function getSNR re-implemented in order to allow SNR calculation for stream object with more than one trace; the resulting SNR is the maximum SNR found over all traces in the stream object
This commit is contained in:
parent
0fcd6fab9d
commit
9aa8a5bf13
@ -301,48 +301,71 @@ def crossings_nonzero_all(data):
|
|||||||
return ((pos[:-1] & npos[1:]) | (npos[:-1] & pos[1:])).nonzero()[0]
|
return ((pos[:-1] & npos[1:]) | (npos[:-1] & pos[1:])).nonzero()[0]
|
||||||
|
|
||||||
|
|
||||||
def getSNR(X, TSNR, t1):
|
def getSNR(st, TSNR, t0):
|
||||||
'''
|
"""
|
||||||
Function to calculate SNR of certain part of seismogram relative to
|
returns the maximum signal to noise ratio SNR (also in dB) and the
|
||||||
given time (onset) out of given noise and signal windows. A safety gap
|
corresponding noise level for a given data stream ST ,initial time T0 and
|
||||||
between noise and signal part can be set. Returns SNR and SNR [dB] and
|
time window parameter tuple TSNR
|
||||||
noiselevel.
|
|
||||||
|
|
||||||
:param: X, time series (seismogram)
|
:param: st, time series (seismogram)
|
||||||
:type: `~obspy.core.stream.Stream`
|
:type: `~obspy.core.stream.Stream`
|
||||||
|
:param: TSNR, length of time windows [s] around t0 (onset) used to determine
|
||||||
:param: TSNR, length of time windows [s] around t1 (onset) used to determine SNR
|
SNR
|
||||||
:type: tuple (T_noise, T_gap, T_signal)
|
:type: tuple (T_noise, T_gap, T_signal)
|
||||||
|
:param: t0, initial time (onset) from which noise and signal windows are calculated
|
||||||
:param: t1, initial time (onset) from which noise and signal windows are calculated
|
|
||||||
:type: float
|
:type: float
|
||||||
'''
|
:return: SNR, SNRdB, noiselevel
|
||||||
|
|
||||||
assert isinstance(X, Stream), "%s is not a stream object" % str(X)
|
..examples:
|
||||||
|
|
||||||
x = X[0].data
|
>>> from obspy.core import read
|
||||||
t = np.arange(0, X[0].stats.npts / X[0].stats.sampling_rate,
|
>>> st = read()
|
||||||
X[0].stats.delta)
|
>>> result = getSNR(st, (6., .3, 3.), 4.67)
|
||||||
|
>>> print result
|
||||||
|
(5.1267717641040758, 7.0984398375666435, 132.89370192191919)
|
||||||
|
>>> result = getSNR(st, (8., .2, 5.), 4.67)
|
||||||
|
>>> print result
|
||||||
|
(4.645441835797703, 6.6702702677384131, 133.03562794665109)
|
||||||
|
"""
|
||||||
|
|
||||||
# get noise window
|
assert isinstance(st, Stream), "%s is not a stream object" % str(st)
|
||||||
inoise = getnoisewin(t, t1, TSNR[0], TSNR[1])
|
|
||||||
|
|
||||||
# get signal window
|
SNR = None
|
||||||
isignal = getsignalwin(t, t1, TSNR[2])
|
noiselevel = None
|
||||||
if np.size(inoise) < 1:
|
|
||||||
print 'getSNR: Empty array inoise, check noise window!'
|
|
||||||
return
|
|
||||||
elif np.size(isignal) < 1:
|
|
||||||
print 'getSNR: Empty array isignal, check signal window!'
|
|
||||||
return
|
|
||||||
|
|
||||||
# demean over entire waveform
|
for tr in st:
|
||||||
x = x - np.mean(x[inoise])
|
x = tr.data
|
||||||
|
t = np.arange(0, tr.stats.npts / tr.stats.sampling_rate,
|
||||||
|
tr.stats.delta)
|
||||||
|
|
||||||
|
# get noise window
|
||||||
|
inoise = getnoisewin(t, t0, TSNR[0], TSNR[1])
|
||||||
|
|
||||||
|
# get signal window
|
||||||
|
isignal = getsignalwin(t, t0, TSNR[2])
|
||||||
|
if np.size(inoise) < 1:
|
||||||
|
print 'getSNR: Empty array inoise, check noise window!'
|
||||||
|
return
|
||||||
|
elif np.size(isignal) < 1:
|
||||||
|
print 'getSNR: Empty array isignal, check signal window!'
|
||||||
|
return
|
||||||
|
|
||||||
|
# demean over entire waveform
|
||||||
|
x = x - np.mean(x[inoise])
|
||||||
|
|
||||||
|
# calculate ratios
|
||||||
|
new_noiselevel = np.sqrt(np.mean(np.square(x[inoise])))
|
||||||
|
signallevel = np.sqrt(np.mean(np.square(x[isignal])))
|
||||||
|
newSNR = signallevel / new_noiselevel
|
||||||
|
if not SNR or newSNR > SNR:
|
||||||
|
SNR = newSNR
|
||||||
|
noiselevel = new_noiselevel
|
||||||
|
|
||||||
|
if not SNR or not noiselevel:
|
||||||
|
raise ValueError('signal to noise ratio could not be calculated:\n'
|
||||||
|
'noiselevel: {0}\n'
|
||||||
|
'SNR: {1}'.format(noiselevel, SNR))
|
||||||
|
|
||||||
# calculate ratios
|
|
||||||
noiselevel = np.sqrt(np.mean(np.square(x[inoise])))
|
|
||||||
signallevel = np.sqrt(np.mean(np.square(x[isignal])))
|
|
||||||
SNR = signallevel / noiselevel
|
|
||||||
SNRdB = 10 * np.log10(SNR)
|
SNRdB = 10 * np.log10(SNR)
|
||||||
|
|
||||||
return SNR, SNRdB, noiselevel
|
return SNR, SNRdB, noiselevel
|
||||||
|
Loading…
Reference in New Issue
Block a user