Merge branch 'develop' of 134.147.164.251:/data/git/pylot into develop
This commit is contained in:
commit
ae57381733
@ -27,15 +27,11 @@ class AutoPicking(object):
|
||||
Superclass of different, automated picking algorithms applied on a CF determined
|
||||
using AIC, HOS, or AR prediction.
|
||||
'''
|
||||
def __init__(self, cf, nfac, TSNR, PickWindow, iplot=None, aus=None, Tsmooth=None, Pick1=None):
|
||||
def __init__(self, cf, TSNR, PickWindow, iplot=None, aus=None, Tsmooth=None, Pick1=None):
|
||||
'''
|
||||
:param: cf, characteristic function, on which the picking algorithm is applied
|
||||
:type: `~pylot.core.pick.CharFuns.CharacteristicFunction` object
|
||||
|
||||
:param: nfac (noise factor), nfac times noise level to calculate latest possible pick
|
||||
in EarlLatePicker
|
||||
:type: int
|
||||
|
||||
:param: TSNR, length of time windows around pick used to determine SNR [s]
|
||||
:type: tuple (T_noise, T_gap, T_signal)
|
||||
|
||||
@ -63,7 +59,6 @@ class AutoPicking(object):
|
||||
self.Tcf = cf.getTimeArray()
|
||||
self.Data = cf.getXCF()
|
||||
self.dt = cf.getIncrement()
|
||||
self.setnfac(nfac)
|
||||
self.setTSNR(TSNR)
|
||||
self.setPickWindow(PickWindow)
|
||||
self.setiplot(iplot)
|
||||
@ -74,25 +69,18 @@ class AutoPicking(object):
|
||||
|
||||
def __str__(self):
|
||||
return '''\n\t{name} object:\n
|
||||
nfac:\t{nfac}\n
|
||||
TSNR:\t\t\t{TSNR}\n
|
||||
PickWindow:\t{PickWindow}\n
|
||||
aus:\t{aus}\n
|
||||
Tsmooth:\t{Tsmooth}\n
|
||||
Pick1:\t{Pick1}\n
|
||||
'''.format(name=type(self).__name__,
|
||||
nfac=self.getnfac(),
|
||||
TSNR=self.getTSNR(),
|
||||
PickWindow=self.getPickWindow(),
|
||||
aus=self.getaus(),
|
||||
Tsmooth=self.getTsmooth(),
|
||||
Pick1=self.getpick1())
|
||||
|
||||
def getnfac(self):
|
||||
return self.nfac
|
||||
|
||||
def setnfac(self, nfac):
|
||||
self.nfac = nfac
|
||||
|
||||
def getTSNR(self):
|
||||
return self.TSNR
|
||||
@ -127,15 +115,6 @@ class AutoPicking(object):
|
||||
def getSlope(self):
|
||||
return self.slope
|
||||
|
||||
def getLpick(self):
|
||||
return self.LPick
|
||||
|
||||
def getEpick(self):
|
||||
return self.EPick
|
||||
|
||||
def getPickError(self):
|
||||
return self.PickError
|
||||
|
||||
def getiplot(self):
|
||||
return self.iplot
|
||||
|
||||
@ -165,7 +144,6 @@ class AICPicker(AutoPicking):
|
||||
print 'AICPicker: Get initial onset time (pick) from AIC-CF ...'
|
||||
|
||||
self.Pick = None
|
||||
self.PickError = None
|
||||
#find NaN's
|
||||
nn = np.isnan(self.cf)
|
||||
if len(nn) > 1:
|
||||
@ -263,7 +241,7 @@ class AICPicker(AutoPicking):
|
||||
p1, = plt.plot(self.Tcf, x / max(x), 'k')
|
||||
p2, = plt.plot(self.Tcf, aicsmooth / max(aicsmooth), 'r')
|
||||
if self.Pick is not None:
|
||||
p3, = plt.plot([self.Pick, self.Pick], [-1 , 1], 'b', linewidth=2)
|
||||
p3, = plt.plot([self.Pick, self.Pick], [-0.1 , 0.5], 'b', linewidth=2)
|
||||
plt.legend([p1, p2, p3], ['(HOS-/AR-) Data', 'Smoothed AIC-CF', 'AIC-Pick'])
|
||||
else:
|
||||
plt.legend([p1, p2], ['(HOS-/AR-) Data', 'Smoothed AIC-CF'])
|
||||
@ -281,7 +259,7 @@ class AICPicker(AutoPicking):
|
||||
p15, = plt.plot(self.Tcf[islope], datafit, 'g', linewidth=2)
|
||||
plt.legend([p11, p12, p13, p14, p15], ['Data', 'Noise Window', 'Signal Window', 'Slope Window', 'Slope'], \
|
||||
loc='best')
|
||||
plt.title('SNR and Slope, Station %s, SNR=%7.2f, Slope= %12.2f counts/s' % (self.Data[0].stats.station, \
|
||||
plt.title('Station %s, SNR=%7.2f, Slope= %12.2f counts/s' % (self.Data[0].stats.station, \
|
||||
self.SNR, self.slope))
|
||||
plt.xlabel('Time [s] since %s' % self.Data[0].stats.starttime)
|
||||
plt.ylabel('Counts')
|
||||
@ -307,7 +285,6 @@ class PragPicker(AutoPicking):
|
||||
print 'PragPicker: Get most likely pick from HOS- or AR-CF using pragmatic picking algorithm ...'
|
||||
|
||||
self.Pick = None
|
||||
self.PickError = None
|
||||
self.SNR = None
|
||||
self.slope = None
|
||||
#smooth CF
|
||||
@ -392,313 +369,3 @@ class PragPicker(AutoPicking):
|
||||
self.Pick = None
|
||||
print 'PragPicker: No initial onset time given! Check input!'
|
||||
return
|
||||
|
||||
|
||||
class EarlLatePicker(AutoPicking):
|
||||
'''
|
||||
Method to derive earliest and latest possible pick after Diehl & Kissling (2009)
|
||||
as reasonable uncertainties. Latest possible pick is based on noise level,
|
||||
earliest possible pick is half a signal wavelength in front of most likely
|
||||
pick given by PragPicker. Most likely pick (initial pick) must be given.
|
||||
'''
|
||||
|
||||
def calcPick(self):
|
||||
|
||||
self.LPick = None
|
||||
self.EPick = None
|
||||
self.PickError = None
|
||||
self.SNR = None
|
||||
self.slope = None
|
||||
if self.getpick1() is not None:
|
||||
print 'EarlLatePicker: Get earliest and latest possible pick relative to most likely pick ...'
|
||||
|
||||
ti = self.getpick1()
|
||||
x = self.Data
|
||||
t = self.Tcf
|
||||
#some parameters needed:
|
||||
tnoise = self.TSNR[0] #noise window length for calculating noise level
|
||||
tsignal = self.TSNR[2] #signal window length
|
||||
tsafety = self.TSNR[1] #safety gap between signal onset and noise window
|
||||
|
||||
#get latest possible pick
|
||||
#get noise window
|
||||
inoise = np.where((self.Tcf <= max([ti - tsafety, 0])) \
|
||||
& (self.Tcf >= max([ti - tnoise - tsafety, 0])))
|
||||
#get signal window
|
||||
isignal = np.where((self.Tcf <= min([ti + tsignal + tsafety, len(x[0].data)])) \
|
||||
& (self.Tcf >= ti))
|
||||
#calculate noise level
|
||||
if len(x) == 1:
|
||||
nlevel = max(abs(x[0].data[inoise])) * self.nfac
|
||||
#get time where signal exceeds nlevel
|
||||
ilup = np.where(x[0].data[isignal] > nlevel)
|
||||
ildown = np.where(x[0].data[isignal] < -nlevel)
|
||||
if len(ilup[0]) <= 1 and len(ildown[0]) <= 1:
|
||||
print 'EarlLatePicker: Signal lower than noise level, misspick?'
|
||||
return
|
||||
il = min([ilup[0][0], ildown[0][0]])
|
||||
self.LPick = t[isignal][il]
|
||||
elif len(x) == 2:
|
||||
nlevel = max(np.sqrt(np.power(x[0].data[inoise], 2) + np.power(x[1].data[inoise], 2)))
|
||||
#get earliest time where signal exceeds nlevel
|
||||
ilup1 = np.where(x[0].data[isignal] > nlevel)
|
||||
ilup2 = np.where(x[1].data[isignal] > nlevel)
|
||||
ildown1 = np.where(x[0].data[isignal] < -nlevel)
|
||||
ildown2 = np.where(x[1].data[isignal] < -nlevel)
|
||||
if np.size(ilup1) < 1 and np.size(ilup2) > 1:
|
||||
ilup = ilup2
|
||||
elif np.size(ilup1) > 1 and np.size(ilup2) < 1:
|
||||
ilup = ilup1
|
||||
elif np.size(ilup1) < 1 and np.size(ilup2) < 1:
|
||||
ilup = None
|
||||
else:
|
||||
ilup = min([ilup1[0][0], ilup2[0][0]])
|
||||
|
||||
if np.size(ildown1) < 1 and np.size(ildown2) > 1:
|
||||
ildown = ildown2
|
||||
elif np.size(ildown1) > 1 and np.size(ildown2) < 1:
|
||||
ildown = ildown1
|
||||
elif np.size(ildown1) < 1 and np.size(ildown2) < 1:
|
||||
ildown = None
|
||||
else:
|
||||
ildown = min([ildown1[0][0], ildown2[0][0]])
|
||||
if ilup == None and ildown == None:
|
||||
print 'EarlLatePicker: Signal lower than noise level, misspick?'
|
||||
return
|
||||
il = min([ilup, ildown])
|
||||
self.LPick = t[isignal][il]
|
||||
elif len(x) == 3:
|
||||
nlevel = max(np.sqrt(np.power(x[0].data[inoise], 2) + np.power(x[1].data[inoise], 2) + \
|
||||
np.power(x[2].data[inoise], 2)))
|
||||
#get earliest time where signal exceeds nlevel
|
||||
ilup1 = np.where(x[0].data[isignal] > nlevel)
|
||||
ilup2 = np.where(x[1].data[isignal] > nlevel)
|
||||
ilup3 = np.where(x[2].data[isignal] > nlevel)
|
||||
ildown1 = np.where(x[0].data[isignal] < -nlevel)
|
||||
ildown2 = np.where(x[1].data[isignal] < -nlevel)
|
||||
ildown3 = np.where(x[2].data[isignal] < -nlevel)
|
||||
if np.size(ilup1) > 1 and np.size(ilup2) < 1 and np.size(ilup3) < 1:
|
||||
ilup = ilup1
|
||||
elif np.size(ilup1) > 1 and np.size(ilup2) > 1 and np.size(ilup3) < 1:
|
||||
ilup = min([ilup1[0][0], ilup2[0][0]])
|
||||
elif np.size(ilup1) > 1 and np.size(ilup2) > 1 and np.size(ilup3) > 1:
|
||||
ilup = min([ilup1[0][0], ilup2[0][0], ilup3[0][0]])
|
||||
elif np.size(ilup1) < 1 and np.size(ilup2) > 1 and np.size(ilup3) > 1:
|
||||
ilup = min([ilup2[0][0], ilup3[0][0]])
|
||||
elif np.size(ilup1) > 1 and np.size(ilup2) < 1 and np.size(ilup3) > 1:
|
||||
ilup = min([ilup1[0][0], ilup3[0][0]])
|
||||
elif np.size(ilup1) < 1 and np.size(ilup2) < 1 and np.size(ilup3) < 1:
|
||||
ilup = None
|
||||
else:
|
||||
ilup = min([ilup1[0][0], ilup2[0][0], ilup3[0][0]])
|
||||
|
||||
if np.size(ildown1) > 1 and np.size(ildown2) < 1 and np.size(ildown3) < 1:
|
||||
ildown = ildown1
|
||||
elif np.size(ildown1) > 1 and np.size(ildown2) > 1 and np.size(ildown3) < 1:
|
||||
ildown = min([ildown1[0][0], ildown2[0][0]])
|
||||
elif np.size(ildown1) > 1 and np.size(ildown2) > 1 and np.size(ildown3) > 1:
|
||||
ildown = min([ildown1[0][0], ildown2[0][0], ildown3[0][0]])
|
||||
elif np.size(ildown1) < 1 and np.size(ildown2) > 1 and np.size(ildown3) > 1:
|
||||
ildown = min([ildown2[0][0], ildown3[0][0]])
|
||||
elif np.size(ildown1) > 1 and np.size(ildown2) < 1 and np.size(ildown3) > 1:
|
||||
ildown = min([ildown1[0][0], ildown3[0][0]])
|
||||
elif np.size(ildown1) < 1 and np.size(ildown2) < 1 and np.size(ildown3) < 1:
|
||||
ildown = None
|
||||
else:
|
||||
ildown = min([ildown1[0][0], ildown2[0][0], ildown3[0][0]])
|
||||
if ilup == None and ildown == None:
|
||||
print 'EarlLatePicker: Signal lower than noise level, misspick?'
|
||||
return
|
||||
il = min([ilup, ildown])
|
||||
self.LPick = t[isignal][il]
|
||||
|
||||
#get earliest possible pick
|
||||
#get next 2 zero crossings after most likely pick
|
||||
#if there is one trace in stream
|
||||
if len(x) == 1:
|
||||
zc = []
|
||||
zc.append(ti)
|
||||
i = 0
|
||||
for j in range(isignal[0][1],isignal[0][len(t[isignal]) - 1]):
|
||||
i = i+ 1
|
||||
if x[0].data[j-1] <= 0 and x[0].data[j] >= 0:
|
||||
zc.append(t[isignal][i])
|
||||
elif x[0].data[j-1] > 0 and x[0].data[j] <= 0:
|
||||
zc.append(t[isignal][i])
|
||||
if len(zc) == 3:
|
||||
break
|
||||
#calculate maximum period of signal out of zero crossings
|
||||
Ts = max(np.diff(zc))
|
||||
#if there are two traces in stream
|
||||
#get maximum of two signal periods
|
||||
if len(x) == 2:
|
||||
zc1 = []
|
||||
zc2 = []
|
||||
zc1.append(ti)
|
||||
zc2.append(ti)
|
||||
i = 0
|
||||
for j in range(isignal[0][1],isignal[0][len(t[isignal]) - 1]):
|
||||
i = i+ 1
|
||||
if x[0].data[j-1] <= 0 and x[0].data[j] >= 0:
|
||||
zc1.append(t[isignal][i])
|
||||
elif x[0].data[j-1] > 0 and x[0].data[j] <= 0:
|
||||
zc1.append(t[isignal][i])
|
||||
if x[1].data[j-1] <= 0 and x[1].data[j] >= 0:
|
||||
zc2.append(t[isignal][i])
|
||||
elif x[1].data[j-1] > 0 and x[1].data[j] <= 0:
|
||||
zc2.append(t[isignal][i])
|
||||
if len(zc1) >= 3 and len(zc2) >= 3:
|
||||
break
|
||||
Ts = max([max(np.diff(zc1)), max(np.diff(zc2))])
|
||||
#if there are three traces in stream
|
||||
#get maximum of three signal periods
|
||||
if len(x) == 3:
|
||||
zc1 = []
|
||||
zc2 = []
|
||||
zc3 = []
|
||||
zc1.append(ti)
|
||||
zc2.append(ti)
|
||||
zc3.append(ti)
|
||||
i = 0
|
||||
for j in range(isignal[0][1],isignal[0][len(t[isignal]) - 1]):
|
||||
i = i+ 1
|
||||
if x[0].data[j-1] <= 0 and x[0].data[j] >= 0:
|
||||
zc1.append(t[isignal][i])
|
||||
elif x[0].data[j-1] > 0 and x[0].data[j] <= 0:
|
||||
zc1.append(t[isignal][i])
|
||||
if x[1].data[j-1] <= 0 and x[1].data[j] >= 0:
|
||||
zc2.append(t[isignal][i])
|
||||
elif x[1].data[j-1] > 0 and x[1].data[j] <= 0:
|
||||
zc2.append(t[isignal][i])
|
||||
if x[2].data[j-1] <= 0 and x[2].data[j] >= 0:
|
||||
zc3.append(t[isignal][i])
|
||||
elif x[2].data[j-1] > 0 and x[2].data[j] <= 0:
|
||||
zc3.append(t[isignal][i])
|
||||
if len(zc1) >= 3 and len(zc2) >= 3 and len(zc3) >= 3:
|
||||
break
|
||||
Ts = max([max(np.diff(zc1)), max(np.diff(zc2)), max(np.diff(zc3))])
|
||||
|
||||
#Ts/4 is assumed as time difference between most likely and earliest possible pick!
|
||||
self.EPick = ti - Ts/4
|
||||
|
||||
#get symmetric pick error as mean from earliest and latest possible pick
|
||||
#by weighting latest possible pick tow times earliest possible pick
|
||||
diffti_tl = self.LPick - ti
|
||||
diffti_te = ti - self.EPick
|
||||
self.PickError = (diffti_te + 2 * diffti_tl) / 3
|
||||
|
||||
if self.iplot is not None:
|
||||
plt.figure(self.iplot)
|
||||
if len(x) == 1:
|
||||
p1, = plt.plot(t, x[0].data, 'k')
|
||||
p2, = plt.plot(t[inoise], x[0].data[inoise])
|
||||
p3, = plt.plot(t[isignal], x[0].data[isignal], 'r')
|
||||
p4, = plt.plot([t[0], t[int(len(t)) - 1]], [nlevel, nlevel], '--k')
|
||||
p5, = plt.plot(zc, [0, 0, 0], '*g', markersize=14)
|
||||
plt.legend([p1, p2, p3, p4, p5], ['Data', 'Noise Window', 'Signal Window', 'Noise Level', 'Zero Crossings'], \
|
||||
loc='best')
|
||||
plt.plot([t[0], t[int(len(t)) - 1]], [-nlevel, -nlevel], '--k')
|
||||
plt.plot([ti, ti], [max(x[0].data), -max(x[0].data)], 'b', linewidth=2)
|
||||
plt.plot([self.LPick, self.LPick], [max(x[0].data)/2, -max(x[0].data)/2], '--k')
|
||||
plt.plot([self.EPick, self.EPick], [max(x[0].data)/2, -max(x[0].data)/2], '--k')
|
||||
plt.plot([ti + self.PickError, ti + self.PickError], [max(x[0].data)/2, -max(x[0].data)/2], 'r--')
|
||||
plt.plot([ti - self.PickError, ti - self.PickError], [max(x[0].data)/2, -max(x[0].data)/2], 'r--')
|
||||
plt.xlabel('Time [s] since %s' % self.Data[0].stats.starttime)
|
||||
plt.yticks([])
|
||||
ax = plt.gca()
|
||||
ax.set_xlim([self.Tcf[inoise[0][0]] - 2, self.Tcf[isignal[0][len(isignal) - 1]] + 3])
|
||||
plt.title('Earliest-/Latest Possible/Most Likely Pick & Symmetric Pick Error, %s' % self.Data[0].stats.station)
|
||||
elif len(x) == 2:
|
||||
plt.subplot(2,1,1)
|
||||
p1, = plt.plot(t, x[0].data, 'k')
|
||||
p2, = plt.plot(t[inoise], x[0].data[inoise])
|
||||
p3, = plt.plot(t[isignal], x[0].data[isignal], 'r')
|
||||
p4, = plt.plot([t[0], t[int(len(t)) - 1]], [nlevel, nlevel], '--k')
|
||||
p5, = plt.plot(zc1[0:3], [0, 0, 0], '*g', markersize=14)
|
||||
plt.legend([p1, p2, p3, p4, p5], ['Data', 'Noise Window', 'Signal Window', 'Noise Level', 'Zero Crossings'], \
|
||||
loc='best')
|
||||
plt.plot([t[0], t[int(len(t)) - 1]], [-nlevel, -nlevel], '--k')
|
||||
plt.plot([ti, ti], [max(x[0].data), -max(x[0].data)], 'b', linewidth=2)
|
||||
plt.plot([self.LPick, self.LPick], [max(x[0].data)/2, -max(x[0].data)/2], '--k')
|
||||
plt.plot([self.EPick, self.EPick], [max(x[0].data)/2, -max(x[0].data)/2], '--k')
|
||||
plt.plot([ti + self.PickError, ti + self.PickError], [max(x[0].data)/2, -max(x[0].data)/2], 'r--')
|
||||
plt.plot([ti - self.PickError, ti - self.PickError], [max(x[0].data)/2, -max(x[0].data)/2], 'r--')
|
||||
plt.plot(zc1[0:3], [0, 0, 0], '*g')
|
||||
plt.yticks([])
|
||||
ax = plt.gca()
|
||||
ax.set_xlim([self.Tcf[inoise[0][0]] - 2, self.Tcf[isignal[0][len(isignal) - 1]] + 3])
|
||||
plt.title('Earliest-/Latest Possible/Most Likely Pick & Symmetric Pick Error, %s' % self.Data[0].stats.station)
|
||||
plt.subplot(2,1,2)
|
||||
plt.plot(t, x[1].data, 'k')
|
||||
plt.plot(t[inoise], x[1].data[inoise])
|
||||
plt.plot(t[isignal], x[1].data[isignal], 'r')
|
||||
plt.plot([t[0], t[int(len(t)) - 1]], [nlevel, nlevel], '--k')
|
||||
plt.plot([t[0], t[int(len(t)) - 1]], [-nlevel, -nlevel], '--k')
|
||||
plt.plot([ti, ti], [max(x[1].data), -max(x[1].data)], 'b', linewidth=2)
|
||||
plt.plot([self.LPick, self.LPick], [max(x[1].data)/2, -max(x[1].data)/2], '--k')
|
||||
plt.plot([self.EPick, self.EPick], [max(x[1].data)/2, -max(x[1].data)/2], '--k')
|
||||
plt.plot([ti + self.PickError, ti + self.PickError], [max(x[0].data)/2, -max(x[0].data)/2], 'r--')
|
||||
plt.plot([ti - self.PickError, ti - self.PickError], [max(x[0].data)/2, -max(x[0].data)/2], 'r--')
|
||||
plt.plot(zc2[0:3], [0, 0, 0], '*g', markersize=14)
|
||||
plt.xlabel('Time [s] since %s' % self.Data[0].stats.starttime)
|
||||
ax = plt.gca()
|
||||
ax.set_xlim([self.Tcf[inoise[0][0]] - 2, self.Tcf[isignal[0][len(isignal) - 1]] + 3])
|
||||
plt.yticks([])
|
||||
elif len(x) == 3:
|
||||
plt.subplot(3,1,1)
|
||||
p1, = plt.plot(t, x[0].data, 'k')
|
||||
p2, = plt.plot(t[inoise], x[0].data[inoise])
|
||||
p3, = plt.plot(t[isignal], x[0].data[isignal], 'r')
|
||||
p4, = plt.plot([t[0], t[int(len(t)) - 1]], [nlevel, nlevel], '--k')
|
||||
p5, = plt.plot(zc1[0:3], [0, 0, 0], '*g', markersize=14)
|
||||
plt.legend([p1, p2, p3, p4, p5], ['Data', 'Noise Window', 'Signal Window', 'Noise Level', 'Zero Crossings'], \
|
||||
loc='best')
|
||||
plt.plot([t[0], t[int(len(t)) - 1]], [-nlevel, -nlevel], '--k')
|
||||
plt.plot([ti, ti], [max(x[0].data), -max(x[0].data)], 'b', linewidth=2)
|
||||
plt.plot([self.LPick, self.LPick], [max(x[0].data)/2, -max(x[0].data)/2], '--k')
|
||||
plt.plot([self.EPick, self.EPick], [max(x[0].data)/2, -max(x[0].data)/2], '--k')
|
||||
plt.plot([ti + self.PickError, ti + self.PickError], [max(x[0].data)/2, -max(x[0].data)/2], 'r--')
|
||||
plt.plot([ti - self.PickError, ti - self.PickError], [max(x[0].data)/2, -max(x[0].data)/2], 'r--')
|
||||
plt.yticks([])
|
||||
ax = plt.gca()
|
||||
ax.set_xlim([self.Tcf[inoise[0][0]] - 2, self.Tcf[isignal[0][len(isignal) - 1]] + 3])
|
||||
plt.title('Earliest-/Latest Possible/Most Likely Pick & Symmetric Pick Error, %s' % self.Data[0].stats.station)
|
||||
plt.subplot(3,1,2)
|
||||
plt.plot(t, x[1].data, 'k')
|
||||
plt.plot(t[inoise], x[1].data[inoise])
|
||||
plt.plot(t[isignal], x[1].data[isignal], 'r')
|
||||
plt.plot([t[0], t[int(len(t)) - 1]], [nlevel, nlevel], '--k')
|
||||
plt.plot([t[0], t[int(len(t)) - 1]], [-nlevel, -nlevel], '--k')
|
||||
plt.plot([ti, ti], [max(x[1].data), -max(x[1].data)], 'b', linewidth=2)
|
||||
plt.plot([self.LPick, self.LPick], [max(x[1].data)/2, -max(x[1].data)/2], '--k')
|
||||
plt.plot([self.EPick, self.EPick], [max(x[1].data)/2, -max(x[1].data)/2], '--k')
|
||||
plt.plot([ti + self.PickError, ti + self.PickError], [max(x[0].data)/2, -max(x[0].data)/2], 'r--')
|
||||
plt.plot([ti - self.PickError, ti - self.PickError], [max(x[0].data)/2, -max(x[0].data)/2], 'r--')
|
||||
plt.plot(zc2[0:3], [0, 0, 0], '*g', markersize=14)
|
||||
plt.yticks([])
|
||||
ax = plt.gca()
|
||||
ax.set_xlim([self.Tcf[inoise[0][0]] - 2, self.Tcf[isignal[0][len(isignal) - 1]] + 3])
|
||||
plt.subplot(3,1,3)
|
||||
plt.plot(t, x[2].data, 'k')
|
||||
plt.plot(t[inoise], x[2].data[inoise])
|
||||
plt.plot(t[isignal], x[2].data[isignal], 'r')
|
||||
plt.plot([t[0], t[int(len(t)) - 1]], [nlevel, nlevel], '--k')
|
||||
plt.plot([t[0], t[int(len(t)) - 1]], [-nlevel, -nlevel], '--k')
|
||||
plt.plot([ti, ti], [max(x[2].data), -max(x[2].data)], 'b', linewidth=2)
|
||||
plt.plot([self.LPick, self.LPick], [max(x[2].data)/2, -max(x[2].data)/2], '--k')
|
||||
plt.plot([self.EPick, self.EPick], [max(x[2].data)/2, -max(x[2].data)/2], '--k')
|
||||
plt.plot([ti + self.PickError, ti + self.PickError], [max(x[0].data)/2, -max(x[0].data)/2], 'r--')
|
||||
plt.plot([ti - self.PickError, ti - self.PickError], [max(x[0].data)/2, -max(x[0].data)/2], 'r--')
|
||||
plt.plot(zc3[0:3], [0, 0, 0], '*g', markersize=14)
|
||||
plt.xlabel('Time [s] since %s' % self.Data[0].stats.starttime)
|
||||
plt.yticks([])
|
||||
ax = plt.gca()
|
||||
ax.set_xlim([self.Tcf[inoise[0][0]] - 2, self.Tcf[isignal[0][len(isignal) - 1]] + 3])
|
||||
plt.show()
|
||||
raw_input()
|
||||
plt.close(self.iplot)
|
||||
|
||||
elif self.getpick1() == None:
|
||||
print 'EarlLatePicker: No initial onset time given! Check input!'
|
||||
return
|
||||
|
||||
|
138
pylot/core/pick/earllatepicker.py
Executable file
138
pylot/core/pick/earllatepicker.py
Executable file
@ -0,0 +1,138 @@
|
||||
#!/usr/bin/python
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created Mar 2015
|
||||
Transcription of the rezipe of Diehl et al. (2009) for consistent phase
|
||||
picking. For a given inital (the most likely) pick, the corresponding earliest
|
||||
and latest possible picks are calculated based on noise measurements in front of
|
||||
the most likely pick and signal wavelength derived from zero crossings.
|
||||
|
||||
:author: MAGS2 EP3 working group / Ludger Kueperkoch
|
||||
"""
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from obspy.core import Stream
|
||||
import argparse
|
||||
|
||||
def earllatepicker(X, nfac, TSNR, Pick1, iplot=None):
|
||||
'''
|
||||
Function to derive earliest and latest possible pick after Diehl & Kissling (2009)
|
||||
as reasonable uncertainties. Latest possible pick is based on noise level,
|
||||
earliest possible pick is half a signal wavelength in front of most likely
|
||||
pick given by PragPicker. Most likely pick (initial pick) must be given.
|
||||
|
||||
:param: x, time series (seismogram)
|
||||
:type: `~obspy.core.stream.Stream`
|
||||
|
||||
:param: nfac (noise factor), nfac times noise level to calculate latest possible pick
|
||||
in EarlLatePicker
|
||||
:type: int
|
||||
|
||||
:param: TSNR, length of time windows around pick used to determine SNR [s]
|
||||
:type: tuple (T_noise, T_gap, T_signal)
|
||||
|
||||
:param: Pick1, initial (prelimenary) onset time, starting point for EarlLatePicker
|
||||
:type: float
|
||||
|
||||
'''
|
||||
|
||||
assert isinstance(X, Stream), "%s is not a stream object" % str(X)
|
||||
|
||||
LPick = None
|
||||
EPick = None
|
||||
PickError = None
|
||||
if Pick1 is not None:
|
||||
print 'earllatepicker: Get earliest and latest possible pick relative to most likely pick ...'
|
||||
|
||||
x =X[0].data
|
||||
t = np.arange(0, X[0].stats.npts / X[0].stats.sampling_rate, X[0].stats.delta)
|
||||
#some parameters needed:
|
||||
tnoise = TSNR[0] #noise window length for calculating noise level
|
||||
tsignal = TSNR[2] #signal window length
|
||||
tsafety = TSNR[1] #safety gap between signal onset and noise window
|
||||
|
||||
#get latest possible pick
|
||||
#get noise window
|
||||
inoise = np.where((t <= max([Pick1 - tsafety, 0])) \
|
||||
& (t >= max([Pick1 - tnoise - tsafety, 0])))
|
||||
#get signal window
|
||||
isignal = np.where((t <= min([Pick1 + tsignal + tsafety, len(x)])) \
|
||||
& (t >= Pick1))
|
||||
#calculate noise level
|
||||
nlevel = max(abs(x[inoise])) * nfac
|
||||
#get time where signal exceeds nlevel
|
||||
ilup = np.where(x[isignal] > nlevel)
|
||||
ildown = np.where(x[isignal] < -nlevel)
|
||||
if len(ilup[0]) <= 1 and len(ildown[0]) <= 1:
|
||||
print 'earllatepicker: Signal lower than noise level, misspick?'
|
||||
return
|
||||
il = min([ilup[0][0], ildown[0][0]])
|
||||
LPick = t[isignal][il]
|
||||
|
||||
#get earliest possible pick
|
||||
#get next 2 zero crossings after most likely pick
|
||||
#if there is one trace in stream
|
||||
zc = []
|
||||
zc.append(Pick1)
|
||||
i = 0
|
||||
for j in range(isignal[0][1],isignal[0][len(t[isignal]) - 1]):
|
||||
i = i+ 1
|
||||
if x[j-1] <= 0 and x[j] >= 0:
|
||||
zc.append(t[isignal][i])
|
||||
elif x[j-1] > 0 and x[j] <= 0:
|
||||
zc.append(t[isignal][i])
|
||||
if len(zc) == 3:
|
||||
break
|
||||
#calculate maximum period of signal out of zero crossings
|
||||
Ts = max(np.diff(zc))
|
||||
#Ts/4 is assumed as time difference between most likely and earliest possible pick!
|
||||
EPick = Pick1 - Ts/4
|
||||
|
||||
#get symmetric pick error as mean from earliest and latest possible pick
|
||||
#by weighting latest possible pick tow times earliest possible pick
|
||||
diffti_tl = LPick -Pick1
|
||||
diffti_te = Pick1 - EPick
|
||||
PickError = (diffti_te + 2 * diffti_tl) / 3
|
||||
|
||||
if iplot is not None:
|
||||
plt.figure(iplot)
|
||||
p1, = plt.plot(t, x, 'k')
|
||||
p2, = plt.plot(t[inoise], x[inoise])
|
||||
p3, = plt.plot(t[isignal], x[isignal], 'r')
|
||||
p4, = plt.plot([t[0], t[int(len(t)) - 1]], [nlevel, nlevel], '--k')
|
||||
p5, = plt.plot(zc, [0, 0, 0], '*g', markersize=14)
|
||||
plt.legend([p1, p2, p3, p4, p5], ['Data', 'Noise Window', 'Signal Window', 'Noise Level', 'Zero Crossings'], \
|
||||
loc='best')
|
||||
plt.plot([t[0], t[int(len(t)) - 1]], [-nlevel, -nlevel], '--k')
|
||||
plt.plot([Pick1, Pick1], [max(x), -max(x)], 'b', linewidth=2)
|
||||
plt.plot([LPick, LPick], [max(x)/2, -max(x)/2], '--k')
|
||||
plt.plot([EPick, EPick], [max(x)/2, -max(x)/2], '--k')
|
||||
plt.plot([Pick1 + PickError, Pick1 + PickError], [max(x)/2, -max(x)/2], 'r--')
|
||||
plt.plot([Pick1 - PickError, Pick1 - PickError], [max(x)/2, -max(x)/2], 'r--')
|
||||
plt.xlabel('Time [s] since %s' % X[0].stats.starttime)
|
||||
plt.yticks([])
|
||||
ax = plt.gca()
|
||||
ax.set_xlim([t[inoise[0][0]] - 2, t[isignal[0][len(isignal) - 1]] + 3])
|
||||
plt.title('Earliest-/Latest Possible/Most Likely Pick & Symmetric Pick Error, %s' % X[0].stats.station)
|
||||
plt.show()
|
||||
raw_input()
|
||||
plt.close(iplot)
|
||||
|
||||
elif Pick1 == None:
|
||||
print 'earllatepicker: No initial onset time given! Check input!'
|
||||
return
|
||||
|
||||
return EPick, LPick, PickError
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--X', type=~obspy.core.stream.Stream, help='time series (seismogram) read with obspy module read')
|
||||
parser.add_argument('--nfac', type=int, help='(noise factor), nfac times noise level to calculate latest possible pick')
|
||||
parser.add_argument('--TSNR', type=tuple, help='length of time windows around pick used to determine SNR \
|
||||
[s] (Tnoise, Tgap, Tsignal)')
|
||||
parser.add_argument('--Pick1', type=float, help='Onset time of most likely pick')
|
||||
parser.add_argument('--iplot', type=int, help='if set, figure no. iplot occurs')
|
||||
args = parser.parse_args()
|
||||
earllatepicker(args.X, args.nfac, args.TSNR, args.Pick1, args.iplot)
|
||||
|
||||
#earllatepicker(X, nfac, TSNR, Pick1, iplot)
|
183
pylot/core/pick/fmpicker.py
Executable file
183
pylot/core/pick/fmpicker.py
Executable file
@ -0,0 +1,183 @@
|
||||
#!/usr/bin/python
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created Mar 2015
|
||||
Function to derive first motion (polarity) for given phase onset based on zero crossings.
|
||||
|
||||
:author: MAGS2 EP3 working group / Ludger Kueperkoch
|
||||
"""
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
from obspy.core import Stream
|
||||
import argparse
|
||||
|
||||
def fmpicker(Xraw, Xfilt, pickwin, Pick, iplot=None):
|
||||
'''
|
||||
Function to derive first motion (polarity) of given phase onset Pick.
|
||||
Calculation is based on zero crossings determined within time window pickwin
|
||||
after given onset time.
|
||||
|
||||
:param: Xraw, unfiltered time series (seismogram)
|
||||
:type: `~obspy.core.stream.Stream`
|
||||
|
||||
:param: Xfilt, filtered time series (seismogram)
|
||||
:type: `~obspy.core.stream.Stream`
|
||||
|
||||
:param: pickwin, time window after onset Pick within zero crossings are calculated
|
||||
:type: float
|
||||
|
||||
:param: Pick, initial (most likely) onset time, starting point for fmpicker
|
||||
:type: float
|
||||
|
||||
:param: iplot, if given, results are plotted in figure(iplot)
|
||||
:type: int
|
||||
'''
|
||||
|
||||
assert isinstance(Xraw, Stream), "%s is not a stream object" % str(Xraw)
|
||||
assert isinstance(Xfilt, Stream), "%s is not a stream object" % str(Xfilt)
|
||||
|
||||
FM = None
|
||||
if Pick is not None:
|
||||
print 'fmpicker: Get first motion (polarity) of onset using unfiltered seismogram...'
|
||||
|
||||
xraw = Xraw[0].data
|
||||
xfilt = Xfilt[0].data
|
||||
t = np.arange(0, Xraw[0].stats.npts / Xraw[0].stats.sampling_rate, Xraw[0].stats.delta)
|
||||
#get pick window
|
||||
ipick = np.where((t <= min([Pick + pickwin, len(Xraw[0])])) & (t >= Pick))
|
||||
#remove mean
|
||||
xraw[ipick] = xraw[ipick] - np.mean(xraw[ipick])
|
||||
xfilt[ipick] = xfilt[ipick] - np.mean(xfilt[ipick])
|
||||
|
||||
#get next zero crossing after most likely pick
|
||||
#initial onset is assumed to be the first zero crossing
|
||||
#first from unfiltered trace
|
||||
zc1 = []
|
||||
zc1.append(Pick)
|
||||
index1 = []
|
||||
i = 0
|
||||
for j in range(ipick[0][1],ipick[0][len(t[ipick]) - 1]):
|
||||
i = i+ 1
|
||||
if xraw[j-1] <= 0 and xraw[j] >= 0:
|
||||
zc1.append(t[ipick][i])
|
||||
index1.append(i)
|
||||
elif xraw[j-1] > 0 and xraw[j] <= 0:
|
||||
zc1.append(t[ipick][i])
|
||||
index1.append(i)
|
||||
if len(zc1) == 3:
|
||||
break
|
||||
|
||||
#if time difference betweeen 1st and 2cnd zero crossing
|
||||
#is too short, get time difference between 1st and 3rd
|
||||
#to derive maximum
|
||||
if zc1[1] - zc1[0] <= Xraw[0].stats.delta:
|
||||
li1 = index1[1]
|
||||
else:
|
||||
li1 = index1[0]
|
||||
if np.size(xraw[ipick[0][1]:ipick[0][li1]]) == 0:
|
||||
print 'earllatepicker: Onset on unfiltered trace too emergent for first motion determination!'
|
||||
P1 = None
|
||||
else:
|
||||
imax1 = np.argmax(abs(xraw[ipick[0][1]:ipick[0][li1]]))
|
||||
islope1 = np.where((t >= Pick) & (t <= Pick + t[imax1]))
|
||||
#calculate slope as polynomal fit of order 1
|
||||
xslope1 = np.arange(0, len(xraw[islope1]), 1)
|
||||
P1 = np.polyfit(xslope1, xraw[islope1], 1)
|
||||
datafit1 = np.polyval(P1, xslope1)
|
||||
|
||||
#now using filterd trace
|
||||
#next zero crossing after most likely pick
|
||||
zc2 = []
|
||||
zc2.append(Pick)
|
||||
index2 = []
|
||||
i = 0
|
||||
for j in range(ipick[0][1],ipick[0][len(t[ipick]) - 1]):
|
||||
i = i+ 1
|
||||
if xfilt[j-1] <= 0 and xfilt[j] >= 0:
|
||||
zc2.append(t[ipick][i])
|
||||
index2.append(i)
|
||||
elif xfilt[j-1] > 0 and xfilt[j] <= 0:
|
||||
zc2.append(t[ipick][i])
|
||||
index2.append(i)
|
||||
if len(zc2) == 3:
|
||||
break
|
||||
|
||||
#if time difference betweeen 1st and 2cnd zero crossing
|
||||
#is too short, get time difference between 1st and 3rd
|
||||
#to derive maximum
|
||||
if zc2[1] - zc2[0] <= Xfilt[0].stats.delta:
|
||||
li2 = index2[1]
|
||||
else:
|
||||
li2 = index2[0]
|
||||
if np.size(xfilt[ipick[0][1]:ipick[0][li2]]) == 0:
|
||||
print 'earllatepicker: Onset on filtered trace too emergent for first motion determination!'
|
||||
P2 = None
|
||||
else:
|
||||
imax2 = np.argmax(abs(xfilt[ipick[0][1]:ipick[0][li2]]))
|
||||
islope2 = np.where((t >= Pick) & (t <= Pick + t[imax2]))
|
||||
#calculate slope as polynomal fit of order 1
|
||||
xslope2 = np.arange(0, len(xfilt[islope2]), 1)
|
||||
P2 = np.polyfit(xslope2, xfilt[islope2], 1)
|
||||
datafit2 = np.polyval(P2, xslope2)
|
||||
|
||||
#compare results
|
||||
if P1 is not None and P2 is not None:
|
||||
if P1[0] < 0 and P2[0] < 0:
|
||||
FM = 'D'
|
||||
elif P1[0] >= 0 and P2[0] < 0:
|
||||
FM = '-'
|
||||
elif P1[0] < 0 and P2[0]>= 0:
|
||||
FM = '-'
|
||||
elif P1[0] > 0 and P2[0] > 0:
|
||||
FM = 'U'
|
||||
elif P1[0] <= 0 and P2[0] > 0:
|
||||
FM = '+'
|
||||
elif P1[0] > 0 and P2[0] <= 0:
|
||||
FM = '+'
|
||||
|
||||
if iplot is not None:
|
||||
plt.figure(iplot)
|
||||
plt.subplot(2,1,1)
|
||||
plt.plot(t, xraw, 'k')
|
||||
p1, = plt.plot([Pick, Pick], [max(xraw), -max(xraw)], 'b', linewidth=2)
|
||||
if P1 is not None:
|
||||
p2, = plt.plot(t[islope1], xraw[islope1])
|
||||
p3, = plt.plot(zc1, np.zeros(len(zc1)), '*g', markersize=14)
|
||||
p4, = plt.plot(t[islope1], datafit1, '--g', linewidth=2)
|
||||
plt.legend([p1, p2, p3, p4], ['Pick', 'Slope Window', 'Zero Crossings', 'Slope'], \
|
||||
loc='best')
|
||||
plt.text(Pick + 0.02, max(xraw) / 2, '%s' % FM, fontsize=14)
|
||||
ax = plt.gca()
|
||||
ax.set_xlim([t[islope1[0][0]] - 0.1, t[islope1[0][len(islope1) - 1]] + 0.3])
|
||||
plt.yticks([])
|
||||
plt.title('First-Motion Determination, %s, Unfiltered Data' % Xraw[0].stats.station)
|
||||
|
||||
plt.subplot(2,1,2)
|
||||
plt.title('First-Motion Determination, Filtered Data')
|
||||
plt.plot(t, xfilt, 'k')
|
||||
p1, = plt.plot([Pick, Pick], [max(xfilt), -max(xfilt)], 'b', linewidth=2)
|
||||
if P2 is not None:
|
||||
p2, = plt.plot(t[islope2], xfilt[islope2])
|
||||
p3, = plt.plot(zc2, np.zeros(len(zc2)), '*g', markersize=14)
|
||||
p4, = plt.plot(t[islope2], datafit2, '--g', linewidth=2)
|
||||
plt.text(Pick + 0.02, max(xraw) / 2, '%s' % FM, fontsize=14)
|
||||
ax = plt.gca()
|
||||
ax.set_xlim([t[islope2[0][0]] - 0.1, t[islope2[0][len(islope2) - 1]] + 0.3])
|
||||
plt.xlabel('Time [s] since %s' % Xraw[0].stats.starttime)
|
||||
plt.yticks([])
|
||||
plt.show()
|
||||
raw_input()
|
||||
plt.close(iplot)
|
||||
|
||||
return FM
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--Xraw', type=~obspy.core.stream.Stream, help='unfiltered time series (seismogram) read with obspy module read')
|
||||
parser.add_argument('--Xfilt', type=~obspy.core.stream.Stream, help='filtered time series (seismogram) read with obspy module read')
|
||||
parser.add_argument('--pickwin', type=float, help='length of pick window [s] for first motion determination')
|
||||
parser.add_argument('--Pick', type=float, help='Onset time of most likely pick')
|
||||
parser.add_argument('--iplot', type=int, help='if set, figure no. iplot occurs')
|
||||
args = parser.parse_args()
|
||||
earllatepicker(args.Xraw, args.Xfilt, args.pickwin, args.Pick, args.iplot)
|
||||
|
@ -11,6 +11,8 @@ import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from pylot.core.pick.CharFuns import CharacteristicFunction
|
||||
from pylot.core.pick.Picker import AutoPicking
|
||||
from earllatepicker import earllatepicker
|
||||
from fmpicker import fmpicker
|
||||
import glob
|
||||
import argparse
|
||||
|
||||
@ -28,9 +30,9 @@ def run_makeCF(project, database, event, iplot, station=None):
|
||||
addnoise = 0.001 #add noise to seismogram for stable AR prediction
|
||||
arzorder = 2 #chosen order of AR process, vertical component
|
||||
arhorder = 4 #chosen order of AR process, horizontal components
|
||||
TSNRhos = [5, 0.5, 1, 0.1] #window lengths [s] for calculating SNR for earliest/latest pick and quality assessment
|
||||
TSNRhos = [5, 0.5, 1, .6] #window lengths [s] for calculating SNR for earliest/latest pick and quality assessment
|
||||
#from HOS-CF [noise window, safety gap, signal window, slope determination window]
|
||||
TSNRarz = [5, 0.5, 1, 0.5] #window lengths [s] for calculating SNR for earliest/lates pick and quality assessment
|
||||
TSNRarz = [5, 0.5, 1, 1.0] #window lengths [s] for calculating SNR for earliest/lates pick and quality assessment
|
||||
#from ARZ-CF
|
||||
#get waveform data
|
||||
if station:
|
||||
@ -70,17 +72,20 @@ def run_makeCF(project, database, event, iplot, station=None):
|
||||
aiccf = AICcf(st_copy, cuttimes) #instance of AICcf
|
||||
##############################################################
|
||||
#get prelimenary onset time from AIC-HOS-CF using subclass AICPicker of class AutoPicking
|
||||
aicpick = AICPicker(aiccf, None, TSNRhos, 3, 10, None, 0.1)
|
||||
aicpick = AICPicker(aiccf, TSNRhos, 3, 10, None, 0.1)
|
||||
##############################################################
|
||||
#get refined onset time from HOS-CF using class Picker
|
||||
hospick = PragPicker(hoscf, None, TSNRhos, 2, 10, 0.001, 0.2, aicpick.getpick())
|
||||
hospick = PragPicker(hoscf, TSNRhos, 2, 10, 0.001, 0.2, aicpick.getpick())
|
||||
#############################################################
|
||||
#get earliest and latest possible picks
|
||||
hosELpick = EarlLatePicker(hoscf, 1.5, TSNRhos, None, 10, None, None, hospick.getpick())
|
||||
st_copy[0].data = tr_filt.data
|
||||
[lpickhos, epickhos, pickerrhos] = earllatepicker(st_copy, 1.5, TSNRhos, hospick.getpick(), 10)
|
||||
#############################################################
|
||||
#get first motion of onset
|
||||
hosfm = fmpicker(st, st_copy, 0.2, hospick.getpick(), 11)
|
||||
##############################################################
|
||||
#calculate ARZ-CF using subclass ARZcf of class CharcteristicFunction
|
||||
#get stream object of filtered data
|
||||
st_copy[0].data = tr_filt.data
|
||||
arzcf = ARZcf(st_copy, cuttimes, tpredz, arzorder, tdetz, addnoise) #instance of ARZcf
|
||||
arzcf = ARZcf(st, cuttimes, tpredz, arzorder, tdetz, addnoise) #instance of ARZcf
|
||||
##############################################################
|
||||
#calculate AIC-ARZ-CF using subclass AICcf of class CharacteristicFunction
|
||||
#class needs stream object => build it
|
||||
@ -90,12 +95,13 @@ def run_makeCF(project, database, event, iplot, station=None):
|
||||
araiccf = AICcf(st_copy, cuttimes, tpredz, 0, tdetz) #instance of AICcf
|
||||
##############################################################
|
||||
#get onset time from AIC-ARZ-CF using subclass AICPicker of class AutoPicking
|
||||
aicarzpick = AICPicker(araiccf, 1.5, TSNRarz, 2, 10, None, 0.1)
|
||||
aicarzpick = AICPicker(araiccf, TSNRarz, 2, 10, None, 0.1)
|
||||
##############################################################
|
||||
#get refined onset time from ARZ-CF using class Picker
|
||||
arzpick = PragPicker(arzcf, 1.5, TSNRarz, 2.0, 10, 0.1, 0.05, aicarzpick.getpick())
|
||||
arzpick = PragPicker(arzcf, TSNRarz, 2.0, 10, 0.1, 0.05, aicarzpick.getpick())
|
||||
#get earliest and latest possible picks
|
||||
arzELpick = EarlLatePicker(arzcf, 1.5, TSNRarz, None, 10, None, None, arzpick.getpick())
|
||||
st_copy[0].data = tr_filt.data
|
||||
[lpickarz, epickarz, pickerrarz] = earllatepicker(st_copy, 1.5, TSNRarz, arzpick.getpick(), 10)
|
||||
elif not wfzfiles:
|
||||
print 'No vertical component data found!'
|
||||
|
||||
@ -131,12 +137,23 @@ def run_makeCF(project, database, event, iplot, station=None):
|
||||
arhaiccf = AICcf(H_copy, cuttimes, tpredh, 0, tdeth) #instance of AICcf
|
||||
##############################################################
|
||||
#get onset time from AIC-ARH-CF using subclass AICPicker of class AutoPicking
|
||||
aicarhpick = AICPicker(arhaiccf, 1.5, TSNRarz, 4, 10, None, 0.1)
|
||||
aicarhpick = AICPicker(arhaiccf, TSNRarz, 4, 10, None, 0.1)
|
||||
###############################################################
|
||||
#get refined onset time from ARH-CF using class Picker
|
||||
arhpick = PragPicker(arhcf, 1.5, TSNRarz, 2.5, 10, 0.1, 0.05, aicarhpick.getpick())
|
||||
arhpick = PragPicker(arhcf, TSNRarz, 2.5, 10, 0.1, 0.05, aicarhpick.getpick())
|
||||
#get earliest and latest possible picks
|
||||
arhELpick = EarlLatePicker(arhcf, 1.5, TSNRarz, None, 10, None, None, arhpick.getpick())
|
||||
H_copy[0].data = trH1_filt.data
|
||||
[lpickarh1, epickarh1, pickerrarh1] = earllatepicker(H_copy, 1.5, TSNRarz, arhpick.getpick(), 10)
|
||||
H_copy[0].data = trH2_filt.data
|
||||
[lpickarh2, epickarh2, pickerrarh2] = earllatepicker(H_copy, 1.5, TSNRarz, arhpick.getpick(), 10)
|
||||
#get earliest pick of both earliest possible picks
|
||||
epick = [epickarh1, epickarh2]
|
||||
lpick = [lpickarh1, lpickarh2]
|
||||
pickerr = [pickerrarh1, pickerrarh2]
|
||||
ipick =np.argmin([epickarh1, epickarh2])
|
||||
epickarh = epick[ipick]
|
||||
lpickarh = lpick[ipick]
|
||||
pickerrarh = pickerr[ipick]
|
||||
|
||||
#create stream with 3 traces
|
||||
#merge streams
|
||||
@ -158,8 +175,6 @@ def run_makeCF(project, database, event, iplot, station=None):
|
||||
AllC[2].data = All3_filt.data
|
||||
#calculate AR3C-CF using subclass AR3Ccf of class CharacteristicFunction
|
||||
ar3ccf = AR3Ccf(AllC, cuttimes, tpredz, arhorder, tdetz, addnoise) #instance of AR3Ccf
|
||||
#get earliest and latest possible pick from initial ARH-pick
|
||||
ar3cELpick = EarlLatePicker(ar3ccf, 1.5, TSNRarz, None, 10, None, None, arhpick.getpick())
|
||||
##############################################################
|
||||
if iplot:
|
||||
#plot vertical trace
|
||||
@ -177,16 +192,16 @@ def run_makeCF(project, database, event, iplot, station=None):
|
||||
plt.plot([hospick.getpick(), hospick.getpick()], [-1.3, 1.3], 'r', linewidth=2)
|
||||
plt.plot([hospick.getpick()-0.5, hospick.getpick()+0.5], [1.3, 1.3], 'r')
|
||||
plt.plot([hospick.getpick()-0.5, hospick.getpick()+0.5], [-1.3, -1.3], 'r')
|
||||
plt.plot([hosELpick.getLpick(), hosELpick.getLpick()], [-1.1, 1.1], 'r--')
|
||||
plt.plot([hosELpick.getEpick(), hosELpick.getEpick()], [-1.1, 1.1], 'r--')
|
||||
plt.plot([lpickhos, lpickhos], [-1.1, 1.1], 'r--')
|
||||
plt.plot([epickhos, epickhos], [-1.1, 1.1], 'r--')
|
||||
plt.plot([aicarzpick.getpick(), aicarzpick.getpick()], [-1.2, 1.2], 'y', linewidth=2)
|
||||
plt.plot([aicarzpick.getpick()-0.5, aicarzpick.getpick()+0.5], [1.2, 1.2], 'y')
|
||||
plt.plot([aicarzpick.getpick()-0.5, aicarzpick.getpick()+0.5], [-1.2, -1.2], 'y')
|
||||
plt.plot([arzpick.getpick(), arzpick.getpick()], [-1.4, 1.4], 'g', linewidth=2)
|
||||
plt.plot([arzpick.getpick()-0.5, arzpick.getpick()+0.5], [1.4, 1.4], 'g')
|
||||
plt.plot([arzpick.getpick()-0.5, arzpick.getpick()+0.5], [-1.4, -1.4], 'g')
|
||||
plt.plot([arzELpick.getLpick(), arzELpick.getLpick()], [-1.2, 1.2], 'g--')
|
||||
plt.plot([arzELpick.getEpick(), arzELpick.getEpick()], [-1.2, 1.2], 'g--')
|
||||
plt.plot([lpickarz, lpickarz], [-1.2, 1.2], 'g--')
|
||||
plt.plot([epickarz, epickarz], [-1.2, 1.2], 'g--')
|
||||
plt.yticks([])
|
||||
plt.ylim([-1.5, 1.5])
|
||||
plt.xlabel('Time [s]')
|
||||
@ -211,12 +226,10 @@ def run_makeCF(project, database, event, iplot, station=None):
|
||||
plt.plot([arhpick.getpick(), arhpick.getpick()], [-1, 1], 'r')
|
||||
plt.plot([arhpick.getpick()-0.5, arhpick.getpick()+0.5], [1, 1], 'r')
|
||||
plt.plot([arhpick.getpick()-0.5, arhpick.getpick()+0.5], [-1, -1], 'r')
|
||||
plt.plot([arhELpick.getLpick(), arhELpick.getLpick()], [-0.8, 0.8], 'r--')
|
||||
plt.plot([arhELpick.getEpick(), arhELpick.getEpick()], [-0.8, 0.8], 'r--')
|
||||
plt.plot([arhpick.getpick() + arhELpick.getPickError(), arhpick.getpick() + arhELpick.getPickError()], \
|
||||
[-0.2, 0.2], 'r--')
|
||||
plt.plot([arhpick.getpick() - arhELpick.getPickError(), arhpick.getpick() - arhELpick.getPickError()], \
|
||||
[-0.2, 0.2], 'r--')
|
||||
plt.plot([lpickarh, lpickarh], [-0.8, 0.8], 'r--')
|
||||
plt.plot([epickarh, epickarh], [-0.8, 0.8], 'r--')
|
||||
plt.plot([arhpick.getpick() + pickerrarh, arhpick.getpick() + pickerrarh], [-0.2, 0.2], 'r--')
|
||||
plt.plot([arhpick.getpick() - pickerrarh, arhpick.getpick() - pickerrarh], [-0.2, 0.2], 'r--')
|
||||
plt.yticks([])
|
||||
plt.ylim([-1.5, 1.5])
|
||||
plt.ylabel('Normalized Counts')
|
||||
@ -233,12 +246,10 @@ def run_makeCF(project, database, event, iplot, station=None):
|
||||
plt.plot([arhpick.getpick(), arhpick.getpick()], [-1, 1], 'r')
|
||||
plt.plot([arhpick.getpick()-0.5, arhpick.getpick()+0.5], [1, 1], 'r')
|
||||
plt.plot([arhpick.getpick()-0.5, arhpick.getpick()+0.5], [-1, -1], 'r')
|
||||
plt.plot([arhELpick.getLpick(), arhELpick.getLpick()], [-0.8, 0.8], 'r--')
|
||||
plt.plot([arhELpick.getEpick(), arhELpick.getEpick()], [-0.8, 0.8], 'r--')
|
||||
plt.plot([arhpick.getpick() + arhELpick.getPickError(), arhpick.getpick() + arhELpick.getPickError()], \
|
||||
[-0.2, 0.2], 'r--')
|
||||
plt.plot([arhpick.getpick() - arhELpick.getPickError(), arhpick.getpick() - arhELpick.getPickError()], \
|
||||
[-0.2, 0.2], 'r--')
|
||||
plt.plot([lpickarh, lpickarh], [-0.8, 0.8], 'r--')
|
||||
plt.plot([epickarh, epickarh], [-0.8, 0.8], 'r--')
|
||||
plt.plot([arhpick.getpick() + pickerrarh, arhpick.getpick() + pickerrarh], [-0.2, 0.2], 'r--')
|
||||
plt.plot([arhpick.getpick() - pickerrarh, arhpick.getpick() - pickerrarh], [-0.2, 0.2], 'r--')
|
||||
plt.title([trH2_filt.stats.station, trH2_filt.stats.channel])
|
||||
plt.yticks([])
|
||||
plt.ylim([-1.5, 1.5])
|
||||
@ -252,8 +263,6 @@ def run_makeCF(project, database, event, iplot, station=None):
|
||||
plt.plot([arhpick.getpick(), arhpick.getpick()], [-1, 1], 'b')
|
||||
plt.plot([arhpick.getpick()-0.5, arhpick.getpick()+0.5], [-1, -1], 'b')
|
||||
plt.plot([arhpick.getpick()-0.5, arhpick.getpick()+0.5], [1, 1], 'b')
|
||||
plt.plot([ar3cELpick.getLpick(), ar3cELpick.getLpick()], [-0.8, 0.8], 'b--')
|
||||
plt.plot([ar3cELpick.getEpick(), ar3cELpick.getEpick()], [-0.8, 0.8], 'b--')
|
||||
plt.yticks([])
|
||||
plt.xticks([])
|
||||
plt.ylabel('Normalized Counts')
|
||||
@ -266,8 +275,6 @@ def run_makeCF(project, database, event, iplot, station=None):
|
||||
plt.plot([arhpick.getpick(), arhpick.getpick()], [-1, 1], 'b')
|
||||
plt.plot([arhpick.getpick()-0.5, arhpick.getpick()+0.5], [-1, -1], 'b')
|
||||
plt.plot([arhpick.getpick()-0.5, arhpick.getpick()+0.5], [1, 1], 'b')
|
||||
plt.plot([ar3cELpick.getLpick(), ar3cELpick.getLpick()], [-0.8, 0.8], 'b--')
|
||||
plt.plot([ar3cELpick.getEpick(), ar3cELpick.getEpick()], [-0.8, 0.8], 'b--')
|
||||
plt.yticks([])
|
||||
plt.xticks([])
|
||||
plt.ylabel('Normalized Counts')
|
||||
@ -278,8 +285,6 @@ def run_makeCF(project, database, event, iplot, station=None):
|
||||
plt.plot([arhpick.getpick(), arhpick.getpick()], [-1, 1], 'b')
|
||||
plt.plot([arhpick.getpick()-0.5, arhpick.getpick()+0.5], [-1, -1], 'b')
|
||||
plt.plot([arhpick.getpick()-0.5, arhpick.getpick()+0.5], [1, 1], 'b')
|
||||
plt.plot([ar3cELpick.getLpick(), ar3cELpick.getLpick()], [-0.8, 0.8], 'b--')
|
||||
plt.plot([ar3cELpick.getEpick(), ar3cELpick.getEpick()], [-0.8, 0.8], 'b--')
|
||||
plt.yticks([])
|
||||
plt.ylabel('Normalized Counts')
|
||||
plt.title([trH2_filt.stats.station, trH2_filt.stats.channel])
|
||||
|
Loading…
Reference in New Issue
Block a user