Included AR prediction on all 3 components
This commit is contained in:
parent
2a385512ee
commit
8fa9ec74c0
@ -17,7 +17,6 @@ autoregressive prediction: application ot local and regional distances, Geophys.
|
||||
"""
|
||||
import numpy as np
|
||||
from obspy.core import Stream
|
||||
import scipy
|
||||
|
||||
class CharacteristicFunction(object):
|
||||
'''
|
||||
@ -125,7 +124,10 @@ class CharacteristicFunction(object):
|
||||
start = self.cut[0] / self.dt
|
||||
stop = self.cut[1] / self.dt
|
||||
if len(self.orig_data) == 1:
|
||||
data = self.orig_data[0].data[start:stop]
|
||||
zz = self.orig_data.copy()
|
||||
z1 = zz[0].copy()
|
||||
zz[0].data = z1.data[start:stop]
|
||||
data = zz
|
||||
return data
|
||||
elif len(self.orig_data) == 2:
|
||||
hh = self.orig_data.copy()
|
||||
@ -135,13 +137,19 @@ class CharacteristicFunction(object):
|
||||
hh[1].data = h2.data[start:stop]
|
||||
data = hh
|
||||
return data
|
||||
elif len(self.orig_data) == 3:
|
||||
hh = self.orig_data.copy()
|
||||
h1 = hh[0].copy()
|
||||
h2 = hh[1].copy()
|
||||
h3 = hh[2].copy()
|
||||
hh[0].data = h1.data[start:stop]
|
||||
hh[1].data = h2.data[start:stop]
|
||||
hh[2].data = h3.data[start:stop]
|
||||
data = hh
|
||||
return data
|
||||
else:
|
||||
if len(self.orig_data) == 1:
|
||||
data = self.orig_data[0]
|
||||
return data
|
||||
elif len(self.orig_data) == 2:
|
||||
data = self.orig_data
|
||||
return data
|
||||
data = self.orig_data
|
||||
return data
|
||||
|
||||
def calcCF(self, data=None):
|
||||
self.cf = data
|
||||
@ -160,7 +168,8 @@ class AICcf(CharacteristicFunction):
|
||||
def calcCF(self, data):
|
||||
|
||||
print 'Calculating AIC ...'
|
||||
xnp = self.getDataArray()
|
||||
x = self.getDataArray()
|
||||
xnp = x[0].data
|
||||
datlen = len(xnp)
|
||||
k = np.arange(1, datlen)
|
||||
cf = np.zeros(datlen)
|
||||
@ -188,7 +197,8 @@ class HOScf(CharacteristicFunction):
|
||||
|
||||
def calcCF(self, data):
|
||||
|
||||
xnp = self.getDataArray(self.getCut())
|
||||
x = self.getDataArray(self.getCut())
|
||||
xnp =x[0].data
|
||||
if self.getOrder() == 3: # this is skewness
|
||||
print 'Calculating skewness ...'
|
||||
y = np.power(xnp, 3)
|
||||
@ -206,8 +216,10 @@ class HOScf(CharacteristicFunction):
|
||||
|
||||
#moving windows
|
||||
LTA = np.zeros(len(xnp))
|
||||
for j in range(3, len(xnp)):
|
||||
if j <= ilta:
|
||||
for j in range(0, len(xnp)):
|
||||
if j < 4:
|
||||
LTA[j] = 0
|
||||
elif j <= ilta:
|
||||
lta = (y[j] + lta * (j-1)) / j
|
||||
lta1 = (y1[j] + lta1 * (j-1)) / j
|
||||
else:
|
||||
@ -218,9 +230,7 @@ class HOScf(CharacteristicFunction):
|
||||
LTA[j] = lta / np.power(lta1, 1.5)
|
||||
elif self.getOrder() == 4:
|
||||
LTA[j] = lta / np.power(lta1, 2)
|
||||
|
||||
LTA[0:3] = 0
|
||||
|
||||
|
||||
self.cf = LTA
|
||||
|
||||
|
||||
@ -229,7 +239,8 @@ class ARZcf(CharacteristicFunction):
|
||||
def calcCF(self, data):
|
||||
|
||||
print 'Calculating AR-prediction error from single trace ...'
|
||||
xnp = self.getDataArray(self.getCut())
|
||||
x = self.getDataArray(self.getCut())
|
||||
xnp = x[0].data
|
||||
#some parameters needed
|
||||
#add noise to time series
|
||||
xnoise = xnp + np.random.normal(0.0, 1.0, len(xnp)) * self.getFnoise() * max(abs(xnp))
|
||||
@ -240,17 +251,9 @@ class ARZcf(CharacteristicFunction):
|
||||
lpred = int(np.ceil(self.getTime2() / self.getIncrement())) #length of AR-prediction window [samples]
|
||||
|
||||
cf = []
|
||||
step = ldet + self.getOrder() - 1
|
||||
for i in range(ldet + self.getOrder() - 1, tend - lpred + 1):
|
||||
if i == step:
|
||||
'''
|
||||
In order to speed up the algorithm AR parameters are kept for time
|
||||
intervals of length ldet
|
||||
'''
|
||||
#determination of AR coefficients
|
||||
self.arDetZ(xnoise, self.getOrder(), i-ldet, i)
|
||||
step = step + ldet
|
||||
|
||||
for i in range(ldet + self.getOrder() - 1, tend - lpred + 1, lpred / 16):
|
||||
#determination of AR coefficients
|
||||
self.arDetZ(xnoise, self.getOrder(), i-ldet, i)
|
||||
#AR prediction of waveform using calculated AR coefficients
|
||||
self.arPredZ(xnp, self.arpara, i + 1, lpred)
|
||||
#prediction error = CF
|
||||
@ -298,7 +301,7 @@ class ARZcf(CharacteristicFunction):
|
||||
|
||||
A[ji,ki] = A[ki,ji]
|
||||
|
||||
#apply Moore-Penrose pseudo inverse for SVD yielding the AR-parameters
|
||||
#apply Moore-Penrose inverse for SVD yielding the AR-parameters
|
||||
self.arpara = np.dot(np.linalg.pinv(A), rhs)
|
||||
|
||||
def arPredZ(self, data, arpara, rind, lpred):
|
||||
@ -359,17 +362,8 @@ class ARHcf(CharacteristicFunction):
|
||||
lpred = int(np.ceil(self.getTime2() / self.getIncrement())) #length of AR-prediction window [samples]
|
||||
|
||||
cf = []
|
||||
arstep = ldet + self.getOrder() - 3
|
||||
for i in range(ldet + self.getOrder() - 3, tend - lpred + 1):
|
||||
if i == arstep:
|
||||
'''
|
||||
In order to speed up the algorithm AR parameters are kept for time
|
||||
intervals of length ldet
|
||||
'''
|
||||
#determination of AR coefficients
|
||||
self.arDetH(Xnoise, self.getOrder(), i-ldet, i)
|
||||
arstep = arstep + ldet
|
||||
|
||||
for i in range(ldet + self.getOrder() - 3, tend - lpred + 1, lpred / 4):
|
||||
self.arDetH(Xnoise, self.getOrder(), i-ldet, i)
|
||||
#AR prediction of waveform using calculated AR coefficients
|
||||
self.arPredH(xnp, self.arpara, i + 1, lpred)
|
||||
#prediction error = CF
|
||||
@ -420,14 +414,8 @@ class ARHcf(CharacteristicFunction):
|
||||
|
||||
A[ji,ki] = A[ki,ji]
|
||||
|
||||
#apply Moore-Penrose pseudo inverse for SVD yielding the AR-parameters
|
||||
#self.arpara = np.dot(np.linalg.pinv(A), rhs)
|
||||
#self.arpara = np.linalg.solve(A, rhs)
|
||||
#arpara = scipy.linalg.lstsq(A, rhs)
|
||||
#arpara = np.linalg.lstsq(A, rhs)
|
||||
#self.arpara = arpara[0]
|
||||
self.arpara = np.dot(scipy.linalg.pinv(A), rhs)
|
||||
|
||||
#apply Moore-Penrose inverse for SVD yielding the AR-parameters
|
||||
self.arpara = np.dot(np.linalg.pinv(A), rhs)
|
||||
|
||||
def arPredH(self, data, arpara, rind, lpred):
|
||||
'''
|
||||
@ -472,4 +460,122 @@ class ARHcf(CharacteristicFunction):
|
||||
|
||||
class AR3Ccf(CharacteristicFunction):
|
||||
|
||||
pass
|
||||
def calcCF(self, data):
|
||||
|
||||
print 'Calculating AR-prediction error from all 3 components ...'
|
||||
|
||||
xnp = self.getDataArray(self.getCut())
|
||||
|
||||
#some parameters needed
|
||||
#add noise to time series
|
||||
xenoise = xnp[0].data + np.random.normal(0.0, 1.0, len(xnp[0].data)) * self.getFnoise() * max(abs(xnp[0].data))
|
||||
xnnoise = xnp[1].data + np.random.normal(0.0, 1.0, len(xnp[1].data)) * self.getFnoise() * max(abs(xnp[1].data))
|
||||
xznoise = xnp[2].data + np.random.normal(0.0, 1.0, len(xnp[2].data)) * self.getFnoise() * max(abs(xnp[2].data))
|
||||
Xnoise = np.array( [xenoise.tolist(), xnnoise.tolist(), xznoise.tolist()] )
|
||||
tend = len(xnp[0].data)
|
||||
#Time1: length of AR-determination window [sec]
|
||||
#Time2: length of AR-prediction window [sec]
|
||||
ldet = int(round(self.getTime1() / self.getIncrement())) #length of AR-determination window [samples]
|
||||
lpred = int(np.ceil(self.getTime2() / self.getIncrement())) #length of AR-prediction window [samples]
|
||||
|
||||
cf = []
|
||||
for i in range(ldet + self.getOrder() - 3, tend - lpred + 1, lpred / 4):
|
||||
self.arDet3C(Xnoise, self.getOrder(), i-ldet, i)
|
||||
#AR prediction of waveform using calculated AR coefficients
|
||||
self.arPred3C(xnp, self.arpara, i + 1, lpred)
|
||||
#prediction error = CF
|
||||
err = np.sqrt(np.sum(np.power(self.xpred[0][i:i + lpred] - xnp[0][i:i + lpred], 2) \
|
||||
+ np.power(self.xpred[1][i:i + lpred] - xnp[1][i:i + lpred], 2) \
|
||||
+ np.power(self.xpred[2][i:i + lpred] - xnp[2][i:i + lpred], 2)) / (3 * lpred))
|
||||
cf.append(err)
|
||||
|
||||
#convert list to numpy array
|
||||
cf = np.asarray(cf)
|
||||
self.cf = cf
|
||||
|
||||
def arDet3C(self, data, order, rind, ldet):
|
||||
'''
|
||||
Function to calculate AR parameters arpara after Thomas Meier (CAU), published
|
||||
in Kueperkoch et al. (2012). This function solves SLE using the Moore-
|
||||
Penrose inverse, i.e. the least-squares approach. "data" is a structured array.
|
||||
AR parameters are calculated based on both horizontal components and vertical
|
||||
componant.
|
||||
:param: data, horizontal component seismograms to calculate AR parameters from
|
||||
:type: structured array
|
||||
|
||||
:param: order, order of AR process
|
||||
:type: int
|
||||
|
||||
:param: rind, first running summation index
|
||||
:type: int
|
||||
|
||||
:param: ldet, length of AR-determination window (=end of summation index)
|
||||
:type: int
|
||||
|
||||
Output: AR parameters arpara
|
||||
'''
|
||||
|
||||
#recursive calculation of data vector (right part of eq. 6.5 in Kueperkoch et al. (2012)
|
||||
rhs = np.zeros(self.getOrder())
|
||||
for k in range(0, self.getOrder()):
|
||||
for i in range(rind, ldet):
|
||||
rhs[k] = rhs[k] + data[0,i] * data[0,i - k] + data[1,i] * data[1,i - k] \
|
||||
+ data[2,i] * data[2,i - k]
|
||||
|
||||
#recursive calculation of data array (second sum at left part of eq. 6.5 in Kueperkoch et al. 2012)
|
||||
A = np.zeros((4,4))
|
||||
for k in range(1, self.getOrder() + 1):
|
||||
for j in range(1, k + 1):
|
||||
for i in range(rind, ldet):
|
||||
ki = k - 1
|
||||
ji = j - 1
|
||||
A[ki,ji] = A[ki,ji] + data[0,i - ji] * data[0,i - ki] + data[1,i - ji] *data[1,i - ki] \
|
||||
+ data[2,i - ji] *data[2,i - ki]
|
||||
|
||||
A[ji,ki] = A[ki,ji]
|
||||
|
||||
#apply Moore-Penrose inverse for SVD yielding the AR-parameters
|
||||
self.arpara = np.dot(np.linalg.pinv(A), rhs)
|
||||
|
||||
def arPred3C(self, data, arpara, rind, lpred):
|
||||
'''
|
||||
Function to predict waveform, assuming an autoregressive process of order
|
||||
p (=size(arpara)), with AR parameters arpara calculated in arDet3C. After
|
||||
Thomas Meier (CAU), published in Kueperkoch et al. (2012).
|
||||
:param: data, horizontal and vertical component seismograms to be predicted
|
||||
:type: structured array
|
||||
|
||||
:param: arpara, AR parameters
|
||||
:type: float
|
||||
|
||||
:param: rind, first running summation index
|
||||
:type: int
|
||||
|
||||
:param: lpred, length of prediction window (=end of summation index)
|
||||
:type: int
|
||||
|
||||
Output: predicted waveform z
|
||||
:type: structured array
|
||||
'''
|
||||
#be sure of the summation indeces
|
||||
if rind < len(arpara) + 1:
|
||||
rind = len(arpara) + 1
|
||||
if rind > len(data[0]) - lpred + 1:
|
||||
rind = len(data[0]) - lpred + 1
|
||||
if lpred < 1:
|
||||
lpred = 1
|
||||
if lpred > len(data[0]) - 1:
|
||||
lpred = len(data[0]) - 1
|
||||
|
||||
z1 = np.append(data[0][0:rind], np.zeros(lpred))
|
||||
z2 = np.append(data[1][0:rind], np.zeros(lpred))
|
||||
z3 = np.append(data[2][0:rind], np.zeros(lpred))
|
||||
for i in range(rind, rind + lpred):
|
||||
for j in range(1, len(arpara) + 1):
|
||||
ji = j - 1
|
||||
z1[i] = z1[i] + arpara[ji] * z1[i - ji]
|
||||
z2[i] = z2[i] + arpara[ji] * z2[i - ji]
|
||||
z3[i] = z3[i] + arpara[ji] * z3[i - ji]
|
||||
|
||||
z = np.array( [z1.tolist(), z2.tolist(), z3.tolist()] )
|
||||
self.xpred = z
|
||||
|
Loading…
Reference in New Issue
Block a user