[change] docstrings in picker.py
This commit is contained in:
parent
55101c9e9e
commit
b2f211516a
@ -29,38 +29,36 @@ from pylot.core.pick.utils import getnoisewin, getsignalwin
|
|||||||
|
|
||||||
|
|
||||||
class AutoPicker(object):
|
class AutoPicker(object):
|
||||||
'''
|
"""
|
||||||
Superclass of different, automated picking algorithms applied on a CF determined
|
Superclass of different, automated picking algorithms applied on a CF determined
|
||||||
using AIC, HOS, or AR prediction.
|
using AIC, HOS, or AR prediction.
|
||||||
'''
|
"""
|
||||||
|
|
||||||
warnings.simplefilter('ignore')
|
warnings.simplefilter('ignore')
|
||||||
|
|
||||||
def __init__(self, cf, TSNR, PickWindow, iplot=0, aus=None, Tsmooth=None, Pick1=None, fig=None, linecolor='k'):
|
def __init__(self, cf, TSNR, PickWindow, iplot=0, aus=None, Tsmooth=None, Pick1=None, fig=None, linecolor='k'):
|
||||||
'''
|
"""
|
||||||
:param: cf, characteristic function, on which the picking algorithm is applied
|
Create AutoPicker object
|
||||||
:type: `~pylot.core.pick.CharFuns.CharacteristicFunction` object
|
:param cf: characteristic function, on which the picking algorithm is applied
|
||||||
|
:type cf: `~pylot.core.pick.CharFuns.CharacteristicFunction`
|
||||||
:param: TSNR, length of time windows around pick used to determine SNR [s]
|
:param TSNR: length of time windows around pick used to determine SNR [s], tuple (T_noise, T_gap, T_signal)
|
||||||
:type: tuple (T_noise, T_gap, T_signal)
|
:type TSNR: (float, float, float)
|
||||||
|
:param PickWindow: length of pick window [s]
|
||||||
:param: PickWindow, length of pick window [s]
|
:type PickWindow: float
|
||||||
:type: float
|
:param iplot: flag used for plotting, if > 1, results will be plotted. Use iplot = 0 to disable plotting
|
||||||
|
:type iplot: int
|
||||||
:param: iplot, no. of figure window for plotting interims results
|
:param aus: ("artificial uplift of samples"), find local minimum at i if aic(i-1)*(1+aus) >= aic(i)
|
||||||
:type: integer
|
:type aus: float
|
||||||
|
:param Tsmooth: length of moving smoothing window to calculate smoothed CF [s]
|
||||||
:param: aus ("artificial uplift of samples"), find local minimum at i if aic(i-1)*(1+aus) >= aic(i)
|
:type Tsmooth: float
|
||||||
:type: float
|
:param Pick1: initial (preliminary) onset time, starting point for PragPicker and EarlLatePicker
|
||||||
|
:type Pick1: float
|
||||||
:param: Tsmooth, length of moving smoothing window to calculate smoothed CF [s]
|
:param fig: matplotlib figure used for plotting. If not given and plotting is enabled, a new figure will
|
||||||
:type: float
|
be created
|
||||||
|
:type fig: `~matplotlib.figure.Figure`
|
||||||
:param: Pick1, initial (prelimenary) onset time, starting point for PragPicker and
|
:param linecolor: matplotlib line color string
|
||||||
EarlLatePicker
|
:type linecolor: str
|
||||||
:type: float
|
"""
|
||||||
|
|
||||||
'''
|
|
||||||
|
|
||||||
assert isinstance(cf, CharacteristicFunction), "%s is not a CharacteristicFunction object" % str(cf)
|
assert isinstance(cf, CharacteristicFunction), "%s is not a CharacteristicFunction object" % str(cf)
|
||||||
self._linecolor = linecolor
|
self._linecolor = linecolor
|
||||||
@ -79,6 +77,11 @@ class AutoPicker(object):
|
|||||||
self.calcPick()
|
self.calcPick()
|
||||||
|
|
||||||
def __str__(self):
|
def __str__(self):
|
||||||
|
"""
|
||||||
|
String representation of AutoPicker object
|
||||||
|
:return:
|
||||||
|
:rtype: str
|
||||||
|
"""
|
||||||
return '''\n\t{name} object:\n
|
return '''\n\t{name} object:\n
|
||||||
TSNR:\t\t\t{TSNR}\n
|
TSNR:\t\t\t{TSNR}\n
|
||||||
PickWindow:\t{PickWindow}\n
|
PickWindow:\t{PickWindow}\n
|
||||||
@ -142,12 +145,12 @@ class AutoPicker(object):
|
|||||||
|
|
||||||
|
|
||||||
class AICPicker(AutoPicker):
|
class AICPicker(AutoPicker):
|
||||||
'''
|
"""
|
||||||
Method to derive the onset time of an arriving phase based on CF
|
Method to derive the onset time of an arriving phase based on CF
|
||||||
derived from AIC. In order to get an impression of the quality of this inital pick,
|
derived from AIC. In order to get an impression of the quality of this initial pick,
|
||||||
a quality assessment is applied based on SNR and slope determination derived from the CF,
|
a quality assessment is applied based on SNR and slope determination derived from the CF,
|
||||||
from which the AIC has been calculated.
|
from which the AIC has been calculated.
|
||||||
'''
|
"""
|
||||||
|
|
||||||
def calcPick(self):
|
def calcPick(self):
|
||||||
|
|
||||||
@ -214,6 +217,12 @@ class AICPicker(AutoPicker):
|
|||||||
self.Pick = self.Tcf[i]
|
self.Pick = self.Tcf[i]
|
||||||
break
|
break
|
||||||
|
|
||||||
|
def calcPick(self):
|
||||||
|
"""
|
||||||
|
Calculate pick using cf derived from AIC
|
||||||
|
:return:
|
||||||
|
:rtype: None
|
||||||
|
"""
|
||||||
# quality assessment using SNR and slope from CF
|
# quality assessment using SNR and slope from CF
|
||||||
if self.Pick is not None:
|
if self.Pick is not None:
|
||||||
# get noise window
|
# get noise window
|
||||||
@ -364,9 +373,9 @@ class AICPicker(AutoPicker):
|
|||||||
|
|
||||||
|
|
||||||
class PragPicker(AutoPicker):
|
class PragPicker(AutoPicker):
|
||||||
'''
|
"""
|
||||||
Method of pragmatic picking exploiting information given by CF.
|
Method of pragmatic picking exploiting information given by CF.
|
||||||
'''
|
"""
|
||||||
|
|
||||||
def calcPick(self):
|
def calcPick(self):
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user