Initial version of new class of methods for automatic picking, AICPicker is running but without quality attributes

This commit is contained in:
Ludger Küperkoch 2014-12-05 16:14:03 +01:00
parent 70a700101b
commit ca809c4673

183
pylot/core/pick/Picker.py Normal file
View File

@ -0,0 +1,183 @@
# -*- coding: utf-8 -*-
"""
Created Dec 2014
Implementation of the picking algorithms published and described in:
Küperkoch, L., Meier, T., Lee, J., Friederich, W., & Egelados Working Group, 2010:
Automated determination of P-phase arrival times at regional and local distances
using higher order statistics, Geophys. J. Int., 181, 1159-1170
Küperkoch, L., Meier, T., Brüstle, A., Lee, J., Friederich, W., & Egelados
Working Group, 2012: Automated determination of S-phase arrival times using
autoregressive prediction: application ot local and regional distances, Geophys. J. Int.,
188, 687-702.
:author: MAGS2 EP3 working group / Ludger Küperkoch
"""
import numpy as np
import matplotlib.pyplot as plt
import pdb
class AutoPicking(object):
'''
Superclass of different, automated picking algorithms applied on a CF determined
using AIC, HOS, or AR prediction.
'''
def __init__(self, cf, Tcf, dt, Tslope, aerr, TSNR, PickWindow, peps, Tsmooth):
'''
:param: cf, characteristic function, on which the picking algorithm is applied
:type: array
:param: Tcf, corresponding time array
:type: array
:param: dt, sampling interval [s]
:type: float
:param: Tslope, length of time window after pick used to determine slope
for quality estimation [s]
:type: float
:param: aerr (adjusted error), percentage of maximum of CF to determine slope for quality estimation
:type: int
:param: TSNR, length of time windows around pick used to determine SNR [s]
:type: tuple (T_noise, T_gap, T_signal)
:param: PickWindow, length of pick window [s]
:type: float
:param: peps, find local minimum at i if aic(i-1)*(1+peps) >= aic(i)
:type: float
:param: Tsmooth, length of moving smoothing window to calculate smoothed CF [s]
:type: float
'''
self.cf = cf
self.Tcf = Tcf
self.dt = dt
self.setTslope(Tslope)
self.setaerr(aerr)
self.setTSNR(TSNR)
self.setPickWindow(PickWindow)
self.setpeps(peps)
self.setTsmooth(Tsmooth)
self.calcPick()
def __str__(self):
return '''\n\t{name} object:\n
TSlope:\t{Tslope}\n
aerr:\t{aerr}\n
TSNR:\t\t\t{TSNR}\n
PickWindow:\t{PickWindow}\n
peps:\t{peps}\n
Tsmooth:\t{Tsmooth}\n
'''.format(name=type(self).__name__,
Tslope=self.getTslope(),
aerr=self.getaerr(),
TSNR=self.getTSNR(),
PickWindow=self.getPickWindow(),
peps=self.getpeps(),
Tsmooth=self.getTsmooth())
def getTslope(self):
return self.Tslope
def setTslope(self, Tslope):
self.Tslope = Tslope
def getaerr(self):
return self.aerr
def setaerr(self, aerr):
self.aerr = aerr
def getTSNR(self):
return self.TSNR
def setTSNR(self, TSNR):
self.TSNR = TSNR
def getPickWindow(self):
return self.PickWindow
def setPickWindow(self, PickWindow):
self.PickWindow = PickWindow
def getpeps(self):
return self.peps
def setpeps(self, peps):
self.peps = peps
def setTsmooth(self, Tsmooth):
self.Tsmooth = Tsmooth
def getTsmooth(self):
return self.Tsmooth
def getpick(self):
return self.Pick
def calcPick(self):
self.Pick = Pick
class AICPicker(AutoPicking):
'''
Method to derive onset time of arriving phase based on CF
derived from AIC.
'''
def calcPick(self):
print 'Get onset (pick) from AIC-CF ...'
#taper AIC-CF to get rid off side maxima
tap = np.hanning(len(self.cf))
aic = tap * self.cf + max(abs(self.cf))
#get maximum of CF as starting point
icfmax = np.argmax(aic)
#smooth CF
aicsmooth = np.zeros(len(aic))
ismooth = round(self.Tsmooth / self.dt)
if len(aic) < ismooth:
print 'AICPicker: Tsmooth larger than AIC function!'
self.Pick = -1
return self.Pick
else:
self.Pick = -1
for i in range(1, len(aic)):
if i > ismooth:
ii1 = i - ismooth
aicsmooth[i] = aicsmooth[i - 1] + (aic[i] - aic[ii1]) / ismooth
else:
aicsmooth[i] = np.mean(aic[0:i])
#find common, local minimum in front of maximum
#of smoothed and unsmoothed AIC-CF
lpickwindow = int(round(self.PickWindow / self.dt))
for i in range(icfmax - 1, max([icfmax - lpickwindow, 2]), -1):
if aic[i - 1] * (1 + self.peps) >= aic[i]:
if aicsmooth[i - 1] * (1 + self.peps) >= aicsmooth[i]:
self.Pick = self.Tcf[i]
break
#try again with larger peps if picking failed
if self.Pick < 0:
peps2 = self.peps + 0.01
for i in range(icfmax - 1, max([icfmax - lpickwindow, 2]), -1):
if aic[i - 1] * (1 + peps2) >= aic[i]:
if aicsmooth[i - 1] * (1 + peps2) >= aicsmooth[i]:
self.Pick = self.Tcf[i]
break
class PragPicker(AutoPicking):
'''
Method of pragmatic picking exploiting information given by CF.
'''
def calcPick(self):
print 'Get onset (pick) from HOS- or AR-CF using pragmatic picking algorithm ...'