New function to derive plateau and corner frequency of observed source spectrum. Additional to scipys implicit function curve_fit, as seismic moment is sensitive to estimated plateau of source spectrum, which in turn is sensitivec to estimated corner frequency.

This commit is contained in:
Ludger Küperkoch 2015-11-30 13:14:23 +01:00
parent d29c57ab4b
commit 957d2ccfe7

View File

@ -135,10 +135,10 @@ class WApp(Magnitude):
plt.close(f) plt.close(f)
class DCfc(Magnitude): class w0fc(Magnitude):
''' '''
Method to calculate the source spectrum and to derive from that the plateau Method to calculate the source spectrum and to derive from that the plateau
(so-called DC-value) and the corner frequency assuming Aki's omega-square (usually called omega0) and the corner frequency assuming Aki's omega-square
source model. Has to be derived from instrument corrected displacement traces! source model. Has to be derived from instrument corrected displacement traces!
''' '''
@ -176,20 +176,23 @@ class DCfc(Magnitude):
YY = Y[fi] YY = Y[fi]
# get plateau (DC value) and corner frequency # get plateau (DC value) and corner frequency
# initial guess of plateau # initial guess of plateau
DCin = np.mean(YY[0:100]) w0in = np.mean(YY[0:100])
# initial guess of corner frequency # initial guess of corner frequency
# where spectral level reached 50% of flat level # where spectral level reached 50% of flat level
iin = np.where(YY >= 0.5 * DCin) iin = np.where(YY >= 0.5 * w0in)
Fcin = F[iin[0][np.size(iin) - 1]] Fcin = F[iin[0][np.size(iin) - 1]]
fit = synthsourcespec(F, DCin, Fcin) # use of implicit scipy function
[optspecfit, pcov] = curve_fit(synthsourcespec, F, YY.real, [DCin, Fcin]) fit = synthsourcespec(F, w0in, Fcin)
self.w0 = optspecfit[0] [optspecfit, pcov] = curve_fit(synthsourcespec, F, YY.real, [w0in, Fcin])
self.fc = optspecfit[1] self.w01 = optspecfit[0]
print ("DCfc: Determined DC-value: %e m/Hz, \n" self.fc1 = optspecfit[1]
"Determined corner frequency: %f Hz" % (self.w0, self.fc)) print ("w0fc: Determined w0-value: %e m/Hz, \n"
"Determined corner frequency: %f Hz" % (self.w01, self.fc1))
# use of conventional fitting
[self.w02, self.fc2] = fitSourceModel(F, YY.real, Fcin, self.getiplot())
if self.getiplot() > 1: if self.getiplot() > 1:
f1 = plt.figure() f1 = plt.figure()
plt.subplot(2,1,1) plt.subplot(2,1,1)
# show displacement in mm # show displacement in mm
@ -203,7 +206,8 @@ class DCfc(Magnitude):
plt.loglog(f, Y.real, 'k') plt.loglog(f, Y.real, 'k')
plt.loglog(F, YY.real) plt.loglog(F, YY.real)
plt.loglog(F, fit, 'g') plt.loglog(F, fit, 'g')
plt.title('Source Spectrum from P Pulse, DC=%e m/Hz, fc=%4.1f Hz' \ plt.loglog([self.fc, self.fc], [self.w0/100, self.w0], 'g')
plt.title('Source Spectrum from P Pulse, w0=%e m/Hz, fc=%6.2f Hz' \
% (self.w0, self.fc)) % (self.w0, self.fc))
plt.xlabel('Frequency [Hz]') plt.xlabel('Frequency [Hz]')
plt.ylabel('Amplitude [m/Hz]') plt.ylabel('Amplitude [m/Hz]')
@ -233,3 +237,92 @@ def synthsourcespec(f, omega0, fcorner):
return ssp return ssp
def fitSourceModel(f, S, fc0, iplot):
'''
Calculates synthetic source spectrum by varying corner frequency fc.
Returns best approximated plateau omega0 and corner frequency, i.e. with least
common standard deviations.
:param: f, frequencies
:type: array
:param: S, observed source spectrum
:type: array
:param: fc0, initial corner frequency
:type: float
'''
w0 = []
stdw0 = []
fc = []
stdfc = []
STD = []
# get window around initial corner frequency for trials
fcstopl = fc0 - max(1, len(f) / 10)
il = np.argmin(abs(f-fcstopl))
fcstopl = f[il]
fcstopr = fc0 + min(len(f), len(f) /10)
ir = np.argmin(abs(f-fcstopr))
fcstopr = f[ir]
iF = np.where((f >= fcstopl) & (f <= fcstopr))
# vary corner frequency around initial point
for i in range(il, ir):
FC = f[i]
indexdc = np.where((f > 0 ) & (f <= FC))
dc = np.mean(S[indexdc])
stddc = np.std(dc - S[indexdc])
w0.append(dc)
stdw0.append(stddc)
fc.append(FC)
# slope
indexfc = np.where((f >= FC) & (f <= fcstopr))
yi = dc/(1+(f[indexfc]/FC)**2)
stdFC = np.std(yi - S[indexfc])
stdfc.append(stdFC)
STD.append(stddc + stdFC)
# get best found w0 anf fc from minimum
fc = fc[np.argmin(STD)]
w0 = w0[np.argmin(STD)]
print("fitSourceModel: best fc: %fHz, best w0: %e m/Hz" \
% (fc, w0))
if iplot > 1:
plt.figure(iplot)
plt.loglog(f, S, 'k')
plt.loglog([f[0], fc], [w0, w0], 'g')
plt.loglog([fc, fc], [w0/100, w0], 'g')
plt.title('Calculated Source Spectrum, Omega0=%e m/Hz, fc=%6.2f Hz' \
% (w0, fc))
plt.xlabel('Frequency [Hz]')
plt.ylabel('Amplitude [m/Hz]')
plt.grid()
plt.figure(iplot+1)
plt.subplot(311)
plt.plot(f[il:ir], STD,'*')
plt.title('Common Standard Deviations')
plt.xticks([])
plt.subplot(312)
plt.plot(f[il:ir], stdw0,'*')
plt.title('Standard Deviations of w0-Values')
plt.xticks([])
plt.subplot(313)
plt.plot(f[il:ir],stdfc,'*')
plt.title('Standard Deviations of Corner Frequencies')
plt.xlabel('Corner Frequencies [Hz]')
plt.show()
raw_input()
plt.close()
return w0, fc