In order to calculate DC value and corner frequency of source spectrum a synthetic spectrum is calculated and optimized using scipys curve_fit.
This commit is contained in:
parent
8035903fa5
commit
ce57f184e7
@ -9,6 +9,7 @@ import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
from obspy.core import Stream
|
||||
from pylot.core.pick.utils import getsignalwin
|
||||
from scipy.optimize import curve_fit
|
||||
|
||||
class Magnitude(object):
|
||||
'''
|
||||
@ -166,20 +167,73 @@ class DCfc(Magnitude):
|
||||
L = (N - 1) / tr.stats.sampling_rate
|
||||
f = np.arange(0, fny, 1/L)
|
||||
|
||||
if self.getiplot() > 1:
|
||||
f1 = plt.figure(1)
|
||||
# remove zero-frequency and frequencies above
|
||||
# corner frequency of seismometer (assumed
|
||||
# to be 100 Hz)
|
||||
fi = np.where((f >= 1) & (f < 100))
|
||||
F = f[fi]
|
||||
YY = Y[fi]
|
||||
# get plateau (DC value) and corner frequency
|
||||
# initial guess of plateau
|
||||
DCin = np.mean(YY[0:100])
|
||||
# initial guess of corner frequency
|
||||
# where spectral level reached 50% of flat level
|
||||
iin = np.where(YY >= 0.5 * DCin)
|
||||
Fcin = F[iin[0][np.size(iin) - 1]]
|
||||
fit = synthsourcespec(F, DCin, Fcin)
|
||||
[optspecfit, pcov] = curve_fit(synthsourcespec, F, YY.real, [DCin, Fcin])
|
||||
self.w0 = optspecfit[0]
|
||||
self.fc = optspecfit[1]
|
||||
print ("DCfc: Determined DC-value: %f, \n" \
|
||||
"Determined corner frequency: %f" % (self.w0, self.fc))
|
||||
|
||||
|
||||
#if self.getiplot() > 1:
|
||||
iplot=2
|
||||
if iplot > 1:
|
||||
f1 = plt.figure()
|
||||
plt.subplot(2,1,1)
|
||||
plt.plot(t, np.multiply(tr, 1000), 'k') # show displacement in mm
|
||||
plt.plot(t[iwin], np.multiply(xdat, 1000), 'g') # show displacement in mm
|
||||
# show displacement in mm
|
||||
plt.plot(t, np.multiply(tr, 1000), 'k')
|
||||
plt.plot(t[iwin], np.multiply(xdat, 1000), 'g')
|
||||
plt.title('Seismogram and P pulse, station %s' % tr.stats.station)
|
||||
plt.xlabel('Time since %s' % tr.stats.starttime)
|
||||
plt.ylabel('Displacement [mm]')
|
||||
|
||||
plt.subplot(2,1,2)
|
||||
plt.semilogy(f, Y.real)
|
||||
plt.title('Source Spectrum from P Pulse')
|
||||
plt.semilogy(f, Y.real, 'k')
|
||||
plt.semilogy(F, YY.real)
|
||||
plt.semilogy(F, fit, 'g')
|
||||
plt.title('Source Spectrum from P Pulse, DC=%f m/Hz, fc=%4.1f Hz' \
|
||||
% (self.w0, self.fc))
|
||||
plt.xlabel('Frequency [Hz]')
|
||||
plt.ylabel('Amplitude [m/Hz]')
|
||||
plt.show()
|
||||
raw_input()
|
||||
plt.close(f1)
|
||||
|
||||
|
||||
def synthsourcespec(f, omega0, fcorner):
|
||||
'''
|
||||
Calculates synthetic source spectrum from given plateau and corner
|
||||
frequency assuming Akis omega-square model.
|
||||
|
||||
:param: f, frequencies
|
||||
:type: array
|
||||
|
||||
:param: omega0, DC-value (plateau) of source spectrum
|
||||
:type: float
|
||||
|
||||
:param: fcorner, corner frequency of source spectrum
|
||||
:type: float
|
||||
'''
|
||||
|
||||
#ssp = omega0 / (pow(2, (1 + f / fcorner)))
|
||||
ssp = omega0 / (1 + pow(2, (f / fcorner)))
|
||||
|
||||
#plt.plot(f, ssp)
|
||||
#plt.show()
|
||||
#raw_input()
|
||||
|
||||
return ssp
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user