Merge branch 'develop' of 134.147.164.251:/data/git/pylot into develop
This commit is contained in:
commit
a46fb88282
18
autoPyLoT.py
18
autoPyLoT.py
@ -12,7 +12,7 @@ from pylot.core.util import _getVersionString
|
||||
from pylot.core.read import Data, AutoPickParameter
|
||||
from pylot.core.pick.run_autopicking import run_autopicking
|
||||
from pylot.core.util.structure import DATASTRUCTURE
|
||||
from pylot.core.pick.utils import wadaticheck
|
||||
from pylot.core.pick.utils import wadaticheck, checkPonsets
|
||||
import pdb
|
||||
__version__ = _getVersionString()
|
||||
|
||||
@ -51,6 +51,7 @@ def autoPyLoT(inputfile):
|
||||
# get some parameters for quality control from
|
||||
# parameter input file (usually autoPyLoT.in).
|
||||
wdttolerance = parameter.getParam('wdttolerance')
|
||||
mdttolerance = parameter.getParam('mdttolerance')
|
||||
iplot = parameter.getParam('iplot')
|
||||
|
||||
data = Data()
|
||||
@ -105,10 +106,11 @@ def autoPyLoT(inputfile):
|
||||
allonsets[station] = picks
|
||||
|
||||
# quality control
|
||||
# jackknife on P onset times
|
||||
# median check and jackknife on P onset times
|
||||
checkedonsetsjk = checkPonsets(allonsets, mdttolerance, iplot)
|
||||
# check S-P times (Wadati)
|
||||
checkedonsets = wadaticheck(allonsets, wdttolerance, iplot)
|
||||
# jackknife on S onset times
|
||||
checkedonsetwd = wadaticheck(checkedonsetsjk, wdttolerance, iplot)
|
||||
|
||||
print '------------------------------------------'
|
||||
print '-----Finished event %s!-----' % event
|
||||
print '------------------------------------------'
|
||||
@ -128,6 +130,7 @@ def autoPyLoT(inputfile):
|
||||
station = wfdat[0].stats.station
|
||||
allonsets = {station: picks}
|
||||
for i in range(len(wfdat)):
|
||||
#for i in range(0,10):
|
||||
stationID = wfdat[i].stats.station
|
||||
#check if station has already been processed
|
||||
if stationID not in procstats:
|
||||
@ -143,10 +146,11 @@ def autoPyLoT(inputfile):
|
||||
allonsets[station] = picks
|
||||
|
||||
# quality control
|
||||
#jackknife on P onset times
|
||||
# median check and jackknife on P onset times
|
||||
checkedonsetsjk = checkPonsets(allonsets, mdttolerance, iplot)
|
||||
# check S-P times (Wadati)
|
||||
checkedonsets = wadaticheck(allonsets, wdttolerance, iplot)
|
||||
#jackknife on S onset times
|
||||
checkedonsetswd = wadaticheck(checkedonsetsjk, wdttolerance, iplot)
|
||||
|
||||
print '------------------------------------------'
|
||||
print '-------Finished event %s!-------' % parameter.getParam('eventID')
|
||||
print '------------------------------------------'
|
||||
|
@ -90,10 +90,8 @@ ARH #algoS# %choose algorithm for S-onset
|
||||
70 #minpercent# %required percentage of samples higher than threshold
|
||||
#check for spuriously picked S-onsets#
|
||||
3.0 #zfac# %P-amplitude must exceed zfac times RMS-S amplitude
|
||||
#jackknife-processing for P-picks#
|
||||
3 #thresholdweight#%minimum required weight of picks
|
||||
3 #dttolerance# %maximum allowed deviation of P picks from median [s]
|
||||
4 #minstats# %minimum number of stations with reliable P picks
|
||||
#check statistics of P onsets#
|
||||
2.5 #mdttolerance# %maximum allowed deviation of P picks from median [s]
|
||||
#wadati check#
|
||||
0.8 #wdttolerance# %maximum allowed deviation from Wadati-diagram
|
||||
0.5 #wdttolerance# %maximum allowed deviation from Wadati-diagram
|
||||
|
||||
|
@ -36,7 +36,7 @@ HYPOSAT #locrt# %location routine used ("HYPO
|
||||
3 10 #bpz1# %lower/upper corner freq. of first band pass filter Z-comp. [Hz]
|
||||
3 12 #bpz2# %lower/upper corner freq. of second band pass filter Z-comp. [Hz]
|
||||
3 8 #bph1# %lower/upper corner freq. of first band pass filter H-comp. [Hz]
|
||||
3 6 #bph2# %lower/upper corner freq. of second band pass filter z-comp. [Hz]
|
||||
3 6 #bph2# %lower/upper corner freq. of second band pass filter H-comp. [Hz]
|
||||
#special settings for calculating CF#
|
||||
%!!Be careful when editing the following!!
|
||||
#Z-component#
|
||||
@ -49,10 +49,10 @@ HOS #algoP# %choose algorithm for P-onset
|
||||
0.6 #tdet2z# %for AR-picker, length of AR determination window [s] for Z-component, 2nd pick
|
||||
0.2 #tpred2z# %for AR-picker, length of AR prediction window [s] for Z-component, 2nd pick
|
||||
0.001 #addnoise# %add noise to seismogram for stable AR prediction
|
||||
4 0.2 2.0 1.5 #tsnrz# %for HOS/AR, window lengths for SNR-and slope estimation [tnoise,tsafetey,tsignal,tslope] [s]
|
||||
4 #pickwinP# %for initial AIC and refined pick, length of P-pick window [s]
|
||||
5 0.2 3.0 1.5 #tsnrz# %for HOS/AR, window lengths for SNR-and slope estimation [tnoise,tsafetey,tsignal,tslope] [s]
|
||||
3 #pickwinP# %for initial AIC and refined pick, length of P-pick window [s]
|
||||
8 #Precalcwin# %for HOS/AR, window length [s] for recalculation of CF (relative to 1st pick)
|
||||
3.0 #aictsmooth# %for HOS/AR, take average of samples for smoothing of AIC-function [s]
|
||||
1.0 #aictsmooth# %for HOS/AR, take average of samples for smoothing of AIC-function [s]
|
||||
0.3 #tsmoothP# %for HOS/AR, take average of samples for smoothing CF [s]
|
||||
0.3 #ausP# %for HOS/AR, artificial uplift of samples (aus) of CF (P)
|
||||
1.3 #nfacP# %for HOS/AR, noise factor for noise level determination (P)
|
||||
@ -88,10 +88,8 @@ ARH #algoS# %choose algorithm for S-onset
|
||||
60 #minpercent# %required percentage of samples higher than threshold
|
||||
#check for spuriously picked S-onsets#
|
||||
3.0 #zfac# %P-amplitude must exceed zfac times RMS-S amplitude
|
||||
#jackknife-processing for P-picks#
|
||||
3 #thresholdweight#%minimum required weight of picks
|
||||
3 #dttolerance# %maximum allowed deviation of P picks from median [s]
|
||||
4 #minstats# %minimum number of stations with reliable P picks
|
||||
#check statistics of P onsets#
|
||||
35 #mdttolerance# %maximum allowed deviation of P picks from median [s]
|
||||
#wadati check#
|
||||
1.5 #wdttolerance# %maximum allowed deviation from Wadati-diagram
|
||||
2.0 #wdttolerance# %maximum allowed deviation from Wadati-diagram
|
||||
|
||||
|
@ -1 +1 @@
|
||||
694a-dirty
|
||||
1abc-dirty
|
||||
|
@ -13,7 +13,7 @@ import scipy as sc
|
||||
import matplotlib.pyplot as plt
|
||||
from obspy.core import Stream, UTCDateTime
|
||||
import warnings
|
||||
|
||||
import pdb
|
||||
def earllatepicker(X, nfac, TSNR, Pick1, iplot=None):
|
||||
'''
|
||||
Function to derive earliest and latest possible pick after Diehl & Kissling (2009)
|
||||
@ -155,7 +155,7 @@ def fmpicker(Xraw, Xfilt, pickwin, Pick, iplot=None):
|
||||
xraw[ipick] = xraw[ipick] - np.mean(xraw[ipick])
|
||||
xfilt[ipick] = xfilt[ipick] - np.mean(xfilt[ipick])
|
||||
|
||||
# get next zero crossing after most likely pick
|
||||
# get zero crossings after most likely pick
|
||||
# initial onset is assumed to be the first zero crossing
|
||||
# first from unfiltered trace
|
||||
zc1 = []
|
||||
@ -199,7 +199,7 @@ def fmpicker(Xraw, Xfilt, pickwin, Pick, iplot=None):
|
||||
datafit1 = np.polyval(P1, xslope1)
|
||||
|
||||
# now using filterd trace
|
||||
# next zero crossing after most likely pick
|
||||
# next zero crossings after most likely pick
|
||||
zc2 = []
|
||||
zc2.append(Pick)
|
||||
index2 = []
|
||||
@ -492,7 +492,7 @@ def wadaticheck(pickdic, dttolerance, iplot):
|
||||
wddiff = abs(pickdic[key]['SPt'] - wdfit[ii])
|
||||
ii += 1
|
||||
# check, if deviation is larger than adjusted
|
||||
if wddiff >= dttolerance:
|
||||
if wddiff > dttolerance:
|
||||
# mark onset and downgrade S-weight to 9
|
||||
# (not used anymore)
|
||||
marker = 'badWadatiCheck'
|
||||
@ -526,7 +526,7 @@ def wadaticheck(pickdic, dttolerance, iplot):
|
||||
print 'wadaticheck: Not enough S-P times available for reliable regression!'
|
||||
print 'Skip wadati check!'
|
||||
wfitflag = 1
|
||||
|
||||
iplot=2
|
||||
# plot results
|
||||
if iplot > 1:
|
||||
plt.figure(iplot)
|
||||
@ -615,11 +615,13 @@ def checksignallength(X, pick, TSNR, minsiglength, nfac, minpercent, iplot):
|
||||
if iplot == 2:
|
||||
plt.figure(iplot)
|
||||
p1, = plt.plot(t,x, 'k')
|
||||
p2, = plt.plot(t[inoise], e[inoise], 'c')
|
||||
p3, = plt.plot(t[isignal],e[isignal], 'r')
|
||||
p2, = plt.plot(t[inoise], e[inoise])
|
||||
p3, = plt.plot(t[isignal],e[isignal], 'r')
|
||||
p4, = plt.plot([t[isignal[0]], t[isignal[len(isignal)-1]]], \
|
||||
[minsiglevel, minsiglevel], 'g')
|
||||
p5, = plt.plot([pick, pick], [min(x), max(x)], 'c')
|
||||
p5, = plt.plot([pick, pick], [min(x), max(x)], 'b', linewidth=2)
|
||||
plt.legend([p1, p2, p3, p4, p5], ['Data', 'Envelope Noise Window', \
|
||||
'Envelope Signal Window', 'Minimum Signal Level', \
|
||||
'Onset'], loc='best')
|
||||
@ -633,6 +635,162 @@ def checksignallength(X, pick, TSNR, minsiglength, nfac, minpercent, iplot):
|
||||
|
||||
return returnflag
|
||||
|
||||
|
||||
def checkPonsets(pickdic, dttolerance, iplot):
|
||||
'''
|
||||
Function to check statistics of P-onset times: Control deviation from
|
||||
median (maximum adjusted deviation = dttolerance) and apply pseudo-
|
||||
bootstrapping jackknife.
|
||||
|
||||
: param: pickdic, dictionary containing picks and quality parameters
|
||||
: type: dictionary
|
||||
|
||||
: param: dttolerance, maximum adjusted deviation of P-onset time from
|
||||
median of all P onsets
|
||||
: type: float
|
||||
|
||||
: param: iplot, if iplot > 1, Wadati diagram is shown
|
||||
: type: int
|
||||
'''
|
||||
|
||||
checkedonsets = pickdic
|
||||
|
||||
# search for good quality P picks
|
||||
Ppicks = []
|
||||
stations = []
|
||||
for key in pickdic:
|
||||
if pickdic[key]['P']['weight'] < 4:
|
||||
# add P onsets to list
|
||||
UTCPpick = UTCDateTime(pickdic[key]['P']['mpp'])
|
||||
Ppicks.append(UTCPpick.timestamp)
|
||||
stations.append(key)
|
||||
|
||||
# apply jackknife bootstrapping on variance of P onsets
|
||||
print 'checkPonsets: Apply jackknife bootstrapping on P-onset times ...'
|
||||
[xjack,PHI_pseudo,PHI_sub] = jackknife(Ppicks, 'VAR', 1)
|
||||
# get pseudo variances smaller than average variances
|
||||
# these picks passed jackknife test
|
||||
ij = np.where(PHI_pseudo <= xjack)
|
||||
# these picks did not pass jackknife test
|
||||
badjk = np.where(PHI_pseudo > xjack)
|
||||
badjkstations = np.array(stations)[badjk]
|
||||
|
||||
# calculate median from these picks
|
||||
pmedian = np.median(np.array(Ppicks)[ij])
|
||||
# find picks that deviate less than dttolerance from median
|
||||
ii = np.where(abs(np.array(Ppicks)[ij] - pmedian) <= dttolerance)
|
||||
jj = np.where(abs(np.array(Ppicks)[ij] - pmedian) > dttolerance)
|
||||
igood = ij[0][ii]
|
||||
ibad = ij[0][jj]
|
||||
goodstations = np.array(stations)[igood]
|
||||
badstations = np.array(stations)[ibad]
|
||||
|
||||
print 'checkPonset: Skipped %d P onsets out of %d' % (len(badstations) \
|
||||
+ len(badjkstations), len(stations))
|
||||
|
||||
goodmarker = 'goodPonsetcheck'
|
||||
badmarker = 'badPonsetcheck'
|
||||
badjkmarker = 'badjkcheck'
|
||||
for i in range(0, len(goodstations)):
|
||||
# mark P onset as checked and keep P weight
|
||||
pickdic[goodstations[i]]['P']['marked'] = goodmarker
|
||||
for i in range(0, len(badstations)):
|
||||
# mark P onset and downgrade P weight to 9
|
||||
# (not used anymore)
|
||||
pickdic[badstations[i]]['P']['marked'] = badmarker
|
||||
pickdic[badstations[i]]['P']['weight'] = 9
|
||||
for i in range(0, len(badjkstations)):
|
||||
# mark P onset and downgrade P weight to 9
|
||||
# (not used anymore)
|
||||
pickdic[badjkstations[i]]['P']['marked'] = badjkmarker
|
||||
pickdic[badjkstations[i]]['P']['weight'] = 9
|
||||
|
||||
checkedonsets = pickdic
|
||||
|
||||
iplot = 2
|
||||
if iplot > 1:
|
||||
p1, = plt.plot(np.arange(0, len(Ppicks)), Ppicks, 'r+', markersize=14)
|
||||
p2, = plt.plot(igood, np.array(Ppicks)[igood], 'g*', markersize=14)
|
||||
p3, = plt.plot([0, len(Ppicks) - 1], [pmedian, pmedian], 'g', \
|
||||
linewidth=2)
|
||||
for i in range(0, len(Ppicks)):
|
||||
plt.text(i, Ppicks[i] + 0.2, stations[i])
|
||||
|
||||
plt.xlabel('Number of P Picks')
|
||||
plt.ylabel('Onset Time [s] from 1.1.1970')
|
||||
plt.legend([p1, p2, p3], ['Skipped P Picks', 'Good P Picks', 'Median'], \
|
||||
loc='best')
|
||||
plt.title('Check P Onsets')
|
||||
plt.show()
|
||||
raw_input()
|
||||
|
||||
return checkedonsets
|
||||
|
||||
def jackknife(X, phi, h):
|
||||
'''
|
||||
Function to calculate the Jackknife Estimator for a given quantity,
|
||||
special type of boot strapping. Returns the jackknife estimator PHI_jack
|
||||
the pseudo values PHI_pseudo and the subgroup parameters PHI_sub.
|
||||
|
||||
: param: X, given quantity
|
||||
: type: list
|
||||
|
||||
: param: phi, chosen estimator, choose between:
|
||||
"MED" for median
|
||||
"MEA" for arithmetic mean
|
||||
"VAR" for variance
|
||||
: type: string
|
||||
|
||||
: param: h, size of subgroups, optinal, default = 1
|
||||
: type: integer
|
||||
'''
|
||||
|
||||
PHI_jack = None
|
||||
PHI_pseudo = None
|
||||
PHI_sub = None
|
||||
|
||||
# determine number of subgroups
|
||||
g = len(X) / h
|
||||
|
||||
if type(g) is not int:
|
||||
print 'jackknife: Cannot divide quantity X in equal sized subgroups!'
|
||||
print 'Choose another size for subgroups!'
|
||||
return PHI_jack, PHI_pseudo, PHI_sub
|
||||
else:
|
||||
# estimator of undisturbed spot check
|
||||
if phi == 'MEA':
|
||||
phi_sc = np.mean(X)
|
||||
elif phi == 'VAR':
|
||||
phi_sc = np.var(X)
|
||||
elif phi == 'MED':
|
||||
phi_sc = np.median(X)
|
||||
|
||||
# estimators of subgroups
|
||||
PHI_pseudo = []
|
||||
PHI_sub = []
|
||||
for i in range(0, g - 1):
|
||||
# subgroup i, remove i-th sample
|
||||
xx = X[:]
|
||||
del xx[i]
|
||||
# calculate estimators of disturbed spot check
|
||||
if phi == 'MEA':
|
||||
phi_sub = np.mean(xx)
|
||||
elif phi == 'VAR':
|
||||
phi_sub = np.var(xx)
|
||||
elif phi == 'MED':
|
||||
phi_sub = np.median(xx)
|
||||
|
||||
PHI_sub.append(phi_sub)
|
||||
# pseudo values
|
||||
phi_pseudo = g * phi_sc - ((g - 1) * phi_sub)
|
||||
PHI_pseudo.append(phi_pseudo)
|
||||
# jackknife estimator
|
||||
PHI_jack = np.mean(PHI_pseudo)
|
||||
|
||||
return PHI_jack, PHI_pseudo, PHI_sub
|
||||
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
import doctest
|
||||
doctest.testmod()
|
||||
|
Loading…
Reference in New Issue
Block a user