[task] implementing new methods for pdf comparison.
This commit is contained in:
parent
8714616d1b
commit
a8b7eff561
@ -1 +1 @@
|
||||
7c5a-dirty
|
||||
8714-dirty
|
||||
|
@ -180,7 +180,7 @@ def picksdict_from_picks(evt):
|
||||
try:
|
||||
onsets = picks[station]
|
||||
except KeyError as e:
|
||||
print(e)
|
||||
#print(e)
|
||||
onsets = {}
|
||||
mpp = pick.time
|
||||
spe = pick.time_errors.uncertainty
|
||||
|
@ -2,9 +2,9 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
import copy
|
||||
|
||||
import os
|
||||
import numpy as np
|
||||
|
||||
import glob
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
from obspy import read_events
|
||||
@ -336,3 +336,79 @@ class PDFDictionary(object):
|
||||
plt.setp([a.get_yticklabels() for a in axarr[:, 0]], visible=False)
|
||||
|
||||
return fig
|
||||
|
||||
|
||||
class PDFstatistics(object):
|
||||
def __init__(self, directory):
|
||||
self.directory = directory
|
||||
self.stations = {}
|
||||
self.p_std = {}
|
||||
self.s_std = {}
|
||||
self.makeDirlist()
|
||||
self.getData()
|
||||
self.getStatistics()
|
||||
#self.showData()
|
||||
|
||||
def makeDirlist(self, fn_pattern='*'):
|
||||
self.dirlist = glob.glob1(self.directory, fn_pattern)
|
||||
#print self.dirlist
|
||||
self.evtdict = {}
|
||||
for rd in self.dirlist:
|
||||
#print rd
|
||||
self.evtdict[rd] = glob.glob1((os.path.join(self.directory, rd)), '*.xml')
|
||||
#print rd, self.evtdict[rd]
|
||||
|
||||
def getData(self):
|
||||
arraylen = 0
|
||||
for dir in self.dirlist:
|
||||
for evt in self.evtdict[dir]:
|
||||
self.stations[evt] = []
|
||||
self.p_std[evt] = []
|
||||
self.s_std[evt] = []
|
||||
self.getPDFDict(dir, evt)
|
||||
for station, pdfs in self.pdfdict.pdf_data.items():
|
||||
#print station, pdfs
|
||||
try:
|
||||
p_std = pdfs['P'].standard_deviation()
|
||||
except KeyError:
|
||||
p_std = 0
|
||||
try:
|
||||
s_std = pdfs['S'].standard_deviation()
|
||||
except KeyError:
|
||||
s_std = 0
|
||||
self.stations[evt].append(station)
|
||||
self.p_std[evt].append(p_std)
|
||||
self.s_std[evt].append(s_std)
|
||||
arraylen += 1
|
||||
self.makeArray(arraylen)
|
||||
|
||||
def makeArray(self, arraylen):
|
||||
index = 0
|
||||
self.p_stdarray = np.zeros(arraylen)
|
||||
self.s_stdarray = np.zeros(arraylen)
|
||||
for evt in self.p_std.keys():
|
||||
for n in range(len(self.p_std[evt])):
|
||||
self.p_stdarray[index] = self.p_std[evt][n]
|
||||
self.s_stdarray[index] = self.s_std[evt][n]
|
||||
index += 1
|
||||
|
||||
def showData(self):
|
||||
#figure(p, s) = plt.pyplot.subplots(2)
|
||||
#p.hist(self.p_stdarray, Bins=100, range=[min(self.p_stdarray),max(self.p_stdarray)/256])
|
||||
#s.hist(self.s_stdarray, Bins=100, range=[min(self.s_stdarray),max(self.s_stdarray)/256])
|
||||
#p.set_title('Histogramm der P-Wellen-Standartabweichung')
|
||||
#s.set_title('Histogramm der S-Wellen-Standartabweichung')
|
||||
# plt.show()
|
||||
pass
|
||||
|
||||
|
||||
def getPDFDict(self, month, evt):
|
||||
self.pdfdict = PDFDictionary.from_quakeml(os.path.join(self.directory,month,evt))
|
||||
|
||||
def getStatistics(self):
|
||||
self.p_mean = self.p_stdarray.mean()
|
||||
self.p_std_std = self.p_stdarray.std()
|
||||
self.p_median = np.median(self.p_stdarray)
|
||||
self.s_mean = self.s_stdarray.mean()
|
||||
self.s_std_std = self.s_stdarray.std()
|
||||
self.s_median = np.median(self.s_stdarray)
|
||||
|
@ -294,6 +294,29 @@ class ProbabilityDensityFunction(object):
|
||||
return None
|
||||
return self.data[find_nearest(self.axis, value)] * self.incr
|
||||
|
||||
def quantile(self, prob_value, eps=0.01):
|
||||
l = self.axis[0]
|
||||
r = self.axis[-1]
|
||||
m = (r - l) / 2
|
||||
diff = prob_value - self.prob_lt_val(m)
|
||||
while abs(diff) > eps:
|
||||
if diff > 0:
|
||||
l = m
|
||||
else:
|
||||
r = m
|
||||
m = (r - l) / 2
|
||||
diff = prob_value - self.prob_lt_val(m)
|
||||
return m
|
||||
|
||||
|
||||
pass
|
||||
|
||||
def quantile_distance(self, prob_value):
|
||||
ql = self.quantile(prob_value)
|
||||
qu = self.quantile(1 - prob_value)
|
||||
|
||||
return qu - ql
|
||||
|
||||
def plot(self, label=None):
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user