Added new function wadaticheck to test certainty of S-onsets using Wadati diagram.
This commit is contained in:
parent
b91f4c9619
commit
aa624c0358
@ -10,7 +10,7 @@
|
|||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
from obspy.core import Stream
|
from obspy.core import Stream, UTCDateTime
|
||||||
|
|
||||||
|
|
||||||
def earllatepicker(X, nfac, TSNR, Pick1, iplot=None):
|
def earllatepicker(X, nfac, TSNR, Pick1, iplot=None):
|
||||||
@ -66,9 +66,7 @@ def earllatepicker(X, nfac, TSNR, Pick1, iplot=None):
|
|||||||
#get earliest possible pick
|
#get earliest possible pick
|
||||||
|
|
||||||
#determine all zero crossings in signal window
|
#determine all zero crossings in signal window
|
||||||
# remove mean from signal window
|
zc = crossings_nonzero_all(x[isignal])
|
||||||
signal = x[isignal] - x[isignal].mean()
|
|
||||||
zc = crossings_nonzero_all(signal)
|
|
||||||
#calculate mean half period T0 of signal as the average of the
|
#calculate mean half period T0 of signal as the average of the
|
||||||
T0 = np.mean(np.diff(zc)) * X[0].stats.delta #this is half wave length!
|
T0 = np.mean(np.diff(zc)) * X[0].stats.delta #this is half wave length!
|
||||||
#T0/4 is assumed as time difference between most likely and earliest possible pick!
|
#T0/4 is assumed as time difference between most likely and earliest possible pick!
|
||||||
@ -161,7 +159,7 @@ def fmpicker(Xraw, Xfilt, pickwin, Pick, iplot=None):
|
|||||||
index1 = []
|
index1 = []
|
||||||
i = 0
|
i = 0
|
||||||
for j in range(ipick[0][1], ipick[0][len(t[ipick]) - 1]):
|
for j in range(ipick[0][1], ipick[0][len(t[ipick]) - 1]):
|
||||||
i += 1
|
i = i + 1
|
||||||
if xraw[j - 1] <= 0 and xraw[j] >= 0:
|
if xraw[j - 1] <= 0 and xraw[j] >= 0:
|
||||||
zc1.append(t[ipick][i])
|
zc1.append(t[ipick][i])
|
||||||
index1.append(i)
|
index1.append(i)
|
||||||
@ -196,7 +194,7 @@ def fmpicker(Xraw, Xfilt, pickwin, Pick, iplot=None):
|
|||||||
index2 = []
|
index2 = []
|
||||||
i = 0
|
i = 0
|
||||||
for j in range(ipick[0][1], ipick[0][len(t[ipick]) - 1]):
|
for j in range(ipick[0][1], ipick[0][len(t[ipick]) - 1]):
|
||||||
i += 1
|
i = i + 1
|
||||||
if xfilt[j - 1] <= 0 and xfilt[j] >= 0:
|
if xfilt[j - 1] <= 0 and xfilt[j] >= 0:
|
||||||
zc2.append(t[ipick][i])
|
zc2.append(t[ipick][i])
|
||||||
index2.append(i)
|
index2.append(i)
|
||||||
@ -382,4 +380,117 @@ def getsignalwin(t, t1, tsignal):
|
|||||||
|
|
||||||
return isignal
|
return isignal
|
||||||
|
|
||||||
|
def wadaticheck(pickdic, dttolerance, iplot):
|
||||||
|
'''
|
||||||
|
Function to calculate Wadati-diagram from given P and S onsets in order
|
||||||
|
to detect S pick outliers. If a certain S-P time deviates from regression
|
||||||
|
of S-P time the S pick is marked and down graded.
|
||||||
|
|
||||||
|
: param: pickdic, dictionary containing picks and quality parameters
|
||||||
|
: type: dictionary
|
||||||
|
|
||||||
|
: param: dttolerance, maximum adjusted deviation of S-P time from
|
||||||
|
S-P time regression
|
||||||
|
: type: float
|
||||||
|
|
||||||
|
: param: iplot, if iplot > 1, Wadati diagram is shown
|
||||||
|
: type: int
|
||||||
|
'''
|
||||||
|
|
||||||
|
checkedonsets = pickdic
|
||||||
|
|
||||||
|
# search for good quality picks and calculate S-P time
|
||||||
|
Ppicks = []
|
||||||
|
Spicks = []
|
||||||
|
SPtimes = []
|
||||||
|
vpvs = []
|
||||||
|
for key in pickdic:
|
||||||
|
if pickdic[key]['P']['weight'] < 4 and pickdic[key]['S']['weight'] < 4:
|
||||||
|
# calculate S-P time
|
||||||
|
spt = UTCDateTime(pickdic[key]['S']['mpp']) - UTCDateTime(pickdic[key]['P']['mpp'])
|
||||||
|
# add S-P time to dictionary
|
||||||
|
pickdic[key]['SPt'] = spt
|
||||||
|
# add P onsets and corresponding S-P times to list
|
||||||
|
UTCPpick = UTCDateTime(pickdic[key]['P']['mpp']) - UTCDateTime(1970,1,1,0,0,0)
|
||||||
|
UTCSpick = UTCDateTime(pickdic[key]['S']['mpp']) - UTCDateTime(1970,1,1,0,0,0)
|
||||||
|
Ppicks.append(UTCPpick)
|
||||||
|
Spicks.append(UTCSpick)
|
||||||
|
SPtimes.append(spt)
|
||||||
|
vpvs.append(UTCPpick/UTCSpick)
|
||||||
|
|
||||||
|
# calculate average vp/vs ratio before check
|
||||||
|
vpvsr = np.mean(vpvs)
|
||||||
|
print 'wadaticheck: Average Vp/Vs ratio before check:', vpvsr
|
||||||
|
|
||||||
|
if len(SPtimes) >= 3:
|
||||||
|
# calculate slope
|
||||||
|
p1 = np.polyfit(Ppicks, SPtimes, 1)
|
||||||
|
wdfit = np.polyval(p1, Ppicks)
|
||||||
|
wfitflag = 0
|
||||||
|
|
||||||
|
checkedPpicks = []
|
||||||
|
checkedSpicks = []
|
||||||
|
checkedSPtimes = []
|
||||||
|
checkedvpvs = []
|
||||||
|
# calculate deviations from Wadati regression
|
||||||
|
for key in pickdic:
|
||||||
|
if pickdic[key].has_key('SPt'):
|
||||||
|
ii = 0
|
||||||
|
wddiff = abs(pickdic[key]['SPt'] - wdfit[ii])
|
||||||
|
ii += 1
|
||||||
|
# check, if deviation is larger than adjusted
|
||||||
|
if wddiff >= dttolerance:
|
||||||
|
# mark onset and downgrade S-weight to 4
|
||||||
|
# (not used anymore)
|
||||||
|
marker = 'badWadatiCheck'
|
||||||
|
pickdic[key]['S']['weight'] = 4
|
||||||
|
else:
|
||||||
|
marker = 'goodWadatiCheck'
|
||||||
|
checkedPpick = UTCDateTime(pickdic[key]['P']['mpp']) - \
|
||||||
|
UTCDateTime(1970,1,1,0,0,0)
|
||||||
|
checkedPpicks.append(checkedPpick)
|
||||||
|
checkedSpick = UTCDateTime(pickdic[key]['S']['mpp']) - \
|
||||||
|
UTCDateTime(1970,1,1,0,0,0)
|
||||||
|
checkedSpicks.append(checkedSpick)
|
||||||
|
checkedSPtime = UTCDateTime(pickdic[key]['S']['mpp']) - \
|
||||||
|
UTCDateTime(pickdic[key]['P']['mpp'])
|
||||||
|
checkedSPtimes.append(checkedSPtime)
|
||||||
|
checkedvpvs.append(checkedPpick/checkedSpick)
|
||||||
|
|
||||||
|
pickdic[key]['S']['marked'] = marker
|
||||||
|
|
||||||
|
# calculate average vp/vs ratio after check
|
||||||
|
cvpvsr = np.mean(checkedvpvs)
|
||||||
|
print 'wadaticheck: Average Vp/Vs ratio after check:', cvpvsr
|
||||||
|
|
||||||
|
# calculate new slope
|
||||||
|
p2 = np.polyfit(checkedPpicks, checkedSPtimes, 1)
|
||||||
|
wdfit2 = np.polyval(p2, checkedPpicks)
|
||||||
|
|
||||||
|
checkedonsets = pickdic
|
||||||
|
|
||||||
|
else:
|
||||||
|
print 'wadaticheck: Not enough S-P times available for reliable regression!'
|
||||||
|
print 'Skip wadati check!'
|
||||||
|
wfitflag = 1
|
||||||
|
|
||||||
|
# plot results
|
||||||
|
iplot = 2
|
||||||
|
if iplot > 1:
|
||||||
|
f = plt.figure(iplot)
|
||||||
|
f1, = plt.plot(Ppicks, SPtimes, 'ro')
|
||||||
|
if wfitflag == 0:
|
||||||
|
f2, = plt.plot(Ppicks, wdfit, 'k')
|
||||||
|
f3, = plt.plot(checkedPpicks, checkedSPtimes, 'ko')
|
||||||
|
f4, = plt.plot(checkedPpicks, wdfit2, 'g')
|
||||||
|
plt.ylabel('S-P Times [s]')
|
||||||
|
plt.xlabel('P Times [s]')
|
||||||
|
plt.title('Wadati-Diagram, %d S-P Times, Vp/Vs(old)=%5.2f, Vp/Vs(checked)=%5.2f' \
|
||||||
|
% (len(SPtimes), vpvsr, cvpvsr))
|
||||||
|
plt.legend([f1, f2, f3, f4], ['Skipped S-Picks', 'Wadati 1', 'Reliable S-Picks', \
|
||||||
|
'Wadati 2'], loc='best')
|
||||||
|
plt.show()
|
||||||
|
raw_input()
|
||||||
|
plt.close(f)
|
||||||
|
|
||||||
|
return checkedonsets
|
||||||
|
Loading…
Reference in New Issue
Block a user