AR-CFs now have same sampling rate as raw seismograms, new attribute getXCF
This commit is contained in:
parent
16c07da6e4
commit
acd8f70369
@ -17,12 +17,13 @@ autoregressive prediction: application ot local and regional distances, Geophys.
|
||||
"""
|
||||
import numpy as np
|
||||
from obspy.core import Stream
|
||||
import pdb
|
||||
|
||||
class CharacteristicFunction(object):
|
||||
'''
|
||||
SuperClass for different types of characteristic functions.
|
||||
'''
|
||||
def __init__(self, data, cut, t2=None, order=None, t1=None, fnoise=0.001):
|
||||
def __init__(self, data, cut, t2=None, order=None, t1=None, fnoise=None):
|
||||
'''
|
||||
Initialize data type object with information from the original
|
||||
Seismogram.
|
||||
@ -117,12 +118,12 @@ class CharacteristicFunction(object):
|
||||
|
||||
def getTimeArray(self):
|
||||
if self.getTime1():
|
||||
incr = self.getARdetStep()[0]
|
||||
self.TimeArray = np.arange(0, len(self.getCF()) * incr, incr) + self.getCut()[0] \
|
||||
+ self.getTime1() + self.getTime2()
|
||||
shift = self.getTime2()
|
||||
else:
|
||||
incr = self.getIncrement()
|
||||
self.TimeArray = np.arange(0, len(self.getCF()) * incr, incr) + self.getCut()[0]
|
||||
shift = 0
|
||||
incr = self.getIncrement()
|
||||
self.TimeArray = np.arange(0, len(self.getCF()) * incr, incr) + self.getCut()[0] \
|
||||
+ shift
|
||||
return self.TimeArray
|
||||
|
||||
def getFnoise(self):
|
||||
@ -134,6 +135,9 @@ class CharacteristicFunction(object):
|
||||
def getCF(self):
|
||||
return self.cf
|
||||
|
||||
def getXCF(self):
|
||||
return self.xcf
|
||||
|
||||
def getDataArray(self, cut=None):
|
||||
'''
|
||||
If cut times are given, time series is cut from cut[0] (start time)
|
||||
@ -226,9 +230,8 @@ class AICcf(CharacteristicFunction):
|
||||
cumsumcf = np.cumsum(np.power(xnp, 2))
|
||||
i = np.where(cumsumcf == 0)
|
||||
cumsumcf[i] = np.finfo(np.float64).eps
|
||||
cf[k] = ((k - 1) * np.log(cumsumcf[k] / k) + (datlen - k + 1) *
|
||||
np.log((cumsumcf[datlen - 1] -
|
||||
cumsumcf[k - 1]) / (datlen - k + 1)))
|
||||
cf[k] = ((k - 1) * np.log(cumsumcf[k] / k) + (datlen - k + 1) * \
|
||||
np.log((cumsumcf[datlen - 1] - cumsumcf[k - 1]) / (datlen - k + 1)))
|
||||
cf[0] = cf[1]
|
||||
inf = np.isinf(cf)
|
||||
ff = np.where(inf == True)
|
||||
@ -236,6 +239,7 @@ class AICcf(CharacteristicFunction):
|
||||
cf[ff] = 0
|
||||
|
||||
self.cf = cf - np.mean(cf)
|
||||
self.xcf = xnp
|
||||
|
||||
|
||||
class HOScf(CharacteristicFunction):
|
||||
@ -287,6 +291,7 @@ class HOScf(CharacteristicFunction):
|
||||
if len(nn) > 1:
|
||||
LTA[nn] = 0
|
||||
self.cf = LTA
|
||||
self.xcf = xnp
|
||||
|
||||
|
||||
class ARZcf(CharacteristicFunction):
|
||||
@ -308,24 +313,24 @@ class ARZcf(CharacteristicFunction):
|
||||
ldet = int(round(self.getTime1() / self.getIncrement())) #length of AR-determination window [samples]
|
||||
lpred = int(np.ceil(self.getTime2() / self.getIncrement())) #length of AR-prediction window [samples]
|
||||
|
||||
cf = []
|
||||
cf = np.zeros(len(xnp))
|
||||
loopstep = self.getARdetStep()
|
||||
for i in range(ldet + self.getOrder() - 1, tend - lpred + 1, loopstep[1]):
|
||||
#determination of AR coefficients
|
||||
self.arDetZ(xnoise, self.getOrder(), i-ldet, i)
|
||||
arcalci = ldet + self.getOrder() - 1 #AR-calculation index
|
||||
for i in range(ldet + self.getOrder() - 1, tend - lpred + 1):
|
||||
if i == arcalci:
|
||||
#determination of AR coefficients
|
||||
#to speed up calculation, AR-coefficients are calculated only every i+loopstep[1]!
|
||||
self.arDetZ(xnoise, self.getOrder(), i-ldet, i)
|
||||
arcalci = arcalci + loopstep[1]
|
||||
#AR prediction of waveform using calculated AR coefficients
|
||||
self.arPredZ(xnp, self.arpara, i + 1, lpred)
|
||||
#prediction error = CF
|
||||
err = np.sqrt(np.sum(np.power(self.xpred[i:i + lpred] - xnp[i:i + lpred], 2)) / lpred)
|
||||
cf.append(err)
|
||||
|
||||
#convert list to numpy array
|
||||
cf = np.asarray(cf)
|
||||
cf[i] = np.sqrt(np.sum(np.power(self.xpred[i:i + lpred] - xnp[i:i + lpred], 2)) / lpred)
|
||||
nn = np.isnan(cf)
|
||||
if len(nn) > 1:
|
||||
cf[nn] = 0
|
||||
self.cf = cf
|
||||
|
||||
self.xcf = xnp
|
||||
|
||||
def arDetZ(self, data, order, rind, ldet):
|
||||
'''
|
||||
@ -430,23 +435,25 @@ class ARHcf(CharacteristicFunction):
|
||||
ldet = int(round(self.getTime1() / self.getIncrement())) #length of AR-determination window [samples]
|
||||
lpred = int(np.ceil(self.getTime2() / self.getIncrement())) #length of AR-prediction window [samples]
|
||||
|
||||
cf = []
|
||||
cf = np.zeros(tend - lpred + 1)
|
||||
loopstep = self.getARdetStep()
|
||||
for i in range(ldet + self.getOrder() - 1, tend - lpred + 1, loopstep[1]):
|
||||
self.arDetH(Xnoise, self.getOrder(), i-ldet, i)
|
||||
arcalci = ldet + self.getOrder() - 1 #AR-calculation index
|
||||
for i in range(ldet + self.getOrder() - 1, tend - lpred + 1):
|
||||
if i == arcalci:
|
||||
#determination of AR coefficients
|
||||
#to speed up calculation, AR-coefficients are calculated only every i+loopstep[1]!
|
||||
self.arDetH(Xnoise, self.getOrder(), i-ldet, i)
|
||||
arcalci = arcalci + loopstep[1]
|
||||
#AR prediction of waveform using calculated AR coefficients
|
||||
self.arPredH(xnp, self.arpara, i + 1, lpred)
|
||||
#prediction error = CF
|
||||
err = np.sqrt(np.sum(np.power(self.xpred[0][i:i + lpred] - xnp[0][i:i + lpred], 2) \
|
||||
cf[i] = np.sqrt(np.sum(np.power(self.xpred[0][i:i + lpred] - xnp[0][i:i + lpred], 2) \
|
||||
+ np.power(self.xpred[1][i:i + lpred] - xnp[1][i:i + lpred], 2)) / (2 * lpred))
|
||||
cf.append(err)
|
||||
|
||||
#convert list to numpy array
|
||||
cf = np.asarray(cf)
|
||||
nn = np.isnan(cf)
|
||||
if len(nn) > 1:
|
||||
cf[nn] = 0
|
||||
self.cf = cf
|
||||
self.xcf = xnp
|
||||
|
||||
def arDetH(self, data, order, rind, ldet):
|
||||
'''
|
||||
@ -560,24 +567,27 @@ class AR3Ccf(CharacteristicFunction):
|
||||
ldet = int(round(self.getTime1() / self.getIncrement())) #length of AR-determination window [samples]
|
||||
lpred = int(np.ceil(self.getTime2() / self.getIncrement())) #length of AR-prediction window [samples]
|
||||
|
||||
cf = []
|
||||
cf = np.zeros(tend - lpred + 1)
|
||||
loopstep = self.getARdetStep()
|
||||
for i in range(ldet + self.getOrder() - 1, tend - lpred + 1, loopstep[1]):
|
||||
self.arDet3C(Xnoise, self.getOrder(), i-ldet, i)
|
||||
arcalci = ldet + self.getOrder() - 1 #AR-calculation index
|
||||
for i in range(ldet + self.getOrder() - 1, tend - lpred + 1):
|
||||
if i == arcalci:
|
||||
#determination of AR coefficients
|
||||
#to speed up calculation, AR-coefficients are calculated only every i+loopstep[1]!
|
||||
self.arDet3C(Xnoise, self.getOrder(), i-ldet, i)
|
||||
arcalci = arcalci + loopstep[1]
|
||||
|
||||
#AR prediction of waveform using calculated AR coefficients
|
||||
self.arPred3C(xnp, self.arpara, i + 1, lpred)
|
||||
#prediction error = CF
|
||||
err = np.sqrt(np.sum(np.power(self.xpred[0][i:i + lpred] - xnp[0][i:i + lpred], 2) \
|
||||
cf[i] = np.sqrt(np.sum(np.power(self.xpred[0][i:i + lpred] - xnp[0][i:i + lpred], 2) \
|
||||
+ np.power(self.xpred[1][i:i + lpred] - xnp[1][i:i + lpred], 2) \
|
||||
+ np.power(self.xpred[2][i:i + lpred] - xnp[2][i:i + lpred], 2)) / (3 * lpred))
|
||||
cf.append(err)
|
||||
|
||||
#convert list to numpy array
|
||||
cf = np.asarray(cf)
|
||||
nn = np.isnan(cf)
|
||||
if len(nn) > 1:
|
||||
cf[nn] = 0
|
||||
self.cf = cf
|
||||
self.xcf = xnp
|
||||
|
||||
def arDet3C(self, data, order, rind, ldet):
|
||||
'''
|
||||
|
Loading…
Reference in New Issue
Block a user