cross-correlation analysis
This commit is contained in:
parent
d32b401508
commit
be0bf20382
0
pylot/core/analysis/__init__.py
Normal file
0
pylot/core/analysis/__init__.py
Normal file
100
pylot/core/analysis/correlation.py
Normal file
100
pylot/core/analysis/correlation.py
Normal file
@ -0,0 +1,100 @@
|
||||
#!/usr/bin/env python
|
||||
# -*- coding: utf-8 -*-
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
def crosscorrsingle(wf1, wf2, taumax):
|
||||
'''
|
||||
|
||||
:param Wx:
|
||||
:param Wy:
|
||||
:param taumax:
|
||||
:return:
|
||||
'''
|
||||
N = len(wf1)
|
||||
c = np.zeros(2 * taumax - 1)
|
||||
l = np.zeros(2 * taumax - 1)
|
||||
for tau in range(taumax):
|
||||
Cxyplus = 0
|
||||
Cxyminus = 0
|
||||
for n in range(N - tau):
|
||||
Cxy1plus = wf1[n] * wf2[n + tau]
|
||||
Cxy1minus = wf1[n + tau] * wf2[n]
|
||||
Cxyplus = Cxyplus + Cxy1plus
|
||||
Cxyminus = Cxyminus + Cxy1minus
|
||||
|
||||
c[(taumax - 1) - tau] = Cxyminus
|
||||
c[(taumax - 1) + tau] = Cxyplus
|
||||
l[(taumax - 1) - tau] = -tau
|
||||
l[(taumax - 1) + tau] = tau
|
||||
return c, l
|
||||
|
||||
|
||||
def crosscorrnormcalc(weights, wfs):
|
||||
'''
|
||||
crosscorrnormcalc - function that calculates the normalization for the
|
||||
cross correlation carried out by 'wfscrosscorr'
|
||||
:param weights: weighting factors for the single components
|
||||
:type weights: tuple
|
||||
:param wfs: tuple of `~numpy.array` object containing waveform data
|
||||
:type wfs: tuple
|
||||
:return: a floating point number yielding the by 'weights' weighted energy
|
||||
of the waveforms in 'wfs'
|
||||
:rtype: float
|
||||
'''
|
||||
|
||||
# check if the parameters are of the right type
|
||||
if not isinstance(weights, tuple):
|
||||
raise TypeError("type of 'weight' should be 'tuple', but is {0}".format(
|
||||
type(weights)))
|
||||
if not isinstance(wfs, tuple):
|
||||
raise TypeError(
|
||||
"type of parameter 'wfs' should be 'tuple', but is {0}".format(
|
||||
type(wfs)))
|
||||
sqrsumwfs = 0.
|
||||
for n, wf in enumerate(wfs):
|
||||
sqrsumwf = np.sum(weights[n] ** 2. * wf ** 2.)
|
||||
sqrsumwfs += sqrsumwf
|
||||
return np.sqrt(sqrsumwfs)
|
||||
|
||||
|
||||
def wfscrosscorr(weights, wfs, taumax):
|
||||
'''
|
||||
wfscrosscorr - function that calculates successive cross-correlations from a set of waveforms stored in a matrix
|
||||
|
||||
base formula is:
|
||||
C(i)=SUM[p=1:nComponent](eP(p)*(SUM[n=1:N]APp(x,n)*APp(y,n+i)))/(SQRT(SUM[p=1:nComponent]eP(p)^2*(SUM[n=1:N](APp(x,n)^2)))*SQRT(SUM[p=1:nComponent]eP(p)^2*(SUM[n=1:N]APp(y,n)^2)))
|
||||
whereas
|
||||
nComponent is the number of components
|
||||
N is the number of samples
|
||||
i is the lag-index
|
||||
|
||||
input:
|
||||
APp rowvectors containing the waveforms of each component p for which the cross-correlation is calculated
|
||||
tPp rowvectros containing times
|
||||
eP vector containing the weighting factors for the components (maxsize = [1x3])
|
||||
|
||||
output:
|
||||
C cross-correlation function
|
||||
L lag-vector
|
||||
|
||||
author(s):
|
||||
|
||||
SWB 26.01.2010 as arranged with Thomas Meier and Monika Bischoff
|
||||
|
||||
:param weights:
|
||||
:param wfs:
|
||||
:param taumax:
|
||||
:return:
|
||||
'''
|
||||
|
||||
ccnorm = 0.
|
||||
ccnorm = crosscorrnormcalc(weights, wfs[0])
|
||||
ccnorm *= crosscorrnormcalc(weights, wfs[1])
|
||||
|
||||
c = 0.
|
||||
for n in range(len(wfs)):
|
||||
cc, l = crosscorrsingle(wfs[0][n], wfs[1][n], taumax)
|
||||
c += cc
|
||||
return c / ccnorm, l
|
Loading…
Reference in New Issue
Block a user