Major changes: 1) Implemented new class EarlLatePicker for calculating earliest and lates possible pick from initial (most likely) onset, based on cook book for consistent phase picking by Diehl & Kissling 2) Modified AICPicker, uses now unsmoothed and smoothed CF for not sticking in some local minima 3) Implemented optional plotting of interims results
This commit is contained in:
parent
4a48874f88
commit
b953377c58
@ -1,7 +1,7 @@
|
|||||||
# -*- coding: utf-8 -*-
|
# -*- coding: utf-8 -*-
|
||||||
"""
|
"""
|
||||||
Created Dec 2014
|
Created Dec 2014 to Feb 2015
|
||||||
Implementation of the picking algorithms published and described in:
|
Implementation of the automated picking algorithms published and described in:
|
||||||
|
|
||||||
Kueperkoch, L., Meier, T., Lee, J., Friederich, W., & Egelados Working Group, 2010:
|
Kueperkoch, L., Meier, T., Lee, J., Friederich, W., & Egelados Working Group, 2010:
|
||||||
Automated determination of P-phase arrival times at regional and local distances
|
Automated determination of P-phase arrival times at regional and local distances
|
||||||
@ -12,29 +12,28 @@ Working Group, 2012: Automated determination of S-phase arrival times using
|
|||||||
autoregressive prediction: application ot local and regional distances, Geophys. J. Int.,
|
autoregressive prediction: application ot local and regional distances, Geophys. J. Int.,
|
||||||
188, 687-702.
|
188, 687-702.
|
||||||
|
|
||||||
|
The picks with the above described algorithms are assumed to be the most likely picks.
|
||||||
|
For each most likely pick the corresponding earliest and latest possible picks are
|
||||||
|
calculated after Diehl & Kissling (2009).
|
||||||
|
|
||||||
:author: MAGS2 EP3 working group / Ludger Kueperkoch
|
:author: MAGS2 EP3 working group / Ludger Kueperkoch
|
||||||
"""
|
"""
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import matplotlib.pyplot as plt
|
import matplotlib.pyplot as plt
|
||||||
from CharFuns import *
|
from pylot.core.pick.CharFuns import CharacteristicFunction
|
||||||
#from pylot.core.pick.CharFuns import CharacteristicFunction
|
|
||||||
import pdb
|
|
||||||
|
|
||||||
class AutoPicking(object):
|
class AutoPicking(object):
|
||||||
'''
|
'''
|
||||||
Superclass of different, automated picking algorithms applied on a CF determined
|
Superclass of different, automated picking algorithms applied on a CF determined
|
||||||
using AIC, HOS, or AR prediction.
|
using AIC, HOS, or AR prediction.
|
||||||
'''
|
'''
|
||||||
def __init__(self, cf, Tslope, aerr, TSNR, PickWindow, aus=None, Tsmooth=None, Pick1=None):
|
def __init__(self, cf, nfac, TSNR, PickWindow, iplot=None, aus=None, Tsmooth=None, Pick1=None):
|
||||||
'''
|
'''
|
||||||
:param: cf, characteristic function, on which the picking algorithm is applied
|
:param: cf, characteristic function, on which the picking algorithm is applied
|
||||||
:type: `~pylot.core.pick.CharFuns.CharacteristicFunction` object
|
:type: `~pylot.core.pick.CharFuns.CharacteristicFunction` object
|
||||||
|
|
||||||
:param: Tslope, length of time window after pick used to determine slope
|
:param: nfac (noise factor), nfac times noise level to calculate latest possible pick
|
||||||
for quality estimation [s]
|
in EarlLatePick
|
||||||
:type: float
|
|
||||||
|
|
||||||
:param: aerr (adjusted error), percentage of maximum of CF to determine slope for quality estimation
|
|
||||||
:type: int
|
:type: int
|
||||||
|
|
||||||
:param: TSNR, length of time windows around pick used to determine SNR [s]
|
:param: TSNR, length of time windows around pick used to determine SNR [s]
|
||||||
@ -43,25 +42,31 @@ class AutoPicking(object):
|
|||||||
:param: PickWindow, length of pick window [s]
|
:param: PickWindow, length of pick window [s]
|
||||||
:type: float
|
:type: float
|
||||||
|
|
||||||
|
:param: iplot, no. of figure window for plotting interims results
|
||||||
|
:type: integer
|
||||||
|
|
||||||
:param: aus ("artificial uplift of samples"), find local minimum at i if aic(i-1)*(1+aus) >= aic(i)
|
:param: aus ("artificial uplift of samples"), find local minimum at i if aic(i-1)*(1+aus) >= aic(i)
|
||||||
:type: float
|
:type: float
|
||||||
|
|
||||||
:param: Tsmooth, length of moving smoothing window to calculate smoothed CF [s]
|
:param: Tsmooth, length of moving smoothing window to calculate smoothed CF [s]
|
||||||
:type: float
|
:type: float
|
||||||
|
|
||||||
:param: Pick1, initial (prelimenary) onset time, starting point for PragPicker
|
:param: Pick1, initial (prelimenary) onset time, starting point for PragPicker and
|
||||||
|
EarlLatePick
|
||||||
:type: float
|
:type: float
|
||||||
|
|
||||||
'''
|
'''
|
||||||
|
|
||||||
assert isinstance(cf, CharacteristicFunction), "%s is not a CharacteristicFunction object" % str(cf)
|
assert isinstance(cf, CharacteristicFunction), "%s is not a CharacteristicFunction object" % str(cf)
|
||||||
|
|
||||||
self.cf = cf.getCF()
|
self.cf = cf.getCF()
|
||||||
self.Tcf = cf.getTimeArray()
|
self.Tcf = cf.getTimeArray()
|
||||||
|
self.Data = cf.getXCF()
|
||||||
self.dt = cf.getIncrement()
|
self.dt = cf.getIncrement()
|
||||||
self.setTslope(Tslope)
|
self.setnfac(nfac)
|
||||||
self.setaerr(aerr)
|
|
||||||
self.setTSNR(TSNR)
|
self.setTSNR(TSNR)
|
||||||
self.setPickWindow(PickWindow)
|
self.setPickWindow(PickWindow)
|
||||||
|
self.setiplot(iplot)
|
||||||
self.setaus(aus)
|
self.setaus(aus)
|
||||||
self.setTsmooth(Tsmooth)
|
self.setTsmooth(Tsmooth)
|
||||||
self.setpick1(Pick1)
|
self.setpick1(Pick1)
|
||||||
@ -69,33 +74,25 @@ class AutoPicking(object):
|
|||||||
|
|
||||||
def __str__(self):
|
def __str__(self):
|
||||||
return '''\n\t{name} object:\n
|
return '''\n\t{name} object:\n
|
||||||
TSlope:\t{Tslope}\n
|
nfac:\t{nfac}\n
|
||||||
aerr:\t{aerr}\n
|
|
||||||
TSNR:\t\t\t{TSNR}\n
|
TSNR:\t\t\t{TSNR}\n
|
||||||
PickWindow:\t{PickWindow}\n
|
PickWindow:\t{PickWindow}\n
|
||||||
aus:\t{aus}\n
|
aus:\t{aus}\n
|
||||||
Tsmooth:\t{Tsmooth}\n
|
Tsmooth:\t{Tsmooth}\n
|
||||||
Pick1:\t{Pick1}\n
|
Pick1:\t{Pick1}\n
|
||||||
'''.format(name=type(self).__name__,
|
'''.format(name=type(self).__name__,
|
||||||
Tslope=self.getTslope(),
|
nfac=self.getnfac(),
|
||||||
aerr=self.getaerr(),
|
|
||||||
TSNR=self.getTSNR(),
|
TSNR=self.getTSNR(),
|
||||||
PickWindow=self.getPickWindow(),
|
PickWindow=self.getPickWindow(),
|
||||||
aus=self.getaus(),
|
aus=self.getaus(),
|
||||||
Tsmooth=self.getTsmooth(),
|
Tsmooth=self.getTsmooth(),
|
||||||
Pick1=self.getpick1())
|
Pick1=self.getpick1())
|
||||||
|
|
||||||
def getTslope(self):
|
def getnfac(self):
|
||||||
return self.Tslope
|
return self.nfac
|
||||||
|
|
||||||
def setTslope(self, Tslope):
|
|
||||||
self.Tslope = Tslope
|
|
||||||
|
|
||||||
def getaerr(self):
|
|
||||||
return self.aerr
|
|
||||||
|
|
||||||
def setaerr(self, aerr):
|
def setnfac(self, nfac):
|
||||||
self.aerr = aerr
|
self.nfac = nfac
|
||||||
|
|
||||||
def getTSNR(self):
|
def getTSNR(self):
|
||||||
return self.TSNR
|
return self.TSNR
|
||||||
@ -124,6 +121,18 @@ class AutoPicking(object):
|
|||||||
def getpick(self):
|
def getpick(self):
|
||||||
return self.Pick
|
return self.Pick
|
||||||
|
|
||||||
|
def getLpick(self):
|
||||||
|
return self.LPick
|
||||||
|
|
||||||
|
def getEpick(self):
|
||||||
|
return self.EPick
|
||||||
|
|
||||||
|
def getiplot(self):
|
||||||
|
return self.iplot
|
||||||
|
|
||||||
|
def setiplot(self, iplot):
|
||||||
|
self.iplot = iplot
|
||||||
|
|
||||||
def getpick1(self):
|
def getpick1(self):
|
||||||
return self.Pick1
|
return self.Pick1
|
||||||
|
|
||||||
@ -132,7 +141,8 @@ class AutoPicking(object):
|
|||||||
|
|
||||||
def calcPick(self):
|
def calcPick(self):
|
||||||
self.Pick = None
|
self.Pick = None
|
||||||
|
|
||||||
|
|
||||||
class AICPicker(AutoPicking):
|
class AICPicker(AutoPicking):
|
||||||
'''
|
'''
|
||||||
Method to derive onset time of arriving phase based on CF
|
Method to derive onset time of arriving phase based on CF
|
||||||
@ -144,23 +154,59 @@ class AICPicker(AutoPicking):
|
|||||||
print 'Get onset time (pick) from AIC-CF ...'
|
print 'Get onset time (pick) from AIC-CF ...'
|
||||||
|
|
||||||
self.Pick = None
|
self.Pick = None
|
||||||
|
#find NaN's
|
||||||
|
nn = np.isnan(self.cf)
|
||||||
|
if len(nn) > 1:
|
||||||
|
self.cf[nn] = 0
|
||||||
#taper AIC-CF to get rid off side maxima
|
#taper AIC-CF to get rid off side maxima
|
||||||
tap = np.hanning(len(self.cf))
|
tap = np.hanning(len(self.cf))
|
||||||
aic = tap * self.cf + max(abs(self.cf))
|
aic = tap * self.cf + max(abs(self.cf))
|
||||||
|
#smooth AIC-CF
|
||||||
|
ismooth = int(round(self.Tsmooth / self.dt))
|
||||||
|
aicsmooth = np.zeros(len(aic))
|
||||||
|
if len(aic) < ismooth:
|
||||||
|
print 'AICPicker: Tsmooth larger than CF!'
|
||||||
|
return
|
||||||
|
else:
|
||||||
|
for i in range(1, len(aic)):
|
||||||
|
if i > ismooth:
|
||||||
|
ii1 = i - ismooth;
|
||||||
|
aicsmooth[i] = aicsmooth[i - 1] + (aic[i] - aic[ii1]) / ismooth
|
||||||
|
else:
|
||||||
|
aicsmooth[i] = np.mean(aic[1 : i])
|
||||||
|
#remove offset
|
||||||
|
offset = abs(min(aic) - min(aicsmooth))
|
||||||
|
aicsmooth = aicsmooth - offset
|
||||||
#get maximum of CF as starting point
|
#get maximum of CF as starting point
|
||||||
icfmax = np.argmax(aic)
|
icfmax = np.argmax(aic)
|
||||||
|
|
||||||
#find minimum in front of maximum
|
#find minimum in front of maximum
|
||||||
lpickwindow = int(round(self.PickWindow / self.dt))
|
lpickwindow = int(round(self.PickWindow / self.dt))
|
||||||
for i in range(icfmax - 1, max([icfmax - lpickwindow, 2]), -1):
|
for i in range(icfmax - 1, max([icfmax - lpickwindow, 2]), -1):
|
||||||
if aic[i - 1] >= aic[i]:
|
if aicsmooth[i - 1] >= aicsmooth[i]:
|
||||||
self.Pick = self.Tcf[i]
|
self.Pick = self.Tcf[i]
|
||||||
break
|
break
|
||||||
|
|
||||||
|
if self.iplot is not None:
|
||||||
|
plt.figure(self.iplot)
|
||||||
|
x = self.Data[0].data
|
||||||
|
p1, = plt.plot(self.Tcf, x / max(x), 'k')
|
||||||
|
p2, = plt.plot(self.Tcf, aicsmooth / max(aicsmooth), 'r')
|
||||||
|
p3, = plt.plot([self.Pick, self.Pick], [-1 , 1], 'b', linewidth=2)
|
||||||
|
plt.legend([p1, p2, p3], ['(HOS-/AR-) Data', 'Smoothed AIC-CF', 'AIC-Pick'])
|
||||||
|
plt.xlabel('Time [s] since %s' % self.Data[0].stats.starttime)
|
||||||
|
plt.yticks([])
|
||||||
|
plt.title(self.Data[0].stats.station)
|
||||||
|
plt.show()
|
||||||
|
raw_input()
|
||||||
|
plt.close(self.iplot)
|
||||||
|
|
||||||
if self.Pick == None:
|
if self.Pick == None:
|
||||||
print 'AICPicker: Could not find minimum, picking window too short?'
|
print 'AICPicker: Could not find minimum, picking window too short?'
|
||||||
|
|
||||||
return self.Pick
|
return self.Pick
|
||||||
|
|
||||||
|
|
||||||
class PragPicker(AutoPicking):
|
class PragPicker(AutoPicking):
|
||||||
'''
|
'''
|
||||||
Method of pragmatic picking exploiting information given by CF.
|
Method of pragmatic picking exploiting information given by CF.
|
||||||
@ -169,7 +215,7 @@ class PragPicker(AutoPicking):
|
|||||||
def calcPick(self):
|
def calcPick(self):
|
||||||
|
|
||||||
if self.getpick1() is not None:
|
if self.getpick1() is not None:
|
||||||
print 'Get onset time (pick) from HOS- or AR-CF using pragmatic picking algorithm ...'
|
print 'Get most likely pick from HOS- or AR-CF using pragmatic picking algorithm ...'
|
||||||
|
|
||||||
self.Pick = None
|
self.Pick = None
|
||||||
#smooth CF
|
#smooth CF
|
||||||
@ -190,9 +236,9 @@ class PragPicker(AutoPicking):
|
|||||||
#which is centered around tpick1
|
#which is centered around tpick1
|
||||||
ipick = np.where((self.Tcf >= self.getpick1() - self.PickWindow / 2) \
|
ipick = np.where((self.Tcf >= self.getpick1() - self.PickWindow / 2) \
|
||||||
& (self.Tcf <= self.getpick1() + self.PickWindow / 2))
|
& (self.Tcf <= self.getpick1() + self.PickWindow / 2))
|
||||||
cfipick = self.cf[ipick]
|
cfipick = self.cf[ipick] - np.mean(self.cf[ipick])
|
||||||
Tcfpick = self.Tcf[ipick]
|
Tcfpick = self.Tcf[ipick]
|
||||||
cfsmoothipick = cfsmooth[ipick]
|
cfsmoothipick = cfsmooth[ipick]- np.mean(self.cf[ipick])
|
||||||
ipick1 = np.argmin(abs(self.Tcf - self.getpick1()))
|
ipick1 = np.argmin(abs(self.Tcf - self.getpick1()))
|
||||||
cfpick1 = 2 * self.cf[ipick1]
|
cfpick1 = 2 * self.cf[ipick1]
|
||||||
|
|
||||||
@ -232,14 +278,255 @@ class PragPicker(AutoPicking):
|
|||||||
break
|
break
|
||||||
|
|
||||||
#now decide which pick: left or right?
|
#now decide which pick: left or right?
|
||||||
if flagpick_l > 0 and flagpick_r > 0:
|
if flagpick_l > 0 and flagpick_r > 0 and cfpick_l <= cfpick_r:
|
||||||
if cfpick_l <= cfpick_r:
|
self.Pick = pick_l
|
||||||
self.Pick = pick_l
|
elif flagpick_l > 0 and flagpick_r > 0 and cfpick_l >= cfpick_r:
|
||||||
else:
|
self.Pick = pick_r
|
||||||
self.Pick = pick_r
|
|
||||||
|
if self.getiplot() is not None:
|
||||||
|
plt.figure(self.getiplot())
|
||||||
|
p1, = plt.plot(Tcfpick,cfipick, 'k')
|
||||||
|
p2, = plt.plot(Tcfpick,cfsmoothipick, 'r')
|
||||||
|
p3, = plt.plot([self.Pick, self.Pick], [min(cfipick), max(cfipick)], 'b', linewidth=2)
|
||||||
|
plt.legend([p1, p2, p3], ['CF', 'Smoothed CF', 'Pick'])
|
||||||
|
plt.xlabel('Time [s] since %s' % self.Data[0].stats.starttime)
|
||||||
|
plt.yticks([])
|
||||||
|
plt.title(self.Data[0].stats.station)
|
||||||
|
plt.show()
|
||||||
|
raw_input()
|
||||||
|
plt.close(self.getiplot())
|
||||||
|
|
||||||
else:
|
else:
|
||||||
self.Pick = None
|
self.Pick = None
|
||||||
print 'PragPicker: No initial onset time given! Check input!'
|
print 'PragPicker: No initial onset time given! Check input!'
|
||||||
return
|
return
|
||||||
|
|
||||||
|
|
||||||
|
class EarlLatePicker(AutoPicking):
|
||||||
|
'''
|
||||||
|
Method to derive earliest and latest possible pick after Diehl & Kissling (2009)
|
||||||
|
as reasonable uncertainties. Latest possible pick is based on noise level,
|
||||||
|
earliest possible pick is half a signal wavelength in front of most likely
|
||||||
|
pick given by PragPicker. Most likely pick (initial pick) must be given.
|
||||||
|
'''
|
||||||
|
|
||||||
|
def calcPick(self):
|
||||||
|
|
||||||
|
self.LPick = None
|
||||||
|
self.EPick = None
|
||||||
|
if self.getpick1() is not None:
|
||||||
|
print 'Get earliest and latest possible pick relative to most likely pick ...'
|
||||||
|
|
||||||
|
ti = self.getpick1()
|
||||||
|
x = self.Data
|
||||||
|
t = self.Tcf
|
||||||
|
#some parmaters needed:
|
||||||
|
tnoise = self.TSNR[0] #noise window length for calculating noise level
|
||||||
|
tsignal = self.TSNR[2] #signal window length
|
||||||
|
tsafety = self.TSNR[1] #safety gap between signal onset and noise window
|
||||||
|
|
||||||
|
#get latest possible pick
|
||||||
|
#get noise window
|
||||||
|
inoise = np.where((self.Tcf <= ti - tsafety) & (self.Tcf >= ti - tnoise - tsafety))
|
||||||
|
#get signal window
|
||||||
|
isignal = np.where((self.Tcf <= ti + tsignal) & (self.Tcf >= ti))
|
||||||
|
#calculate noise level
|
||||||
|
if len(x) == 1:
|
||||||
|
nlevel = max(abs(x[0].data[inoise])) * self.nfac
|
||||||
|
#get time where signal exceeds nlevel
|
||||||
|
ilup = np.where(x[0].data[isignal] > nlevel)
|
||||||
|
ildown = np.where(x[0].data[isignal] < -nlevel)
|
||||||
|
if len(ilup[0]) <= 1 and len(ildown[0]) <= 1:
|
||||||
|
print 'EarlLatePick: Signal lower than noise level, misspick?'
|
||||||
|
return
|
||||||
|
il = min([ilup[0][0], ildown[0][0]])
|
||||||
|
self.LPick = t[isignal][il]
|
||||||
|
elif len(x) == 2:
|
||||||
|
nlevel = max(np.sqrt(np.power(x[0].data[inoise], 2) + np.power(x[1].data[inoise], 2)))
|
||||||
|
#get earliest time where signal exceeds nlevel
|
||||||
|
ilup1 = np.where(x[0].data[isignal] > nlevel)
|
||||||
|
ilup2 = np.where(x[1].data[isignal] > nlevel)
|
||||||
|
ildown1 = np.where(x[0].data[isignal] < -nlevel)
|
||||||
|
ildown2 = np.where(x[1].data[isignal] < -nlevel)
|
||||||
|
ilup = min([ilup1[0][0], ilup2[0][0]])
|
||||||
|
ildown = min([ildown1[0][0], ildown2[0][0]])
|
||||||
|
if np.size(ilup) < 1 and np.size(ildown) < 1:
|
||||||
|
print 'EarlLatePick: Signal lower than noise level, misspick?'
|
||||||
|
return
|
||||||
|
il = min([ilup, ildown])
|
||||||
|
self.LPick = t[isignal][il]
|
||||||
|
elif len(x) == 3:
|
||||||
|
nlevel = max(np.sqrt(np.power(x[0].data[inoise], 2) + np.power(x[1].data[inoise], 2) + \
|
||||||
|
np.power(x[2].data[inoise], 2)))
|
||||||
|
#get earliest time where signal exceeds nlevel
|
||||||
|
ilup1 = np.where(x[0].data[isignal] > nlevel)
|
||||||
|
ilup2 = np.where(x[1].data[isignal] > nlevel)
|
||||||
|
ilup3 = np.where(x[2].data[isignal] > nlevel)
|
||||||
|
ildown1 = np.where(x[0].data[isignal] < -nlevel)
|
||||||
|
ildown2 = np.where(x[1].data[isignal] < -nlevel)
|
||||||
|
ildown3 = np.where(x[2].data[isignal] < -nlevel)
|
||||||
|
ilup = min([ilup1[0][0], ilup2[0][0], ilup3[0][0]])
|
||||||
|
ildown = min([ildown1[0][0], ildown2[0][0], ildown3[0][0]])
|
||||||
|
if np.size(ilup) < 1 and np.size(ildown) < 1:
|
||||||
|
print 'EarlLatePick: Signal lower than noise level, misspick?'
|
||||||
|
return
|
||||||
|
il = min([ilup, ildown])
|
||||||
|
self.LPick = t[isignal][il]
|
||||||
|
|
||||||
|
#get earliest possible pick
|
||||||
|
#get next 2 zero crossings after most likely pick
|
||||||
|
#if there is one trace in stream
|
||||||
|
if len(x) == 1:
|
||||||
|
zc = []
|
||||||
|
zc.append(ti)
|
||||||
|
i = 0
|
||||||
|
for j in range(isignal[0][1],isignal[0][len(t[isignal]) - 1]):
|
||||||
|
i = i+ 1
|
||||||
|
if x[0].data[j-1] <= 0 and x[0].data[j] >= 0:
|
||||||
|
zc.append(t[isignal][i])
|
||||||
|
elif x[0].data[j-1] > 0 and x[0].data[j] <= 0:
|
||||||
|
zc.append(t[isignal][i])
|
||||||
|
if len(zc) == 3:
|
||||||
|
break
|
||||||
|
#calculate maximum period of signal out of zero crossings
|
||||||
|
Ts = max(np.diff(zc))
|
||||||
|
#if there are two traces in stream
|
||||||
|
#get maximum of two signal periods
|
||||||
|
if len(x) == 2:
|
||||||
|
zc1 = []
|
||||||
|
zc2 = []
|
||||||
|
zc1.append(ti)
|
||||||
|
zc2.append(ti)
|
||||||
|
i = 0
|
||||||
|
for j in range(isignal[0][1],isignal[0][len(t[isignal]) - 1]):
|
||||||
|
i = i+ 1
|
||||||
|
if x[0].data[j-1] <= 0 and x[0].data[j] >= 0:
|
||||||
|
zc1.append(t[isignal][i])
|
||||||
|
elif x[0].data[j-1] > 0 and x[0].data[j] <= 0:
|
||||||
|
zc1.append(t[isignal][i])
|
||||||
|
if x[1].data[j-1] <= 0 and x[1].data[j] >= 0:
|
||||||
|
zc2.append(t[isignal][i])
|
||||||
|
elif x[1].data[j-1] > 0 and x[1].data[j] <= 0:
|
||||||
|
zc2.append(t[isignal][i])
|
||||||
|
if len(zc1) >= 3 and len(zc2) >= 3:
|
||||||
|
break
|
||||||
|
Ts = max([max(np.diff(zc1)), max(np.diff(zc2))])
|
||||||
|
#if there are three traces in stream
|
||||||
|
#get maximum of three signal periods
|
||||||
|
if len(x) == 3:
|
||||||
|
zc1 = []
|
||||||
|
zc2 = []
|
||||||
|
zc3 = []
|
||||||
|
zc1.append(ti)
|
||||||
|
zc2.append(ti)
|
||||||
|
zc3.append(ti)
|
||||||
|
i = 0
|
||||||
|
for j in range(isignal[0][1],isignal[0][len(t[isignal]) - 1]):
|
||||||
|
i = i+ 1
|
||||||
|
if x[0].data[j-1] <= 0 and x[0].data[j] >= 0:
|
||||||
|
zc1.append(t[isignal][i])
|
||||||
|
elif x[0].data[j-1] > 0 and x[0].data[j] <= 0:
|
||||||
|
zc1.append(t[isignal][i])
|
||||||
|
if x[1].data[j-1] <= 0 and x[1].data[j] >= 0:
|
||||||
|
zc2.append(t[isignal][i])
|
||||||
|
elif x[1].data[j-1] > 0 and x[1].data[j] <= 0:
|
||||||
|
zc2.append(t[isignal][i])
|
||||||
|
if x[2].data[j-1] <= 0 and x[2].data[j] >= 0:
|
||||||
|
zc3.append(t[isignal][i])
|
||||||
|
elif x[2].data[j-1] > 0 and x[2].data[j] <= 0:
|
||||||
|
zc3.append(t[isignal][i])
|
||||||
|
if len(zc1) >= 3 and len(zc2) >= 3 and len(zc3) >= 3:
|
||||||
|
break
|
||||||
|
Ts = max([max(np.diff(zc1)), max(np.diff(zc2)), max(np.diff(zc3))])
|
||||||
|
|
||||||
|
#Ts/4 is assumed as time difference between most likely and earliest possible pick!
|
||||||
|
self.EPick = ti - Ts/4
|
||||||
|
|
||||||
|
if self.iplot is not None:
|
||||||
|
plt.figure(self.iplot)
|
||||||
|
if len(x) == 1:
|
||||||
|
p1, = plt.plot(t, x[0].data, 'k')
|
||||||
|
p2, = plt.plot(t[inoise], x[0].data[inoise])
|
||||||
|
p3, = plt.plot(t[isignal], x[0].data[isignal], 'r')
|
||||||
|
p4, = plt.plot([t[0], t[int(len(t)) - 1]], [nlevel, nlevel], '--k')
|
||||||
|
p5, = plt.plot(zc, [0, 0, 0], '*g', markersize=14)
|
||||||
|
plt.legend([p1, p2, p3, p4, p5], ['Data', 'Noise Window', 'Signal Window', 'Noise Level', 'Zero Crossings'])
|
||||||
|
plt.plot([t[0], t[int(len(t)) - 1]], [-nlevel, -nlevel], '--k')
|
||||||
|
plt.plot([ti, ti], [max(x[0].data), -max(x[0].data)], 'b', linewidth=2)
|
||||||
|
plt.plot([self.LPick, self.LPick], [max(x[0].data)/2, -max(x[0].data)/2], '--k')
|
||||||
|
plt.plot([self.EPick, self.EPick], [max(x[0].data)/2, -max(x[0].data)/2], '--k')
|
||||||
|
plt.xlabel('Time [s] since %s' % self.Data[0].stats.starttime)
|
||||||
|
plt.yticks([])
|
||||||
|
plt.title('Earliest-/Latest Possible and Most Likely Pick, %s' % self.Data[0].stats.station)
|
||||||
|
elif len(x) == 2:
|
||||||
|
plt.subplot(2,1,1)
|
||||||
|
p1, = plt.plot(t, x[0].data, 'k')
|
||||||
|
p2, = plt.plot(t[inoise], x[0].data[inoise])
|
||||||
|
p3, = plt.plot(t[isignal], x[0].data[isignal], 'r')
|
||||||
|
p4, = plt.plot([t[0], t[int(len(t)) - 1]], [nlevel, nlevel], '--k')
|
||||||
|
p5, = plt.plot(zc1[0:3], [0, 0, 0], '*g', markersize=14)
|
||||||
|
plt.legend([p1, p2, p3, p4, p5], ['Data', 'Noise Window', 'Signal Window', 'Noise Level', 'Zero Crossings'])
|
||||||
|
plt.plot([t[0], t[int(len(t)) - 1]], [-nlevel, -nlevel], '--k')
|
||||||
|
plt.plot([ti, ti], [max(x[0].data), -max(x[0].data)], 'b', linewidth=2)
|
||||||
|
plt.plot([self.LPick, self.LPick], [max(x[0].data)/2, -max(x[0].data)/2], '--k')
|
||||||
|
plt.plot([self.EPick, self.EPick], [max(x[0].data)/2, -max(x[0].data)/2], '--k')
|
||||||
|
plt.plot(zc1[0:3], [0, 0, 0], '*g')
|
||||||
|
plt.yticks([])
|
||||||
|
plt.title('Earliest-/Latest Possible and Most Likely Pick, %s' % self.Data[0].stats.station)
|
||||||
|
plt.subplot(2,1,2)
|
||||||
|
plt.plot(t, x[1].data, 'k')
|
||||||
|
plt.plot(t[inoise], x[1].data[inoise])
|
||||||
|
plt.plot(t[isignal], x[1].data[isignal], 'r')
|
||||||
|
plt.plot([t[0], t[int(len(t)) - 1]], [nlevel, nlevel], '--k')
|
||||||
|
plt.plot([t[0], t[int(len(t)) - 1]], [-nlevel, -nlevel], '--k')
|
||||||
|
plt.plot([ti, ti], [max(x[1].data), -max(x[1].data)], 'b', linewidth=2)
|
||||||
|
plt.plot([self.LPick, self.LPick], [max(x[1].data)/2, -max(x[1].data)/2], '--k')
|
||||||
|
plt.plot([self.EPick, self.EPick], [max(x[1].data)/2, -max(x[1].data)/2], '--k')
|
||||||
|
plt.plot(zc2[0:3], [0, 0, 0], '*g', markersize=14)
|
||||||
|
plt.xlabel('Time [s] since %s' % self.Data[0].stats.starttime)
|
||||||
|
plt.yticks([])
|
||||||
|
elif len(x) == 3:
|
||||||
|
plt.subplot(3,1,1)
|
||||||
|
p1, = plt.plot(t, x[0].data, 'k')
|
||||||
|
p2, = plt.plot(t[inoise], x[0].data[inoise])
|
||||||
|
p3, = plt.plot(t[isignal], x[0].data[isignal], 'r')
|
||||||
|
p4, = plt.plot([t[0], t[int(len(t)) - 1]], [nlevel, nlevel], '--k')
|
||||||
|
p5, = plt.plot(zc1[0:3], [0, 0, 0], '*g', markersize=14)
|
||||||
|
plt.legend([p1, p2, p3, p4, p5], ['Data', 'Noise Window', 'Signal Window', 'Noise Level', 'Zero Crossings'])
|
||||||
|
plt.plot([t[0], t[int(len(t)) - 1]], [-nlevel, -nlevel], '--k')
|
||||||
|
plt.plot([ti, ti], [max(x[0].data), -max(x[0].data)], 'b', linewidth=2)
|
||||||
|
plt.plot([self.LPick, self.LPick], [max(x[0].data)/2, -max(x[0].data)/2], '--k')
|
||||||
|
plt.plot([self.EPick, self.EPick], [max(x[0].data)/2, -max(x[0].data)/2], '--k')
|
||||||
|
plt.yticks([])
|
||||||
|
plt.title('Earliest-/Latest Possible and Most Likely Pick, %s' % self.Data[0].stats.station)
|
||||||
|
plt.subplot(3,1,2)
|
||||||
|
plt.plot(t, x[1].data, 'k')
|
||||||
|
plt.plot(t[inoise], x[1].data[inoise])
|
||||||
|
plt.plot(t[isignal], x[1].data[isignal], 'r')
|
||||||
|
plt.plot([t[0], t[int(len(t)) - 1]], [nlevel, nlevel], '--k')
|
||||||
|
plt.plot([t[0], t[int(len(t)) - 1]], [-nlevel, -nlevel], '--k')
|
||||||
|
plt.plot([ti, ti], [max(x[1].data), -max(x[1].data)], 'b', linewidth=2)
|
||||||
|
plt.plot([self.LPick, self.LPick], [max(x[1].data)/2, -max(x[1].data)/2], '--k')
|
||||||
|
plt.plot([self.EPick, self.EPick], [max(x[1].data)/2, -max(x[1].data)/2], '--k')
|
||||||
|
plt.plot(zc2[0:3], [0, 0, 0], '*g', markersize=14)
|
||||||
|
plt.yticks([])
|
||||||
|
plt.subplot(3,1,3)
|
||||||
|
plt.plot(t, x[2].data, 'k')
|
||||||
|
plt.plot(t[inoise], x[2].data[inoise])
|
||||||
|
plt.plot(t[isignal], x[2].data[isignal], 'r')
|
||||||
|
plt.plot([t[0], t[int(len(t)) - 1]], [nlevel, nlevel], '--k')
|
||||||
|
plt.plot([t[0], t[int(len(t)) - 1]], [-nlevel, -nlevel], '--k')
|
||||||
|
plt.plot([ti, ti], [max(x[2].data), -max(x[2].data)], 'b', linewidth=2)
|
||||||
|
plt.plot([self.LPick, self.LPick], [max(x[2].data)/2, -max(x[2].data)/2], '--k')
|
||||||
|
plt.plot([self.EPick, self.EPick], [max(x[2].data)/2, -max(x[2].data)/2], '--k')
|
||||||
|
plt.plot(zc3[0:3], [0, 0, 0], '*g', markersize=14)
|
||||||
|
plt.xlabel('Time [s] since %s' % self.Data[0].stats.starttime)
|
||||||
|
plt.yticks([])
|
||||||
|
plt.show()
|
||||||
|
raw_input()
|
||||||
|
plt.close(self.iplot)
|
||||||
|
|
||||||
|
elif self.getpick1() == None:
|
||||||
|
print 'EarlLatePick: No initial onset time given! Check input!'
|
||||||
|
return
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user