function getSNR re-implemented in order to allow SNR calculation for stream object with more than one trace; the resulting SNR is the maximum SNR found over all traces in the stream object

This commit is contained in:
Sebastian Wehling-Benatelli 2015-06-29 16:16:59 +02:00
parent 0fcd6fab9d
commit 9aa8a5bf13

View File

@ -301,48 +301,71 @@ def crossings_nonzero_all(data):
return ((pos[:-1] & npos[1:]) | (npos[:-1] & pos[1:])).nonzero()[0]
def getSNR(X, TSNR, t1):
'''
Function to calculate SNR of certain part of seismogram relative to
given time (onset) out of given noise and signal windows. A safety gap
between noise and signal part can be set. Returns SNR and SNR [dB] and
noiselevel.
def getSNR(st, TSNR, t0):
"""
returns the maximum signal to noise ratio SNR (also in dB) and the
corresponding noise level for a given data stream ST ,initial time T0 and
time window parameter tuple TSNR
:param: X, time series (seismogram)
:param: st, time series (seismogram)
:type: `~obspy.core.stream.Stream`
:param: TSNR, length of time windows [s] around t1 (onset) used to determine SNR
:param: TSNR, length of time windows [s] around t0 (onset) used to determine
SNR
:type: tuple (T_noise, T_gap, T_signal)
:param: t1, initial time (onset) from which noise and signal windows are calculated
:param: t0, initial time (onset) from which noise and signal windows are calculated
:type: float
'''
:return: SNR, SNRdB, noiselevel
assert isinstance(X, Stream), "%s is not a stream object" % str(X)
..examples:
x = X[0].data
t = np.arange(0, X[0].stats.npts / X[0].stats.sampling_rate,
X[0].stats.delta)
>>> from obspy.core import read
>>> st = read()
>>> result = getSNR(st, (6., .3, 3.), 4.67)
>>> print result
(5.1267717641040758, 7.0984398375666435, 132.89370192191919)
>>> result = getSNR(st, (8., .2, 5.), 4.67)
>>> print result
(4.645441835797703, 6.6702702677384131, 133.03562794665109)
"""
# get noise window
inoise = getnoisewin(t, t1, TSNR[0], TSNR[1])
assert isinstance(st, Stream), "%s is not a stream object" % str(st)
# get signal window
isignal = getsignalwin(t, t1, TSNR[2])
if np.size(inoise) < 1:
print 'getSNR: Empty array inoise, check noise window!'
return
elif np.size(isignal) < 1:
print 'getSNR: Empty array isignal, check signal window!'
return
SNR = None
noiselevel = None
# demean over entire waveform
x = x - np.mean(x[inoise])
for tr in st:
x = tr.data
t = np.arange(0, tr.stats.npts / tr.stats.sampling_rate,
tr.stats.delta)
# get noise window
inoise = getnoisewin(t, t0, TSNR[0], TSNR[1])
# get signal window
isignal = getsignalwin(t, t0, TSNR[2])
if np.size(inoise) < 1:
print 'getSNR: Empty array inoise, check noise window!'
return
elif np.size(isignal) < 1:
print 'getSNR: Empty array isignal, check signal window!'
return
# demean over entire waveform
x = x - np.mean(x[inoise])
# calculate ratios
new_noiselevel = np.sqrt(np.mean(np.square(x[inoise])))
signallevel = np.sqrt(np.mean(np.square(x[isignal])))
newSNR = signallevel / new_noiselevel
if not SNR or newSNR > SNR:
SNR = newSNR
noiselevel = new_noiselevel
if not SNR or not noiselevel:
raise ValueError('signal to noise ratio could not be calculated:\n'
'noiselevel: {0}\n'
'SNR: {1}'.format(noiselevel, SNR))
# calculate ratios
noiselevel = np.sqrt(np.mean(np.square(x[inoise])))
signallevel = np.sqrt(np.mean(np.square(x[isignal])))
SNR = signallevel / noiselevel
SNRdB = 10 * np.log10(SNR)
return SNR, SNRdB, noiselevel