Initial version of new class of methods for automatic picking, AICPicker is running but without quality attributes
This commit is contained in:
parent
70a700101b
commit
ca809c4673
183
pylot/core/pick/Picker.py
Normal file
183
pylot/core/pick/Picker.py
Normal file
@ -0,0 +1,183 @@
|
||||
# -*- coding: utf-8 -*-
|
||||
"""
|
||||
Created Dec 2014
|
||||
Implementation of the picking algorithms published and described in:
|
||||
|
||||
Küperkoch, L., Meier, T., Lee, J., Friederich, W., & Egelados Working Group, 2010:
|
||||
Automated determination of P-phase arrival times at regional and local distances
|
||||
using higher order statistics, Geophys. J. Int., 181, 1159-1170
|
||||
|
||||
Küperkoch, L., Meier, T., Brüstle, A., Lee, J., Friederich, W., & Egelados
|
||||
Working Group, 2012: Automated determination of S-phase arrival times using
|
||||
autoregressive prediction: application ot local and regional distances, Geophys. J. Int.,
|
||||
188, 687-702.
|
||||
|
||||
:author: MAGS2 EP3 working group / Ludger Küperkoch
|
||||
"""
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import pdb
|
||||
|
||||
class AutoPicking(object):
|
||||
'''
|
||||
Superclass of different, automated picking algorithms applied on a CF determined
|
||||
using AIC, HOS, or AR prediction.
|
||||
'''
|
||||
def __init__(self, cf, Tcf, dt, Tslope, aerr, TSNR, PickWindow, peps, Tsmooth):
|
||||
'''
|
||||
:param: cf, characteristic function, on which the picking algorithm is applied
|
||||
:type: array
|
||||
|
||||
:param: Tcf, corresponding time array
|
||||
:type: array
|
||||
|
||||
:param: dt, sampling interval [s]
|
||||
:type: float
|
||||
|
||||
:param: Tslope, length of time window after pick used to determine slope
|
||||
for quality estimation [s]
|
||||
:type: float
|
||||
|
||||
:param: aerr (adjusted error), percentage of maximum of CF to determine slope for quality estimation
|
||||
:type: int
|
||||
|
||||
:param: TSNR, length of time windows around pick used to determine SNR [s]
|
||||
:type: tuple (T_noise, T_gap, T_signal)
|
||||
|
||||
:param: PickWindow, length of pick window [s]
|
||||
:type: float
|
||||
|
||||
:param: peps, find local minimum at i if aic(i-1)*(1+peps) >= aic(i)
|
||||
:type: float
|
||||
|
||||
:param: Tsmooth, length of moving smoothing window to calculate smoothed CF [s]
|
||||
:type: float
|
||||
'''
|
||||
|
||||
self.cf = cf
|
||||
self.Tcf = Tcf
|
||||
self.dt = dt
|
||||
self.setTslope(Tslope)
|
||||
self.setaerr(aerr)
|
||||
self.setTSNR(TSNR)
|
||||
self.setPickWindow(PickWindow)
|
||||
self.setpeps(peps)
|
||||
self.setTsmooth(Tsmooth)
|
||||
self.calcPick()
|
||||
|
||||
def __str__(self):
|
||||
return '''\n\t{name} object:\n
|
||||
TSlope:\t{Tslope}\n
|
||||
aerr:\t{aerr}\n
|
||||
TSNR:\t\t\t{TSNR}\n
|
||||
PickWindow:\t{PickWindow}\n
|
||||
peps:\t{peps}\n
|
||||
Tsmooth:\t{Tsmooth}\n
|
||||
'''.format(name=type(self).__name__,
|
||||
Tslope=self.getTslope(),
|
||||
aerr=self.getaerr(),
|
||||
TSNR=self.getTSNR(),
|
||||
PickWindow=self.getPickWindow(),
|
||||
peps=self.getpeps(),
|
||||
Tsmooth=self.getTsmooth())
|
||||
|
||||
def getTslope(self):
|
||||
return self.Tslope
|
||||
|
||||
def setTslope(self, Tslope):
|
||||
self.Tslope = Tslope
|
||||
|
||||
def getaerr(self):
|
||||
return self.aerr
|
||||
|
||||
def setaerr(self, aerr):
|
||||
self.aerr = aerr
|
||||
|
||||
def getTSNR(self):
|
||||
return self.TSNR
|
||||
|
||||
def setTSNR(self, TSNR):
|
||||
self.TSNR = TSNR
|
||||
|
||||
def getPickWindow(self):
|
||||
return self.PickWindow
|
||||
|
||||
def setPickWindow(self, PickWindow):
|
||||
self.PickWindow = PickWindow
|
||||
|
||||
def getpeps(self):
|
||||
return self.peps
|
||||
|
||||
def setpeps(self, peps):
|
||||
self.peps = peps
|
||||
|
||||
def setTsmooth(self, Tsmooth):
|
||||
self.Tsmooth = Tsmooth
|
||||
|
||||
def getTsmooth(self):
|
||||
return self.Tsmooth
|
||||
|
||||
def getpick(self):
|
||||
return self.Pick
|
||||
|
||||
def calcPick(self):
|
||||
self.Pick = Pick
|
||||
|
||||
class AICPicker(AutoPicking):
|
||||
'''
|
||||
Method to derive onset time of arriving phase based on CF
|
||||
derived from AIC.
|
||||
'''
|
||||
|
||||
def calcPick(self):
|
||||
|
||||
print 'Get onset (pick) from AIC-CF ...'
|
||||
|
||||
#taper AIC-CF to get rid off side maxima
|
||||
tap = np.hanning(len(self.cf))
|
||||
aic = tap * self.cf + max(abs(self.cf))
|
||||
#get maximum of CF as starting point
|
||||
icfmax = np.argmax(aic)
|
||||
|
||||
#smooth CF
|
||||
aicsmooth = np.zeros(len(aic))
|
||||
ismooth = round(self.Tsmooth / self.dt)
|
||||
if len(aic) < ismooth:
|
||||
print 'AICPicker: Tsmooth larger than AIC function!'
|
||||
self.Pick = -1
|
||||
return self.Pick
|
||||
else:
|
||||
self.Pick = -1
|
||||
for i in range(1, len(aic)):
|
||||
if i > ismooth:
|
||||
ii1 = i - ismooth
|
||||
aicsmooth[i] = aicsmooth[i - 1] + (aic[i] - aic[ii1]) / ismooth
|
||||
else:
|
||||
aicsmooth[i] = np.mean(aic[0:i])
|
||||
|
||||
#find common, local minimum in front of maximum
|
||||
#of smoothed and unsmoothed AIC-CF
|
||||
lpickwindow = int(round(self.PickWindow / self.dt))
|
||||
for i in range(icfmax - 1, max([icfmax - lpickwindow, 2]), -1):
|
||||
if aic[i - 1] * (1 + self.peps) >= aic[i]:
|
||||
if aicsmooth[i - 1] * (1 + self.peps) >= aicsmooth[i]:
|
||||
self.Pick = self.Tcf[i]
|
||||
break
|
||||
|
||||
#try again with larger peps if picking failed
|
||||
if self.Pick < 0:
|
||||
peps2 = self.peps + 0.01
|
||||
for i in range(icfmax - 1, max([icfmax - lpickwindow, 2]), -1):
|
||||
if aic[i - 1] * (1 + peps2) >= aic[i]:
|
||||
if aicsmooth[i - 1] * (1 + peps2) >= aicsmooth[i]:
|
||||
self.Pick = self.Tcf[i]
|
||||
break
|
||||
|
||||
class PragPicker(AutoPicking):
|
||||
'''
|
||||
Method of pragmatic picking exploiting information given by CF.
|
||||
'''
|
||||
|
||||
def calcPick(self):
|
||||
|
||||
print 'Get onset (pick) from HOS- or AR-CF using pragmatic picking algorithm ...'
|
Loading…
Reference in New Issue
Block a user