Merge branch 'develop' of ariadne.geophysik.ruhr-uni-bochum.de:/data/git/pylot into develop

This commit is contained in:
Marcel Paffrath 2017-08-15 14:15:18 +02:00
commit a23af62d23
5 changed files with 18 additions and 17 deletions

View File

@ -405,13 +405,13 @@ def autoPyLoT(input_dict=None, parameter=None, inputfile=None, fnames=None, even
# write phase files for various location # write phase files for various location
# and fault mechanism calculation routines # and fault mechanism calculation routines
# ObsPy event object # ObsPy event object
data.applyEVTData(picks)
if evt is not None: if evt is not None:
event_id = eventpath.split('/')[-1] event_id = eventpath.split('/')[-1]
evt.resource_id = ResourceIdentifier('smi:local/' + event_id) evt.resource_id = ResourceIdentifier('smi:local/' + event_id)
data.applyEVTData(evt, 'event') data.applyEVTData(evt, 'event')
data.applyEVTData(picks)
if savexml: if savexml:
if not savepath: if savepath == 'None':
savepath = eventpath savepath = eventpath
fnqml = '%s/PyLoT_%s' % (savepath, evID) fnqml = '%s/PyLoT_%s' % (savepath, evID)
data.exportEvent(fnqml, fnext='.xml', fcheck=['auto', 'magnitude', 'origin']) data.exportEvent(fnqml, fnext='.xml', fcheck=['auto', 'magnitude', 'origin'])

View File

@ -582,8 +582,6 @@ def writephases(arrivals, fformat, filename, parameter, eventinfo=None):
fid = open("%s" % filename, 'w') fid = open("%s" % filename, 'w')
# write header # write header
fid.write('%s, event %s \n' % (parameter.get('database'), parameter.get('eventID'))) fid.write('%s, event %s \n' % (parameter.get('database'), parameter.get('eventID')))
errP = parameter.get('timeerrorsP')
errS = parameter.get('timeerrorsS')
for key in arrivals: for key in arrivals:
# P onsets # P onsets
if arrivals[key].has_key('P'): if arrivals[key].has_key('P'):

View File

@ -450,16 +450,19 @@ def autopickstation(wfstream, pickparam, verbose=False,
[SNRP, SNRPdB, Pnoiselevel] = getSNR(z_copy, tsnrz, mpickP) [SNRP, SNRPdB, Pnoiselevel] = getSNR(z_copy, tsnrz, mpickP)
# weight P-onset using symmetric error # weight P-onset using symmetric error
if Perror <= timeerrorsP[0]: if Perror == None:
Pweight = 0
elif timeerrorsP[0] < Perror <= timeerrorsP[1]:
Pweight = 1
elif timeerrorsP[1] < Perror <= timeerrorsP[2]:
Pweight = 2
elif timeerrorsP[2] < Perror <= timeerrorsP[3]:
Pweight = 3
elif Perror > timeerrorsP[3]:
Pweight = 4 Pweight = 4
else:
if Perror <= timeerrorsP[0]:
Pweight = 0
elif timeerrorsP[0] < Perror <= timeerrorsP[1]:
Pweight = 1
elif timeerrorsP[1] < Perror <= timeerrorsP[2]:
Pweight = 2
elif timeerrorsP[2] < Perror <= timeerrorsP[3]:
Pweight = 3
elif Perror > timeerrorsP[3]:
Pweight = 4
############################################################## ##############################################################
# get first motion of P onset # get first motion of P onset

View File

@ -229,14 +229,14 @@ class AICPicker(AutoPicker):
ii = min([isignal[len(isignal) - 1], len(self.Tcf)]) ii = min([isignal[len(isignal) - 1], len(self.Tcf)])
isignal = isignal[0:ii] isignal = isignal[0:ii]
try: try:
aic[isignal] self.Data[0].data[isignal]
except IndexError as e: except IndexError as e:
msg = "Time series out of bounds! {}".format(e) msg = "Time series out of bounds! {}".format(e)
print(msg) print(msg)
return return
# calculate SNR from CF # calculate SNR from CF
self.SNR = max(abs(aic[isignal] - np.mean(aic[isignal]))) / \ self.SNR = max(abs(self.Data[0].data[isignal] - np.mean(self.Data[0].data[isignal]))) / \
max(abs(aic[inoise] - np.mean(aic[inoise]))) max(abs(self.Data[0].data[inoise] - np.mean(self.Data[0].data[inoise])))
# calculate slope from CF after initial pick # calculate slope from CF after initial pick
# get slope window # get slope window
tslope = self.TSNR[3] # slope determination window tslope = self.TSNR[3] # slope determination window

View File

@ -1036,7 +1036,7 @@ def checkZ4S(X, pick, zfac, checkwin, iplot, fig=None):
rmse = RMS(edat[0].data[isignale]) rmse = RMS(edat[0].data[isignale])
# calculate threshold # calculate threshold
minsiglevel = (rmsn + rmse) * zfac minsiglevel = (rmsn + rmse) / 2 * zfac
# vertical P-coda level must exceed horizontal P-coda level # vertical P-coda level must exceed horizontal P-coda level
# zfac times encodalevel # zfac times encodalevel