New function to derive plateau and corner frequency of observed source spectrum. Additional to scipys implicit function curve_fit, as seismic moment is sensitive to estimated plateau of source spectrum, which in turn is sensitivec to estimated corner frequency.
This commit is contained in:
parent
d29c57ab4b
commit
957d2ccfe7
@ -135,10 +135,10 @@ class WApp(Magnitude):
|
||||
plt.close(f)
|
||||
|
||||
|
||||
class DCfc(Magnitude):
|
||||
class w0fc(Magnitude):
|
||||
'''
|
||||
Method to calculate the source spectrum and to derive from that the plateau
|
||||
(so-called DC-value) and the corner frequency assuming Aki's omega-square
|
||||
(usually called omega0) and the corner frequency assuming Aki's omega-square
|
||||
source model. Has to be derived from instrument corrected displacement traces!
|
||||
'''
|
||||
|
||||
@ -176,20 +176,23 @@ class DCfc(Magnitude):
|
||||
YY = Y[fi]
|
||||
# get plateau (DC value) and corner frequency
|
||||
# initial guess of plateau
|
||||
DCin = np.mean(YY[0:100])
|
||||
w0in = np.mean(YY[0:100])
|
||||
# initial guess of corner frequency
|
||||
# where spectral level reached 50% of flat level
|
||||
iin = np.where(YY >= 0.5 * DCin)
|
||||
iin = np.where(YY >= 0.5 * w0in)
|
||||
Fcin = F[iin[0][np.size(iin) - 1]]
|
||||
fit = synthsourcespec(F, DCin, Fcin)
|
||||
[optspecfit, pcov] = curve_fit(synthsourcespec, F, YY.real, [DCin, Fcin])
|
||||
self.w0 = optspecfit[0]
|
||||
self.fc = optspecfit[1]
|
||||
print ("DCfc: Determined DC-value: %e m/Hz, \n"
|
||||
"Determined corner frequency: %f Hz" % (self.w0, self.fc))
|
||||
# use of implicit scipy function
|
||||
fit = synthsourcespec(F, w0in, Fcin)
|
||||
[optspecfit, pcov] = curve_fit(synthsourcespec, F, YY.real, [w0in, Fcin])
|
||||
self.w01 = optspecfit[0]
|
||||
self.fc1 = optspecfit[1]
|
||||
print ("w0fc: Determined w0-value: %e m/Hz, \n"
|
||||
"Determined corner frequency: %f Hz" % (self.w01, self.fc1))
|
||||
|
||||
# use of conventional fitting
|
||||
[self.w02, self.fc2] = fitSourceModel(F, YY.real, Fcin, self.getiplot())
|
||||
|
||||
|
||||
if self.getiplot() > 1:
|
||||
if self.getiplot() > 1:
|
||||
f1 = plt.figure()
|
||||
plt.subplot(2,1,1)
|
||||
# show displacement in mm
|
||||
@ -203,7 +206,8 @@ class DCfc(Magnitude):
|
||||
plt.loglog(f, Y.real, 'k')
|
||||
plt.loglog(F, YY.real)
|
||||
plt.loglog(F, fit, 'g')
|
||||
plt.title('Source Spectrum from P Pulse, DC=%e m/Hz, fc=%4.1f Hz' \
|
||||
plt.loglog([self.fc, self.fc], [self.w0/100, self.w0], 'g')
|
||||
plt.title('Source Spectrum from P Pulse, w0=%e m/Hz, fc=%6.2f Hz' \
|
||||
% (self.w0, self.fc))
|
||||
plt.xlabel('Frequency [Hz]')
|
||||
plt.ylabel('Amplitude [m/Hz]')
|
||||
@ -233,3 +237,92 @@ def synthsourcespec(f, omega0, fcorner):
|
||||
|
||||
return ssp
|
||||
|
||||
|
||||
def fitSourceModel(f, S, fc0, iplot):
|
||||
'''
|
||||
Calculates synthetic source spectrum by varying corner frequency fc.
|
||||
Returns best approximated plateau omega0 and corner frequency, i.e. with least
|
||||
common standard deviations.
|
||||
|
||||
:param: f, frequencies
|
||||
:type: array
|
||||
|
||||
:param: S, observed source spectrum
|
||||
:type: array
|
||||
|
||||
:param: fc0, initial corner frequency
|
||||
:type: float
|
||||
'''
|
||||
|
||||
w0 = []
|
||||
stdw0 = []
|
||||
fc = []
|
||||
stdfc = []
|
||||
STD = []
|
||||
|
||||
# get window around initial corner frequency for trials
|
||||
fcstopl = fc0 - max(1, len(f) / 10)
|
||||
il = np.argmin(abs(f-fcstopl))
|
||||
fcstopl = f[il]
|
||||
fcstopr = fc0 + min(len(f), len(f) /10)
|
||||
ir = np.argmin(abs(f-fcstopr))
|
||||
fcstopr = f[ir]
|
||||
iF = np.where((f >= fcstopl) & (f <= fcstopr))
|
||||
|
||||
# vary corner frequency around initial point
|
||||
for i in range(il, ir):
|
||||
FC = f[i]
|
||||
indexdc = np.where((f > 0 ) & (f <= FC))
|
||||
dc = np.mean(S[indexdc])
|
||||
stddc = np.std(dc - S[indexdc])
|
||||
w0.append(dc)
|
||||
stdw0.append(stddc)
|
||||
fc.append(FC)
|
||||
# slope
|
||||
indexfc = np.where((f >= FC) & (f <= fcstopr))
|
||||
yi = dc/(1+(f[indexfc]/FC)**2)
|
||||
stdFC = np.std(yi - S[indexfc])
|
||||
stdfc.append(stdFC)
|
||||
STD.append(stddc + stdFC)
|
||||
|
||||
# get best found w0 anf fc from minimum
|
||||
fc = fc[np.argmin(STD)]
|
||||
w0 = w0[np.argmin(STD)]
|
||||
print("fitSourceModel: best fc: %fHz, best w0: %e m/Hz" \
|
||||
% (fc, w0))
|
||||
|
||||
if iplot > 1:
|
||||
plt.figure(iplot)
|
||||
plt.loglog(f, S, 'k')
|
||||
plt.loglog([f[0], fc], [w0, w0], 'g')
|
||||
plt.loglog([fc, fc], [w0/100, w0], 'g')
|
||||
plt.title('Calculated Source Spectrum, Omega0=%e m/Hz, fc=%6.2f Hz' \
|
||||
% (w0, fc))
|
||||
plt.xlabel('Frequency [Hz]')
|
||||
plt.ylabel('Amplitude [m/Hz]')
|
||||
plt.grid()
|
||||
plt.figure(iplot+1)
|
||||
plt.subplot(311)
|
||||
plt.plot(f[il:ir], STD,'*')
|
||||
plt.title('Common Standard Deviations')
|
||||
plt.xticks([])
|
||||
plt.subplot(312)
|
||||
plt.plot(f[il:ir], stdw0,'*')
|
||||
plt.title('Standard Deviations of w0-Values')
|
||||
plt.xticks([])
|
||||
plt.subplot(313)
|
||||
plt.plot(f[il:ir],stdfc,'*')
|
||||
plt.title('Standard Deviations of Corner Frequencies')
|
||||
plt.xlabel('Corner Frequencies [Hz]')
|
||||
plt.show()
|
||||
raw_input()
|
||||
plt.close()
|
||||
|
||||
return w0, fc
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user