._parent, 'am_figure'):
self.figure = plt.figure()
self.toolbar = NavigationToolbar(self.figure.canvas, self)
else:
self.figure = self._parent.am_figure
self.toolbar = self._parent.am_toolbar
self.main_ax = self.figure.add_subplot(111)
self.canvas = self.figure.canvas
self.main_box = QtGui.QVBoxLayout()
self.setLayout(self.main_box)
self.top_row = QtGui.QHBoxLayout()
self.main_box.addLayout(self.top_row)
self.comboBox_phase = QtGui.QComboBox()
self.comboBox_phase.insertItem(0, 'P')
self.comboBox_phase.insertItem(1, 'S')
self.comboBox_am = QtGui.QComboBox()
self.comboBox_am.insertItem(0, 'auto')
self.comboBox_am.insertItem(1, 'manual')
self.top_row.addWidget(QtGui.QLabel('Select a phase: '))
self.top_row.addWidget(self.comboBox_phase)
self.top_row.setStretch(1, 1) # set stretch of item 1 to 1
self.main_box.addWidget(self.canvas)
self.main_box.addWidget(self.toolbar)
def init_stations(self):
def get_station_names_lat_lon(parser):
station_names = []
lat = []
lon = []
for station in parser.stations:
station_name = station[0].station_call_letters
network = station[0].network_code
if not station_name in station_names:
station_names.append(network + '.' + station_name)
lat.append(station[0].latitude)
lon.append(station[0].longitude)
return station_names, lat, lon
station_names, lat, lon = get_station_names_lat_lon(self.parser)
self.station_names = station_names
self.lat = lat
self.lon = lon
def init_picks(self):
phase = self.comboBox_phase.currentText()
def get_picks(station_names):
picks = []
for station in station_names:
try:
station = station.split('.')[-1]
picks.append(self.picks_dict[station][phase]['mpp'])
except:
picks.append(np.nan)
return picks
def get_picks_rel(picks):
picks_rel = []
picks_utc = []
for pick in picks:
if type(pick) is obspy.core.utcdatetime.UTCDateTime:
picks_utc.append(pick)
minp = min(picks_utc)
for pick in picks:
if type(pick) is obspy.core.utcdatetime.UTCDateTime:
pick -= minp
picks_rel.append(pick)
return picks_rel
self.picks = get_picks(self.station_names)
self.picks_rel = get_picks_rel(self.picks)
def init_picks_active(self):
def remove_nan_picks(picks):
picks_no_nan = []
for pick in picks:
if not np.isnan(pick):
picks_no_nan.append(pick)
return picks_no_nan
self.picks_no_nan = remove_nan_picks(self.picks_rel)
def init_stations_active(self):
def remove_nan_lat_lon(picks, lat, lon):
lat_no_nan = []
lon_no_nan = []
for index, pick in enumerate(picks):
if not np.isnan(pick):
lat_no_nan.append(lat[index])
lon_no_nan.append(lon[index])
return lat_no_nan, lon_no_nan
self.lat_no_nan, self.lon_no_nan = remove_nan_lat_lon(self.picks_rel, self.lat, self.lon)
def init_lat_lon_dimensions(self):
def get_lon_lat_dim(lon, lat):
londim = max(lon) - min(lon)
latdim = max(lat) - min(lat)
return londim, latdim
self.londim, self.latdim = get_lon_lat_dim(self.lon, self.lat)
def init_x_y_dimensions(self):
def get_x_y_dim(x, y):
xdim = max(x) - min(x)
ydim = max(y) - min(y)
return xdim, ydim
self.x, self.y = self.basemap(self.lon, self.lat)
self.xdim, self.ydim = get_x_y_dim(self.x, self.y)
def init_basemap(self, resolution='l'):
# basemap = Basemap(projection=projection, resolution = resolution, ax=self.main_ax)
basemap = Basemap(projection='lcc', resolution=resolution, ax=self.main_ax,
width=5e6, height=2e6,
lat_0=(min(self.lat) + max(self.lat)) / 2.,
lon_0=(min(self.lon) + max(self.lon)) / 2.)
# basemap.fillcontinents(color=None, lake_color='aqua',zorder=1)
basemap.drawmapboundary(zorder=2) # fill_color='darkblue')
basemap.shadedrelief(zorder=3)
basemap.drawcountries(zorder=4)
basemap.drawstates(zorder=5)
basemap.drawcoastlines(zorder=6)
self.basemap = basemap
self.figure.tight_layout()
def init_lat_lon_grid(self):
def get_lat_lon_axis(lat, lon):
steplat = (max(lat) - min(lat)) / 250
steplon = (max(lon) - min(lon)) / 250
lataxis = np.arange(min(lat), max(lat), steplat)
lonaxis = np.arange(min(lon), max(lon), steplon)
return lataxis, lonaxis
def get_lat_lon_grid(lataxis, lonaxis):
longrid, latgrid = np.meshgrid(lonaxis, lataxis)
return latgrid, longrid
self.lataxis, self.lonaxis = get_lat_lon_axis(self.lat, self.lon)
self.latgrid, self.longrid = get_lat_lon_grid(self.lataxis, self.lonaxis)
def init_picksgrid(self):
self.picksgrid_no_nan = griddata((self.lat_no_nan, self.lon_no_nan),
self.picks_no_nan, (self.latgrid, self.longrid),
method='linear') ##################
def draw_contour_filled(self, nlevel='50'):
levels = np.linspace(min(self.picks_no_nan), max(self.picks_no_nan), nlevel)
self.contourf = self.basemap.contourf(self.longrid, self.latgrid, self.picksgrid_no_nan,
levels, latlon=True, zorder=9, alpha=0.5)
def scatter_all_stations(self):
self.sc = self.basemap.scatter(self.lon, self.lat, s=50, facecolor='none', latlon=True,
zorder=10, picker=True, edgecolor='m', label='Not Picked')
self.cid = self.canvas.mpl_connect('pick_event', self.onpick)
if self.eventLoc:
lat, lon = self.eventLoc
self.sc_event = self.basemap.scatter(lon, lat, s=100, facecolor='red',
latlon=True, zorder=11, label='Event (might be outside map region)')
def scatter_picked_stations(self):
lon = self.lon_no_nan
lat = self.lat_no_nan
# workaround because of an issue with latlon transformation of arrays with len <3
if len(lon) <= 2 and len(lat) <= 2:
self.sc_picked = self.basemap.scatter(lon[0], lat[0], s=50, facecolor='white',
c=self.picks_no_nan[0], latlon=True, zorder=11, label='Picked')
if len(lon) == 2 and len(lat) == 2:
self.sc_picked = self.basemap.scatter(lon[1], lat[1], s=50, facecolor='white',
c=self.picks_no_nan[1], latlon=True, zorder=11)
else:
self.sc_picked = self.basemap.scatter(lon, lat, s=50, facecolor='white',
c=self.picks_no_nan, latlon=True, zorder=11, label='Picked')
def annotate_ax(self):
self.annotations = []
for index, name in enumerate(self.station_names):
self.annotations.append(self.main_ax.annotate(' %s' % name, xy=(self.x[index], self.y[index]),
fontsize='x-small', color='white', zorder=12))
self.legend = self.main_ax.legend(loc=1)
def add_cbar(self, label):
cbar = self.main_ax.figure.colorbar(self.sc_picked, fraction=0.025)
cbar.set_label(label)
return cbar
def refresh_drawings(self, picks=None):
self.picks_dict = picks
self._refresh_drawings()
def _refresh_drawings(self):
self.remove_drawings()
self.draw_everything()
def draw_everything(self):
if self.picks_dict:
self.init_picks()
self.init_picks_active()
self.init_stations_active()
if len(self.picks_no_nan) >= 3:
self.init_picksgrid()
self.draw_contour_filled()
self.scatter_all_stations()
if self.picks_dict:
self.scatter_picked_stations()
self.cbar = self.add_cbar(label='Time relative to first onset [s]')
self.comboBox_phase.setEnabled(True)
else:
self.comboBox_phase.setEnabled(False)
self.annotate_ax()
self.canvas.draw()
def remove_drawings(self):
if hasattr(self, 'sc_picked'):
self.sc_picked.remove()
del (self.sc_picked)
if hasattr(self, 'sc_event'):
self.sc_event.remove()
del (self.sc_event)
if hasattr(self, 'cbar'):
self.cbar.remove()
del (self.cbar)
if hasattr(self, 'contourf'):
self.remove_contourf()
del (self.contourf)
if hasattr(self, 'cid'):
self.canvas.mpl_disconnect(self.cid)
del (self.cid)
try:
self.sc.remove()
except Exception as e:
print('Warning: could not remove station scatter plot.\nReason: {}'.format(e))
try:
self.legend.remove()
except Exception as e:
print('Warning: could not remove legend. Reason: {}'.format(e))
self.canvas.draw()
def remove_contourf(self):
for item in self.contourf.collections:
item.remove()
def remove_annotations(self):
for annotation in self.annotations:
annotation.remove()
def zoom(self, event):
map = self.basemap
xlim = map.ax.get_xlim()
ylim = map.ax.get_ylim()
x, y = event.xdata, event.ydata
zoom = {'up': 1. / 2.,
'down': 2.}
if not event.xdata or not event.ydata:
return
if event.button in zoom:
factor = zoom[event.button]
xdiff = (xlim[1] - xlim[0]) * factor
xl = x - 0.5 * xdiff
xr = x + 0.5 * xdiff
ydiff = (ylim[1] - ylim[0]) * factor
yb = y - 0.5 * ydiff
yt = y + 0.5 * ydiff
if xl < map.xmin or yb < map.ymin or xr > map.xmax or yt > map.ymax:
xl, xr = map.xmin, map.xmax
yb, yt = map.ymin, map.ymax
map.ax.set_xlim(xl, xr)
map.ax.set_ylim(yb, yt)
map.ax.figure.canvas.draw()
def _warn(self, message):
self.qmb = QtGui.QMessageBox(QtGui.QMessageBox.Icon.Warning,
'Warning', message)
self.qmb.show()

View File

@ -2,20 +2,23 @@
# -*- coding: utf-8 -*- # -*- coding: utf-8 -*-
import warnings import warnings
import numpy as np import numpy as np
from obspy import UTCDateTime from obspy import UTCDateTime
from pylot.core.util.utils import fit_curve, find_nearest, clims from pylot.core.util.utils import fit_curve, clims
from pylot.core.util.version import get_git_version as _getVersionString from pylot.core.util.version import get_git_version as _getVersionString
__version__ = _getVersionString() __version__ = _getVersionString()
__author__ = 'sebastianw' __author__ = 'sebastianw'
def create_axis(x0, incr, npts): def create_axis(x0, incr, npts):
ax = np.zeros(npts) ax = np.zeros(npts)
for i in range(npts): for i in range(npts):
ax[i] = x0 + incr * i ax[i] = x0 + incr * i
return ax return ax
def gauss_parameter(te, tm, tl, eta): def gauss_parameter(te, tm, tl, eta):
''' '''
takes three onset times and returns the parameters sig1, sig2, a1 and a2 takes three onset times and returns the parameters sig1, sig2, a1 and a2
@ -51,12 +54,15 @@ def exp_parameter(te, tm, tl, eta):
sig1 = np.log(eta) / (te - tm) sig1 = np.log(eta) / (te - tm)
sig2 = np.log(eta) / (tm - tl) sig2 = np.log(eta) / (tm - tl)
if np.isinf(sig1) == True:
sig1 = np.log(eta) / (tm - tl)
if np.isinf(sig2) == True:
sig2 = np.log(eta) / (te - tm)
a = 1 / (1 / sig1 + 1 / sig2) a = 1 / (1 / sig1 + 1 / sig2)
return tm, sig1, sig2, a return tm, sig1, sig2, a
def gauss_branches(k, (mu, sig1, sig2, a1, a2)): def gauss_branches(k, param_tuple):
''' '''
function gauss_branches takes an axes x, a center value mu, two sigma function gauss_branches takes an axes x, a center value mu, two sigma
values sig1 and sig2 and two scaling factors a1 and a2 and return a values sig1 and sig2 and two scaling factors a1 and a2 and return a
@ -76,6 +82,9 @@ def gauss_branches(k, (mu, sig1, sig2, a1, a2)):
:returns fun_vals: list with function values along axes x :returns fun_vals: list with function values along axes x
''' '''
# python 3 workaround
mu, sig1, sig2, a1, a2 = param_tuple
def _func(k, mu, sig1, sig2, a1, a2): def _func(k, mu, sig1, sig2, a1, a2):
if k < mu: if k < mu:
rval = a1 * 1 / (np.sqrt(2 * np.pi) * sig1) * np.exp(-((k - mu) / sig1) ** 2 / 2) rval = a1 * 1 / (np.sqrt(2 * np.pi) * sig1) * np.exp(-((k - mu) / sig1) ** 2 / 2)
@ -90,7 +99,7 @@ def gauss_branches(k, (mu, sig1, sig2, a1, a2)):
return _func(k, mu, sig1, sig2, a1, a2) return _func(k, mu, sig1, sig2, a1, a2)
def exp_branches(k, (mu, sig1, sig2, a)): def exp_branches(k, param_tuple):
''' '''
function exp_branches takes an axes x, a center value mu, two sigma function exp_branches takes an axes x, a center value mu, two sigma
values sig1 and sig2 and a scaling factor a and return a values sig1 and sig2 and a scaling factor a and return a
@ -104,6 +113,9 @@ def exp_branches(k, (mu, sig1, sig2, a)):
:returns fun_vals: list with function values along axes x: :returns fun_vals: list with function values along axes x:
''' '''
# python 3 workaround
mu, sig1, sig2, a = param_tuple
def _func(k, mu, sig1, sig2, a): def _func(k, mu, sig1, sig2, a):
mu = float(mu) mu = float(mu)
if k < mu: if k < mu:
@ -236,8 +248,8 @@ class ProbabilityDensityFunction(object):
self._x = np.array(x) self._x = np.array(x)
@classmethod @classmethod
def from_pick(self, lbound, barycentre, rbound, incr=0.001, decfact=0.01, def from_pick(self, lbound, barycentre, rbound, incr=0.1, decfact=0.01,
type='gauss'): type='exp'):
''' '''
Initialize a new ProbabilityDensityFunction object. Initialize a new ProbabilityDensityFunction object.
Takes incr, lbound, barycentre and rbound to derive x0 and the number Takes incr, lbound, barycentre and rbound to derive x0 and the number
@ -304,10 +316,14 @@ class ProbabilityDensityFunction(object):
:return float: rval :return float: rval
''' '''
rval = 0 # rval = 0
for x in self.axis: # for x in self.axis:
rval += x * self.data(x) # rval += x * self.data(x)
return rval * self.incr rval = self.mu
# Not sure about this! That might not be the barycentre.
# However, for std calculation (next function)
# self.mu is also used!! (LK, 02/2017)
return rval
def standard_deviation(self): def standard_deviation(self):
mu = self.mu mu = self.mu
@ -381,7 +397,6 @@ class ProbabilityDensityFunction(object):
qu = self.quantile(1 - prob_value) qu = self.quantile(1 - prob_value)
return qu - ql return qu - ql
def quantile_dist_frac(self, x): def quantile_dist_frac(self, x):
""" """
takes a probability value and returns the fraction of two takes a probability value and returns the fraction of two
@ -400,7 +415,6 @@ class ProbabilityDensityFunction(object):
raise ValueError('Value out of range.') raise ValueError('Value out of range.')
return self.quantile_distance(0.5 - x) / self.quantile_distance(x) return self.quantile_distance(0.5 - x) / self.quantile_distance(x)
def plot(self, label=None): def plot(self, label=None):
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
@ -473,4 +487,3 @@ class ProbabilityDensityFunction(object):
x0, npts = self.commonlimits(incr, other) x0, npts = self.commonlimits(incr, other)
return x0, incr, npts return x0, incr, npts

View File

@ -3,6 +3,7 @@
import matplotlib.pyplot as plt import matplotlib.pyplot as plt
def create_bin_list(l_boundary, u_boundary, nbins=100): def create_bin_list(l_boundary, u_boundary, nbins=100):
""" """
takes two boundaries and a number of bins and creates a list of bins for takes two boundaries and a number of bins and creates a list of bins for

View File

@ -1,33 +1,187 @@
# -*- coding: utf-8 -*- # -*- coding: utf-8 -*-
import sys import sys, os, traceback
from PySide.QtCore import QThread, Signal import multiprocessing
from PySide.QtCore import QThread, Signal, Qt, Slot, QRunnable, QObject
from PySide.QtGui import QDialog, QProgressBar, QLabel, QHBoxLayout, QPushButton
class AutoPickThread(QThread): class Thread(QThread):
message = Signal(str) message = Signal(str)
finished = Signal()
def __init__(self, parent, func, data, param): def __init__(self, parent, func, arg=None, progressText=None,
super(AutoPickThread, self).__init__() pb_widget=None, redirect_stdout=False, abortButton=False):
self.setParent(parent) QThread.__init__(self, parent)
self.func = func self.func = func
self.data = data self.arg = arg
self.param = param self.progressText = progressText
self.pb_widget = pb_widget
self.redirect_stdout = redirect_stdout
self.abortButton = abortButton
self.finished.connect(self.hideProgressbar)
self.showProgressbar()
def run(self): def run(self):
if self.redirect_stdout:
sys.stdout = self sys.stdout = self
picks = self.func(self.data, self.param)
print("Autopicking finished!\n")
try: try:
for station in picks: if self.arg:
self.parent().addPicks(station, picks[station], type='auto') self.data = self.func(self.arg)
except AttributeError: else:
print(picks) self.data = self.func()
self._executed = True
except Exception as e:
self._executed = False
self._executedError = e
traceback.print_exc()
exctype, value = sys.exc_info ()[:2]
self._executedErrorInfo = '{} {} {}'.\
format(exctype, value, traceback.format_exc())
sys.stdout = sys.__stdout__ sys.stdout = sys.__stdout__
self.finished.emit()
def showProgressbar(self):
if self.progressText:
# generate widget if not given in init
if not self.pb_widget:
self.pb_widget = QDialog(self.parent())
self.pb_widget.setWindowFlags(Qt.SplashScreen)
self.pb_widget.setModal(True)
# add button
delete_button = QPushButton('X')
delete_button.clicked.connect(self.exit)
hl = QHBoxLayout()
pb = QProgressBar()
pb.setRange(0, 0)
hl.addWidget(pb)
hl.addWidget(QLabel(self.progressText))
if self.abortButton:
hl.addWidget(delete_button)
self.pb_widget.setLayout(hl)
self.pb_widget.show()
def hideProgressbar(self):
if self.pb_widget:
self.pb_widget.hide()
def write(self, text): def write(self, text):
self.message.emit(text) self.message.emit(text)
def flush(self):
pass
class Worker(QRunnable):
'''
Worker class to be run by MultiThread(QThread).
'''
def __init__(self, fun, args,
progressText=None,
pb_widget=None,
redirect_stdout=False):
super(Worker, self).__init__()
self.fun = fun
self.args = args
#self.kwargs = kwargs
self.signals = WorkerSignals()
self.progressText = progressText
self.pb_widget = pb_widget
self.redirect_stdout = redirect_stdout
@Slot()
def run(self):
if self.redirect_stdout:
sys.stdout = self
try:
result = self.fun(self.args)
except:
exctype, value = sys.exc_info ()[:2]
print(exctype, value, traceback.format_exc())
self.signals.error.emit ((exctype, value, traceback.format_exc ()))
else:
self.signals.result.emit(result)
finally:
self.signals.finished.emit('Done')
sys.stdout = sys.__stdout__
def write(self, text):
self.signals.message.emit(text)
def flush(self):
pass
class WorkerSignals(QObject):
'''
Class to provide signals for Worker Class
'''
finished = Signal(str)
message = Signal(str)
error = Signal(tuple)
result = Signal(object)
class MultiThread(QThread):
finished = Signal(str)
message = Signal(str)
def __init__(self, parent, func, args, ncores=1,
progressText=None, pb_widget=None, redirect_stdout=False):
QThread.__init__(self, parent)
self.func = func
self.args = args
self.ncores = ncores
self.progressText = progressText
self.pb_widget = pb_widget
self.redirect_stdout = redirect_stdout
self.finished.connect(self.hideProgressbar)
self.showProgressbar()
def run(self):
if self.redirect_stdout:
sys.stdout = self
try:
if not self.ncores:
self.ncores = multiprocessing.cpu_count()
pool = multiprocessing.Pool(self.ncores)
self.data = pool.map_async(self.func, self.args, callback=self.emitDone)
#self.data = pool.apply_async(self.func, self.shotlist, callback=self.emitDone) #emit each time returned
pool.close()
self._executed = True
except Exception as e:
self._executed = False
self._executedError = e
exc_type, exc_obj, exc_tb = sys.exc_info()
fname = os.path.split(exc_tb.tb_frame.f_code.co_filename)[1]
print('Exception: {}, file: {}, line: {}'.format(exc_type, fname, exc_tb.tb_lineno))
sys.stdout = sys.__stdout__
def showProgressbar(self):
if self.progressText:
if not self.pb_widget:
self.pb_widget = QDialog(self.parent())
self.pb_widget.setWindowFlags(Qt.SplashScreen)
self.pb_widget.setModal(True)
hl = QHBoxLayout()
pb = QProgressBar()
pb.setRange(0, 0)
hl.addWidget(pb)
hl.addWidget(QLabel(self.progressText))
self.pb_widget.setLayout(hl)
self.pb_widget.show()
def hideProgressbar(self):
if self.pb_widget:
self.pb_widget.hide()
def write(self, text):
self.message.emit(text)
def flush(self):
pass
def emitDone(self, result):
print('emitDone!')
self.finished.emit('Done thread!')
self.hideProgressbar()

View File

@ -2,15 +2,28 @@
# -*- coding: utf-8 -*- # -*- coding: utf-8 -*-
import hashlib import hashlib
import numpy as np
from scipy.interpolate import splrep, splev
import os import os
import pwd import platform
import re import re
import subprocess import subprocess
from obspy import UTCDateTime, read
from pylot.core.io.inputs import AutoPickParameter
import numpy as np
from obspy import UTCDateTime, read
from obspy.core import AttribDict
from obspy.signal.rotate import rotate2zne
from obspy.io.xseed.utils import SEEDParserException
from pylot.core.io.inputs import PylotParameter
from pylot.styles import style_settings
from scipy.interpolate import splrep, splev
from PySide import QtCore, QtGui
try:
import pyqtgraph as pg
except Exception as e:
print('PyLoT: Could not import pyqtgraph. {}'.format(e))
pg = None
def _pickle_method(m): def _pickle_method(m):
if m.im_self is None: if m.im_self is None:
@ -18,9 +31,28 @@ def _pickle_method(m):
else: else:
return getattr, (m.im_self, m.im_func.func_name) return getattr, (m.im_self, m.im_func.func_name)
def readDefaultFilterInformation(fname):
pparam = PylotParameter(fname)
return readFilterInformation(pparam)
def readFilterInformation(pylot_parameter):
p_filter = {'filtertype': pylot_parameter['filter_type'][0],
'freq': [pylot_parameter['minfreq'][0], pylot_parameter['maxfreq'][0]],
'order': int(pylot_parameter['filter_order'][0])}
s_filter = {'filtertype': pylot_parameter['filter_type'][1],
'freq': [pylot_parameter['minfreq'][1], pylot_parameter['maxfreq'][1]],
'order': int(pylot_parameter['filter_order'][1])}
filter_information = {'P': p_filter,
'S': s_filter}
return filter_information
def fit_curve(x, y): def fit_curve(x, y):
return splev, splrep(x, y) return splev, splrep(x, y)
def getindexbounds(f, eta): def getindexbounds(f, eta):
mi = f.argmax() mi = f.argmax()
m = max(f) m = max(f)
@ -29,19 +61,55 @@ def getindexbounds(f, eta):
u = find_nearest(f[mi:], b) + mi u = find_nearest(f[mi:], b) + mi
return mi, l, u return mi, l, u
def worker(func, input, cores='max', async=False):
def gen_Pool(ncores=0):
'''
:param ncores: number of CPU cores for multiprocessing.Pool, if ncores == 0 use all available
:return: multiprocessing.Pool object
'''
import multiprocessing import multiprocessing
if cores == 'max': if ncores == 0:
cores = multiprocessing.cpu_count() ncores = multiprocessing.cpu_count()
print('gen_Pool: Generated multiprocessing Pool with {} cores\n'.format(ncores))
pool = multiprocessing.Pool(ncores)
return pool
def excludeQualityClasses(picks, qClasses, timeerrorsP, timeerrorsS):
'''
takes PyLoT picks dictionary and returns a new dictionary with certain classes excluded.
:param picks: PyLoT picks dictionary
:param qClasses: list (or int) of quality classes (0-4) to exclude
:param timeerrorsP: time errors for classes (0-4) for P
:param timeerrorsS: time errors for classes (0-4) for S
:return: new picks dictionary
'''
from pylot.core.pick.utils import getQualityFromUncertainty
if type(qClasses) in [int, float]:
qClasses = [qClasses]
picksdict_new = {}
phaseError = {'P': timeerrorsP,
'S': timeerrorsS}
for station, phases in picks.items():
for phase, pick in phases.items():
if not type(pick) in [AttribDict, dict]:
continue
pickerror = phaseError[identifyPhaseID(phase)]
quality = getQualityFromUncertainty(pick['spe'], pickerror)
if not quality in qClasses:
if not station in picksdict_new:
picksdict_new[station] = {}
picksdict_new[station][phase] = pick
return picksdict_new
pool = multiprocessing.Pool(cores)
if async == True:
result = pool.map_async(func, input)
else:
result = pool.map(func, input)
pool.close()
return result
def clims(lim1, lim2): def clims(lim1, lim2):
""" """
@ -108,6 +176,7 @@ def findComboBoxIndex(combo_box, val):
""" """
return combo_box.findText(val) if combo_box.findText(val) is not -1 else 0 return combo_box.findText(val) if combo_box.findText(val) is not -1 else 0
def find_in_list(list, str): def find_in_list(list, str):
""" """
takes a list of strings and a string and returns the first list item takes a list of strings and a string and returns the first list item
@ -137,6 +206,7 @@ def find_in_list(list, str):
return rlist[0] return rlist[0]
return None return None
def find_nearest(array, value): def find_nearest(array, value):
''' '''
function find_nearest takes an array and a value and returns the function find_nearest takes an array and a value and returns the
@ -184,6 +254,22 @@ def fnConstructor(s):
return fn return fn
def real_None(value):
if value == 'None':
return None
else:
return value
def real_Bool(value):
if value == 'True':
return True
elif value == 'False':
return False
else:
return value
def four_digits(year): def four_digits(year):
""" """
takes a two digit year integer and returns the correct four digit equivalent takes a two digit year integer and returns the correct four digit equivalent
@ -260,7 +346,7 @@ def getLogin():
returns the actual user's login ID returns the actual user's login ID
:return: login ID :return: login ID
''' '''
return pwd.getpwuid(os.getuid())[0] return os.getlogin()
def getOwner(fn): def getOwner(fn):
@ -270,7 +356,15 @@ def getOwner(fn):
:type fn: str :type fn: str
:return: login ID of the file's owner :return: login ID of the file's owner
''' '''
system_name = platform.system()
if system_name in ["Linux", "Darwin"]:
import pwd
return pwd.getpwuid(os.stat(fn).st_uid).pw_name return pwd.getpwuid(os.stat(fn).st_uid).pw_name
elif system_name == "Windows":
import win32security
f = win32security.GetFileSecurity(fn, win32security.OWNER_SECURITY_INFORMATION)
(username, domain, sid_name_use) = win32security.LookupAccountSid(None, f.GetSecurityDescriptorOwner())
return username
def getPatternLine(fn, pattern): def getPatternLine(fn, pattern):
@ -296,6 +390,7 @@ def getPatternLine(fn, pattern):
return None return None
def is_executable(fn): def is_executable(fn):
""" """
takes a filename and returns True if the file is executable on the system takes a filename and returns True if the file is executable on the system
@ -364,7 +459,7 @@ def key_for_set_value(d):
return r return r
def prepTimeAxis(stime, trace): def prepTimeAxis(stime, trace, verbosity=0):
''' '''
takes a starttime and a trace object and returns a valid time axis for takes a starttime and a trace object and returns a valid time axis for
plotting plotting
@ -378,15 +473,19 @@ def prepTimeAxis(stime, trace):
etime = stime + nsamp / srate etime = stime + nsamp / srate
time_ax = np.arange(stime, etime, tincr) time_ax = np.arange(stime, etime, tincr)
if len(time_ax) < nsamp: if len(time_ax) < nsamp:
if verbosity:
print('elongate time axes by one datum') print('elongate time axes by one datum')
time_ax = np.arange(stime, etime + tincr, tincr) time_ax = np.arange(stime, etime + tincr, tincr)
elif len(time_ax) > nsamp: elif len(time_ax) > nsamp:
if verbosity:
print('shorten time axes by one datum') print('shorten time axes by one datum')
time_ax = np.arange(stime, etime - tincr, tincr) time_ax = np.arange(stime, etime - tincr, tincr)
if len(time_ax) != nsamp: if len(time_ax) != nsamp:
raise ValueError('{0} samples of data \n ' print('Station {0}, {1} samples of data \n '
'{1} length of time vector \n' '{2} length of time vector \n'
'delta: {2}'.format(nsamp, len(time_ax), tincr)) 'delta: {3}'.format(trace.stats.station,
nsamp, len(time_ax), tincr))
time_ax = None
return time_ax return time_ax
@ -413,6 +512,91 @@ def find_horizontals(data):
return rval return rval
def make_pen(picktype, phase, key, quality):
if pg:
rgba = pick_color(picktype, phase, quality)
linestyle, width = pick_linestyle_pg(picktype, key)
pen = pg.mkPen(rgba, width=width, style=linestyle)
return pen
def pick_color(picktype, phase, quality=0):
min_quality = 3
bpc = base_phase_colors(picktype, phase)
rgba = bpc['rgba']
modifier = bpc['modifier']
intensity = 255.*quality/min_quality
rgba = modify_rgba(rgba, modifier, intensity)
return rgba
def pick_color_plt(picktype, phase, quality=0):
rgba = list(pick_color(picktype, phase, quality))
for index, val in enumerate(rgba):
rgba[index] /= 255.
return rgba
def pick_linestyle_plt(picktype, key):
linestyles_manu = {'mpp': ('solid', 2.),
'epp': ('dashed', 1.),
'lpp': ('dashed', 1.),
'spe': ('dashed', 1.)}
linestyles_auto = {'mpp': ('dotted', 2.),
'epp': ('dashdot', 1.),
'lpp': ('dashdot', 1.),
'spe': ('dashdot', 1.)}
linestyles = {'manual': linestyles_manu,
'auto': linestyles_auto}
return linestyles[picktype][key]
def pick_linestyle_pg(picktype, key):
linestyles_manu = {'mpp': (QtCore.Qt.SolidLine, 2.),
'epp': (QtCore.Qt.DashLine, 1.),
'lpp': (QtCore.Qt.DashLine, 1.),
'spe': (QtCore.Qt.DashLine, 1.)}
linestyles_auto = {'mpp': (QtCore.Qt.DotLine, 2.),
'epp': (QtCore.Qt.DashDotLine, 1.),
'lpp': (QtCore.Qt.DashDotLine, 1.),
'spe': (QtCore.Qt.DashDotLine, 1.)}
linestyles = {'manual': linestyles_manu,
'auto': linestyles_auto}
return linestyles[picktype][key]
def modify_rgba(rgba, modifier, intensity):
rgba = list(rgba)
index = {'r': 0,
'g': 1,
'b': 2}
val = rgba[index[modifier]] + intensity
if val > 255.:
val = 255.
elif val < 0.:
val = 0
rgba[index[modifier]] = val
return tuple(rgba)
def base_phase_colors(picktype, phase):
phasecolors = style_settings.phasecolors
return phasecolors[picktype][phase]
def transform_colors_mpl_str(colors, no_alpha=False):
colors = list(colors)
colors_mpl = tuple([color / 255. for color in colors])
if no_alpha:
colors_mpl = '({}, {}, {})'.format(*colors_mpl)
else:
colors_mpl = '({}, {}, {}, {})'.format(*colors_mpl)
return colors_mpl
def transform_colors_mpl(colors):
colors = list(colors)
colors_mpl = tuple([color / 255. for color in colors])
return colors_mpl
def remove_underscores(data): def remove_underscores(data):
""" """
takes a `obspy.core.stream.Stream` object and removes all underscores takes a `obspy.core.stream.Stream` object and removes all underscores
@ -427,6 +611,176 @@ def remove_underscores(data):
return data return data
def trim_station_components(data, trim_start=True, trim_end=True):
'''
cut a stream so only the part common to all three traces is kept to avoid dealing with offsets
:param data: stream of seismic data
:type data: `obspy.core.stream.Stream`
:param trim_start: trim start of stream
:type trim_start: bool
:param trim_end: trim end of stream
:type trim_end: bool
:return: data stream
'''
starttime = {False: None}
endtime = {False: None}
stations = get_stations(data)
print('trim_station_components: Will trim stream for trim_start: {} and for '
'trim_end: {}.'.format(trim_start, trim_end))
for station in stations:
wf_station = data.select(station=station)
starttime[True] = max([trace.stats.starttime for trace in wf_station])
endtime[True] = min([trace.stats.endtime for trace in wf_station])
wf_station.trim(starttime=starttime[trim_start], endtime=endtime[trim_end])
return data
def check4gaps(data):
'''
check for gaps in Stream and remove them
:param data: stream of seismic data
:return: data stream
'''
stations = get_stations(data)
for station in stations:
wf_station = data.select(station=station)
if wf_station.get_gaps():
for trace in wf_station:
data.remove(trace)
print('check4gaps: Found gaps and removed station {} from waveform data.'.format(station))
return data
def check4doubled(data):
'''
check for doubled stations for same channel in Stream and take only the first one
:param data: stream of seismic data
:return: data stream
'''
stations = get_stations(data)
for station in stations:
wf_station = data.select(station=station)
# create list of all possible channels
channels = []
for trace in wf_station:
channel = trace.stats.channel
if not channel in channels:
channels.append(channel)
else:
print('check4doubled: removed the following trace for station {}, as there is'
' already a trace with the same channel given:\n{}'.format(
station, trace
))
data.remove(trace)
return data
def get_stations(data):
stations = []
for tr in data:
station = tr.stats.station
if not station in stations:
stations.append(station)
return stations
def check4rotated(data, metadata=None, verbosity=1):
def rotate_components(wfstream, metadata=None):
"""rotates components if orientation code is numeric.
azimut and dip are fetched from metadata"""
try:
# indexing fails if metadata is None
metadata[0]
except:
if verbosity:
msg = 'Warning: could not rotate traces since no metadata was given\nset Inventory file!'
print(msg)
return wfstream
if metadata[0] is None:
# sometimes metadata is (None, (None,))
if verbosity:
msg = 'Warning: could not rotate traces since no metadata was given\nCheck inventory directory!'
print(msg)
return wfstream
else:
parser = metadata[1]
def get_dip_azimut(parser, trace_id):
"""gets azimut and dip for a trace out of the metadata parser"""
dip = None
azimut = None
try:
blockettes = parser._select(trace_id)
except SEEDParserException as e:
print(e)
raise ValueError
for blockette_ in blockettes:
if blockette_.id != 52:
continue
dip = blockette_.dip
azimut = blockette_.azimuth
break
if dip is None or azimut is None:
error_msg = 'Dip and azimuth not available for trace_id {}'.format(trace_id)
raise ValueError(error_msg)
return dip, azimut
trace_ids = [trace.id for trace in wfstream]
for trace_id in trace_ids:
orientation = trace_id[-1]
if orientation.isnumeric():
# misaligned channels have a number as orientation
azimuts = []
dips = []
for trace_id in trace_ids:
try:
dip, azimut = get_dip_azimut(parser, trace_id)
except ValueError as e:
print(e)
print('Failed to rotate station {}, no azimuth or dip available in metadata'.format(trace_id))
return wfstream
azimuts.append(azimut)
dips.append(dip)
# to rotate all traces must have same length
wfstream = trim_station_components(wfstream, trim_start=True, trim_end=True)
z, n, e = rotate2zne(wfstream[0], azimuts[0], dips[0],
wfstream[1], azimuts[1], dips[1],
wfstream[2], azimuts[2], dips[2])
print('check4rotated: rotated station {} to ZNE'.format(trace_id))
z_index = dips.index(min(dips)) # get z-trace index (dip is measured from 0 to -90
wfstream[z_index].data = z
wfstream[z_index].stats.channel = wfstream[z_index].stats.channel[0:-1] + 'Z'
del trace_ids[z_index]
for trace_id in trace_ids:
dip, az = get_dip_azimut(parser, trace_id)
trace = wfstream.select(id=trace_id)[0]
if az > 315 and az <= 45 or az > 135 and az <= 225:
trace.data = n
trace.stats.channel = trace.stats.channel[0:-1] + 'N'
elif az > 45 and az <= 135 or az > 225 and az <= 315:
trace.data = e
trace.stats.channel = trace.stats.channel[0:-1] + 'E'
break
else:
continue
return wfstream
stations = get_stations(data)
for station in stations:
wf_station = data.select(station=station)
wf_station = rotate_components(wf_station, metadata)
return data
def scaleWFData(data, factor=None, components='all'): def scaleWFData(data, factor=None, components='all'):
""" """
produce scaled waveforms from given waveform data and a scaling factor, produce scaled waveforms from given waveform data and a scaling factor,
@ -477,7 +831,8 @@ def runProgram(cmd, parameter=None):
subprocess.check_output('{} | tee /dev/stderr'.format(cmd), shell=True) subprocess.check_output('{} | tee /dev/stderr'.format(cmd), shell=True)
def which(program):
def which(program, infile=None):
""" """
takes a program name and returns the full path to the executable or None takes a program name and returns the full path to the executable or None
modified after: http://stackoverflow.com/questions/377017/test-if-executable-exists-in-python modified after: http://stackoverflow.com/questions/377017/test-if-executable-exists-in-python
@ -490,9 +845,14 @@ def which(program):
for key in settings.allKeys(): for key in settings.allKeys():
if 'binPath' in key: if 'binPath' in key:
os.environ['PATH'] += ':{0}'.format(settings.value(key)) os.environ['PATH'] += ':{0}'.format(settings.value(key))
bpath = os.path.join(os.path.expanduser('~'), '.pylot', 'autoPyLoT.in') if infile is None:
# use default parameter-file name
bpath = os.path.join(os.path.expanduser('~'), '.pylot', 'pylot.in')
else:
bpath = os.path.join(os.path.expanduser('~'), '.pylot', infile)
if os.path.exists(bpath): if os.path.exists(bpath):
nllocpath = ":" + AutoPickParameter(bpath).get('nllocbin') nllocpath = ":" + PylotParameter(bpath).get('nllocbin')
os.environ['PATH'] += nllocpath os.environ['PATH'] += nllocpath
except ImportError as e: except ImportError as e:
print(e.message) print(e.message)
@ -518,6 +878,61 @@ def which(program):
return None return None
def loopIdentifyPhase(phase):
'''
Loop through phase string and try to recognize its type (P or S wave).
Global variable ALTSUFFIX gives alternative suffix for phases if they do not end with P, p or S, s.
If ALTSUFFIX is not given, the function will cut the last letter of the phase string until string ends
with P or S.
:param phase: phase name (str)
:return:
'''
from pylot.core.util.defaults import ALTSUFFIX
phase_copy = phase
while not identifyPhase(phase_copy):
identified = False
for alt_suf in ALTSUFFIX:
if phase_copy.endswith(alt_suf):
phase_copy = phase_copy.split(alt_suf)[0]
identified = True
if not identified:
phase_copy = phase_copy[:-1]
if len(phase_copy) < 1:
print('Warning: Could not identify phase {}!'.format(phase))
return
return phase_copy
def identifyPhase(phase):
'''
Returns capital P or S if phase string is identified by last letter. Else returns False.
:param phase: phase name (str)
:return: 'P', 'S' or False
'''
# common phase suffix for P and S
common_P = ['P', 'p']
common_S = ['S', 's']
if phase[-1] in common_P:
return 'P'
if phase[-1] in common_S:
return 'S'
else:
return False
def identifyPhaseID(phase):
return identifyPhase(loopIdentifyPhase(phase))
def has_spe(pick):
if not 'spe' in pick.keys():
return None
else:
return pick['spe']
if __name__ == "__main__": if __name__ == "__main__":
import doctest import doctest

0
pylot/core/util/version.py Executable file → Normal file
View File

Some files were not shown because too many files have changed in this diff Show More