Merge branch 'develop' of ariadne.geophysik.rub.de:/data/git/pylot into develop
Merge necessary after commit before pull.
This commit is contained in:
commit
c35dd456fe
@ -324,6 +324,9 @@ def getSNR(X, TSNR, t1):
|
|||||||
print 'getSNR: Empty array isignal, check signal window!'
|
print 'getSNR: Empty array isignal, check signal window!'
|
||||||
return
|
return
|
||||||
|
|
||||||
|
# demean over entire snr window
|
||||||
|
x -= x[inoise[0]:isignal[-1]].mean()
|
||||||
|
|
||||||
# calculate ratios
|
# calculate ratios
|
||||||
noiselevel = np.sqrt(np.mean(np.square(x[inoise])))
|
noiselevel = np.sqrt(np.mean(np.square(x[inoise])))
|
||||||
signallevel = np.sqrt(np.mean(np.square(x[isignal])))
|
signallevel = np.sqrt(np.mean(np.square(x[isignal])))
|
||||||
@ -352,9 +355,8 @@ def getnoisewin(t, t1, tnoise, tgap):
|
|||||||
:type: float
|
:type: float
|
||||||
'''
|
'''
|
||||||
|
|
||||||
inoise = None
|
|
||||||
# get noise window
|
# get noise window
|
||||||
inoise = np.where((t <= max([t1 - tgap, 0])) \
|
inoise, = np.where((t <= max([t1 - tgap, 0])) \
|
||||||
& (t >= max([t1 - tnoise - tgap, 0])))
|
& (t >= max([t1 - tnoise - tgap, 0])))
|
||||||
if np.size(inoise) < 1:
|
if np.size(inoise) < 1:
|
||||||
print 'getnoisewin: Empty array inoise, check noise window!'
|
print 'getnoisewin: Empty array inoise, check noise window!'
|
||||||
@ -377,9 +379,8 @@ def getsignalwin(t, t1, tsignal):
|
|||||||
:type: float
|
:type: float
|
||||||
'''
|
'''
|
||||||
|
|
||||||
inoise = None
|
|
||||||
# get signal window
|
# get signal window
|
||||||
isignal = np.where((t <= min([t1 + tsignal, len(t)])) \
|
isignal, = np.where((t <= min([t1 + tsignal, len(t)])) \
|
||||||
& (t >= t1))
|
& (t >= t1))
|
||||||
if np.size(isignal) < 1:
|
if np.size(isignal) < 1:
|
||||||
print 'getsignalwin: Empty array isignal, check signal window!'
|
print 'getsignalwin: Empty array isignal, check signal window!'
|
||||||
@ -395,8 +396,8 @@ def wadaticheck(pickdic, dttolerance, iplot):
|
|||||||
|
|
||||||
: param: pickdic, dictionary containing picks and quality parameters
|
: param: pickdic, dictionary containing picks and quality parameters
|
||||||
: type: dictionary
|
: type: dictionary
|
||||||
|
|
||||||
: param: dttolerance, maximum adjusted deviation of S-P time from
|
: param: dttolerance, maximum adjusted deviation of S-P time from
|
||||||
S-P time regression
|
S-P time regression
|
||||||
: type: float
|
: type: float
|
||||||
|
|
||||||
@ -425,15 +426,15 @@ def wadaticheck(pickdic, dttolerance, iplot):
|
|||||||
|
|
||||||
|
|
||||||
if len(SPtimes) >= 3:
|
if len(SPtimes) >= 3:
|
||||||
# calculate slope
|
# calculate slope
|
||||||
p1 = np.polyfit(Ppicks, SPtimes, 1)
|
p1 = np.polyfit(Ppicks, SPtimes, 1)
|
||||||
wdfit = np.polyval(p1, Ppicks)
|
wdfit = np.polyval(p1, Ppicks)
|
||||||
wfitflag = 0
|
wfitflag = 0
|
||||||
|
|
||||||
# calculate vp/vs ratio before check
|
# calculate vp/vs ratio before check
|
||||||
vpvsr = p1[0] + 1
|
vpvsr = p1[0] + 1
|
||||||
print 'wadaticheck: Average Vp/Vs ratio before check:', vpvsr
|
print 'wadaticheck: Average Vp/Vs ratio before check:', vpvsr
|
||||||
|
|
||||||
checkedPpicks = []
|
checkedPpicks = []
|
||||||
checkedSpicks = []
|
checkedSpicks = []
|
||||||
checkedSPtimes = []
|
checkedSPtimes = []
|
||||||
@ -445,7 +446,7 @@ def wadaticheck(pickdic, dttolerance, iplot):
|
|||||||
ii += 1
|
ii += 1
|
||||||
# check, if deviation is larger than adjusted
|
# check, if deviation is larger than adjusted
|
||||||
if wddiff >= dttolerance:
|
if wddiff >= dttolerance:
|
||||||
# mark onset and downgrade S-weight to 9
|
# mark onset and downgrade S-weight to 9
|
||||||
# (not used anymore)
|
# (not used anymore)
|
||||||
marker = 'badWadatiCheck'
|
marker = 'badWadatiCheck'
|
||||||
pickdic[key]['S']['weight'] = 9
|
pickdic[key]['S']['weight'] = 9
|
||||||
@ -461,7 +462,7 @@ def wadaticheck(pickdic, dttolerance, iplot):
|
|||||||
pickdic[key]['S']['marked'] = marker
|
pickdic[key]['S']['marked'] = marker
|
||||||
|
|
||||||
|
|
||||||
# calculate new slope
|
# calculate new slope
|
||||||
p2 = np.polyfit(checkedPpicks, checkedSPtimes, 1)
|
p2 = np.polyfit(checkedPpicks, checkedSPtimes, 1)
|
||||||
wdfit2 = np.polyval(p2, checkedPpicks)
|
wdfit2 = np.polyval(p2, checkedPpicks)
|
||||||
|
|
||||||
@ -470,7 +471,7 @@ def wadaticheck(pickdic, dttolerance, iplot):
|
|||||||
print 'wadaticheck: Average Vp/Vs ratio after check:', cvpvsr
|
print 'wadaticheck: Average Vp/Vs ratio after check:', cvpvsr
|
||||||
|
|
||||||
checkedonsets = pickdic
|
checkedonsets = pickdic
|
||||||
|
|
||||||
else:
|
else:
|
||||||
print 'wadaticheck: Not enough S-P times available for reliable regression!'
|
print 'wadaticheck: Not enough S-P times available for reliable regression!'
|
||||||
print 'Skip wadati check!'
|
print 'Skip wadati check!'
|
||||||
|
Loading…
Reference in New Issue
Block a user