[remove] moved correlation code from PyLoT to the seisobs utils scope
This commit is contained in:
parent
45184fd888
commit
ae0cc5e160
35
README
35
README
@ -1,35 +0,0 @@
|
||||
PyLoT
|
||||
|
||||
version: 0.1
|
||||
|
||||
The Python picking and Localisation Tool
|
||||
|
||||
This python library contains a graphical user interfaces for picking
|
||||
seismic phases. This software needs ObsPy (http://github.com/obspy/obspy/wiki)
|
||||
and the PySide Qt4 bindings for python to be installed first.
|
||||
|
||||
PILOT has originally been developed in Mathworks' MatLab. In order to
|
||||
distribute PILOT without facing portability problems, it has been decided
|
||||
to redevelop the software package in Python. The great work of the ObsPy
|
||||
group allows easy handling of a bunch of seismic data and PyLoT will
|
||||
benefit a lot compared to the former MatLab version.
|
||||
|
||||
The development of PyLoT is part of the joint research project MAGS2.
|
||||
|
||||
staff:
|
||||
======
|
||||
|
||||
original author(s): L. Kueperkoch, S. Wehling-Benatelli, M. Bischoff (PILOT)
|
||||
|
||||
developer(s): S. Wehling-Benatelli, L. Kueperkoch, K. Olbert, M. Bischoff,
|
||||
C. Wollin, M. Rische
|
||||
|
||||
others: A. Bruestle, T. Meier, W. Friederich
|
||||
|
||||
release notes:
|
||||
==============
|
||||
|
||||
|
||||
|
||||
October 2013
|
||||
|
@ -22,14 +22,19 @@ staff:
|
||||
original author(s): L. Kueperkoch, S. Wehling-Benatelli, M. Bischoff (PILOT)
|
||||
|
||||
developer(s): S. Wehling-Benatelli, L. Kueperkoch, K. Olbert, M. Bischoff,
|
||||
C. Wollin, M. Rische
|
||||
C. Wollin, M. Rische, M. Paffrath
|
||||
|
||||
others: A. Bruestle, T. Meier, W. Friederich
|
||||
|
||||
release notes:
|
||||
==============
|
||||
|
||||
### Features
|
||||
|
||||
- consistent manual phase picking through:
|
||||
1. predefined SNR dependant zoom level
|
||||
2.
|
||||
|
||||
|
||||
|
||||
October 2016
|
||||
October 2016
|
||||
|
@ -1,55 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
from obspy.core import read
|
||||
from obspy.signal.trigger import coincidenceTrigger
|
||||
|
||||
|
||||
class CoincidenceTimes(object):
|
||||
def __init__(self, st, comp='Z', coinum=4, sta=1., lta=10., on=5., off=1.):
|
||||
_type = 'recstalta'
|
||||
self.coinclist = self.createCoincTriggerlist(data=st, trigcomp=comp,
|
||||
coinum=coinum, sta=sta,
|
||||
lta=lta, trigon=on,
|
||||
trigoff=off, type=_type)
|
||||
|
||||
def __str__(self):
|
||||
n = 1
|
||||
out = ''
|
||||
for time in self.getCoincTimes():
|
||||
out += 'event no. {0}: starttime is {1}\n'.format(n, time)
|
||||
n += 1
|
||||
return out
|
||||
|
||||
def getCoincTimes(self):
|
||||
timelist = []
|
||||
for info in self.getCoincList():
|
||||
timelist.append(info['time'])
|
||||
|
||||
return timelist
|
||||
|
||||
def getCoincList(self):
|
||||
return self.coinclist
|
||||
|
||||
def createCoincTriggerlist(self, data, trigcomp, coinum, sta, lta,
|
||||
trigon, trigoff, type):
|
||||
'''
|
||||
uses a coincidence trigger to detect all events in the given
|
||||
dataset
|
||||
'''
|
||||
|
||||
triggerlist = coincidenceTrigger(type, trigon, trigoff,
|
||||
data.select(component=trigcomp),
|
||||
coinum, sta=sta, lta=lta)
|
||||
return triggerlist
|
||||
|
||||
|
||||
def main():
|
||||
data = read('/data/SDS/2014/1A/ZV??/?H?.D/*.365')
|
||||
data.filter(type='bandpass', freqmin=5., freqmax=30.)
|
||||
coincs = CoincidenceTimes(data)
|
||||
print(coincs)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
@ -1,107 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
def crosscorrsingle(wf1, wf2, taumax):
|
||||
'''
|
||||
Calculates the crosscorrelation between two waveforms with a defined maximum timedifference.
|
||||
:param wf1: first waveformdata
|
||||
:type wf1: list
|
||||
:param wf2: second waveformdata
|
||||
:type wf2: list
|
||||
:param taumax: maximum time difference between waveforms
|
||||
:type taumax: positive integer
|
||||
:return: returns the crosscorrelation funktion 'c' and the lagvector 'l'
|
||||
:rtype: c and l are lists
|
||||
'''
|
||||
N = len(wf1)
|
||||
c = np.zeros(2 * taumax - 1)
|
||||
l = np.zeros(2 * taumax - 1)
|
||||
for tau in range(taumax):
|
||||
Cxyplus = 0
|
||||
Cxyminus = 0
|
||||
for n in range(N - tau):
|
||||
Cxy1plus = wf1[n] * wf2[n + tau]
|
||||
Cxy1minus = wf1[n + tau] * wf2[n]
|
||||
Cxyplus = Cxyplus + Cxy1plus
|
||||
Cxyminus = Cxyminus + Cxy1minus
|
||||
|
||||
c[(taumax - 1) - tau] = Cxyminus
|
||||
c[(taumax - 1) + tau] = Cxyplus
|
||||
l[(taumax - 1) - tau] = -tau
|
||||
l[(taumax - 1) + tau] = tau
|
||||
return c, l
|
||||
|
||||
|
||||
def crosscorrnormcalc(weights, wfs):
|
||||
'''
|
||||
crosscorrnormcalc - function that calculates the normalization for the
|
||||
cross correlation carried out by 'wfscrosscorr'
|
||||
:param weights: weighting factors for the single components
|
||||
:type weights: tuple
|
||||
:param wfs: tuple of `~numpy.array` object containing waveform data
|
||||
:type wfs: tuple
|
||||
:return: a floating point number yielding the by 'weights' weighted energy
|
||||
of the waveforms in 'wfs'
|
||||
:rtype: float
|
||||
'''
|
||||
|
||||
# check if the parameters are of the right type
|
||||
if not isinstance(weights, tuple):
|
||||
raise TypeError("type of 'weight' should be 'tuple', but is {0}".format(
|
||||
type(weights)))
|
||||
if not isinstance(wfs, tuple):
|
||||
raise TypeError(
|
||||
"type of parameter 'wfs' should be 'tuple', but is {0}".format(
|
||||
type(wfs)))
|
||||
sqrsumwfs = 0.
|
||||
for n, wf in enumerate(wfs):
|
||||
sqrsumwf = np.sum(weights[n] ** 2. * wf ** 2.)
|
||||
sqrsumwfs += sqrsumwf
|
||||
return np.sqrt(sqrsumwfs)
|
||||
|
||||
|
||||
def wfscrosscorr(weights, wfs, taumax):
|
||||
'''
|
||||
wfscrosscorr - function that calculates successive cross-correlations from a set of waveforms stored in a matrix
|
||||
|
||||
base formula is:
|
||||
C(i)=SUM[p=1:nComponent](eP(p)*(SUM[n=1:N]APp(x,n)*APp(y,n+i)))/(SQRT(SUM[p=1:nComponent]eP(p)^2*(SUM[n=1:N](APp(x,n)^2)))*SQRT(SUM[p=1:nComponent]eP(p)^2*(SUM[n=1:N]APp(y,n)^2)))
|
||||
whereas
|
||||
nComponent is the number of components
|
||||
N is the number of samples
|
||||
i is the lag-index
|
||||
|
||||
input:
|
||||
APp rowvectors containing the waveforms of each component p for which the cross-correlation is calculated
|
||||
tPp rowvectros containing times
|
||||
eP vector containing the weighting factors for the components (maxsize = [1x3])
|
||||
|
||||
output:
|
||||
C cross-correlation function
|
||||
L lag-vector
|
||||
|
||||
author(s):
|
||||
|
||||
SWB 26.01.2010 as arranged with Thomas Meier and Monika Bischoff
|
||||
|
||||
:param weights: weighting factors for the single components
|
||||
:type weights: tuple
|
||||
:param wfs: tuple of `~numpy.array` object containing waveform data
|
||||
:type wfs: tuple
|
||||
:param taumax: maximum time difference
|
||||
:type taumax: positive integer
|
||||
:return: returns cross correlation function normalized by the waveform energy
|
||||
'''
|
||||
|
||||
ccnorm = 0.
|
||||
ccnorm = crosscorrnormcalc(weights, wfs[0])
|
||||
ccnorm *= crosscorrnormcalc(weights, wfs[1])
|
||||
|
||||
c = 0.
|
||||
for n in range(len(wfs)):
|
||||
cc, l = crosscorrsingle(wfs[0][n], wfs[1][n], taumax)
|
||||
c += cc
|
||||
return c / ccnorm, l
|
@ -1,50 +0,0 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
from obspy.signal.trigger import recursive_sta_lta, trigger_onset
|
||||
|
||||
|
||||
def createSingleTriggerlist(st, station='ZV01', trigcomp='Z', stalta=(1, 10),
|
||||
trigonoff=(6, 1)):
|
||||
'''
|
||||
uses a single-station trigger to create a triggerlist for this station
|
||||
:param st: obspy stream
|
||||
:type st:
|
||||
:param station: station name to get triggers for (optional, default = ZV01)
|
||||
:type station: str
|
||||
:param trigcomp: (optional, default = Z)
|
||||
:type trigcomp: str
|
||||
:param stalta: (optional, default = (1,10))
|
||||
:type stalta: tuple
|
||||
:param trigonoff: (optional, default = (6,1))
|
||||
:type trigonoff: tuple
|
||||
:return: list of triggtimes
|
||||
:rtype: list
|
||||
'''
|
||||
tr = st.copy().select(component=trigcomp, station=station)[0]
|
||||
df = tr.stats.sampling_rate
|
||||
|
||||
cft = recursive_sta_lta(tr.data, int(stalta[0] * df), int(stalta[1] * df))
|
||||
triggers = trigger_onset(cft, trigonoff[0], trigonoff[1])
|
||||
trigg = []
|
||||
for time in triggers:
|
||||
trigg.append(tr.stats.starttime + time[0] / df)
|
||||
return trigg
|
||||
|
||||
|
||||
def createSubCoincTriggerlist(trig, station='ZV01'):
|
||||
'''
|
||||
makes a triggerlist with the events, that are triggered by the
|
||||
coincidence trigger and are seen at the demanded station
|
||||
:param trig: list containing triggers from coincidence trigger
|
||||
:type trig: list
|
||||
:param station: station name to get triggers for (optional, default = ZV01)
|
||||
:type station: str
|
||||
:return: list of triggertimes
|
||||
:rtype: list
|
||||
'''
|
||||
trigg = []
|
||||
for tri in trig:
|
||||
if station in tri['stations']:
|
||||
trigg.append(tri['time'])
|
||||
return trigg
|
Loading…
Reference in New Issue
Block a user